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‘ Introduction I

The mathematical modeling of communication network necessitates an accurate
representation of the arrival process of information.

Depending on the level of the model, this may be:

e the quantity of packets arrived in some network element before some time ¢,

e a quantity of frames (video), requests (transactions), or any other Application Data
Unit,

e a quantity of bytes or bits,

e a quantity of time elapsed in some continuous media: vidéo, audio streaming...
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‘ Mathematical models of arrivals I

The appropriate mathematical object is a counting process:
N(t) = quantity arrived in the interval [0,t) .
Several cases:
e discrete time: t € N
e continuous time: t € R
e discrete space: N(t) € N

e continuous space: N(t) € R

Introduction — Counting processes



‘ Counting process: illustration I

Process of arrivals of events (arrivals, departures, changes, starts, stops, etc).

b N

KK —XK—X—XK K—AK—

Introduction — Counting processes



‘ Modeling constraints I

The variety of situations makes the following features necessary:

e relatively complex processes (bursts, temporal correlations, ...)
e possibly large number of sources

e case of use, for simulation and stochastic calculus: distributions, queueing networks,
asymptotics...

. with a mastered algorithmic complexity.

— Markov-modulated processes have these features

Introduction — Counting processes



‘ Markov chains I

A discrete-time Markov chain is a process { X (n),n € N} such that:
o if X(n) =1, then X(n+ 1) = j with probability p;;,

e jumps are independent.

A Markov chain is fully described by its

transition probabilities: p; ;, (7,7) € € X &, or its

transition matrix P.

Introduction - Markov chains



‘ Example of Markov chain I

Transition diagram Transition matrix
0.2(\‘
0.2 0.2 0.6
P = 0 0.5 0.5
1 0 0
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‘ Continuous-time I

X has an exponential distribution of parameter A > 0 (X ~ Exp(}\)) if:

Fx(z) = P{X <2} =1 — e,
Counting process of the sequence T < T1 < ... < T, <Thi1 < ..o

N(a,b) = #{n|a<T, <b} = Z Lia<m,<b}
n=0

This is a Poisson process of parameter \ if {T,,11 — T} is a i.i.d. sequence of
variables Exp(\).
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‘ Continuous time Markov chains I

Let {X(¢),t € RT}, having the following properties. When X enters state ¢:

e X stays in state ¢ a random time, exponentially distributed with parameter 7;,
independent of the past; then

e X jumps instantly in state j with probability p;;. We have p;; € [0,1], p;; = 0 and
> pij=1
J

This process is a continuous-time Markov chain with transition rates

qij = TiPij -

Introduction — Continuous time Markov chains 9



‘ Example I

0.3 0 1 0 -03 03 0
0.6 s = 0 02 04 —06
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‘ Properties and Analysis I

The most useful properties of Markov processes are:

e they are described by matrices,
e computing distributions involves the solution of linear problems

e their superposition leads to simple matrix computations.

Introduction — Markovian analysis
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‘ Superposition of sources I

If on superposes several Markov-modulated sources, the resulting process is still Markov-
modulated.

The matrices (generators and rates) are obtained using Kronecker sums.

Kronecker product: consider two matrices A (n x n) and B (m x m). Their
Kronecker product is a matrix nm X nm with

AllB ce AlnB
AR B = : :
AqB ... A,.,B
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Kronecker sum: a matrix nm X nm defined as

AeB = A® Im) + I(n) ® B

AllB Blll

BimI

Bonl

Introduction — Superpositions
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Example: for two Markov chains {X1(¢)} and {X2(t)}, we have:
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‘ Markov modulated arrivals I

General idea:

e A Markov chain {X(t);t € R or N} € &, the phase

e A counting process IN(t) such that {(X(¢),N(t))} € £ x N is a Markov chain.

r N N\
XE» Q * ¢\‘ coe
N(t) ‘

Markov Modulated Arrival Processes
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‘ MAP: Markov Arrival Process I

Let {X(t);t € R} be a continuous-time Markov chain.

{N(t);t € R} counts the number of jumps of X in [0,1).

10

10

Markov Modulated Arrival Processes — MAP
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‘ MMPP: Markov Modulated Poisson Process I

Let {X(t);t € R} be a continuous-time Markov chain in £.
Let A\; > 0 be an arrival rate, for each 7 € £.

Arrivals occur according to a Poisson process of time-varying rate Ay (;): thatis, A; as
long as X (t) = 1.

10
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‘ BMAP: Batch Markov Arrival Process I

Also known as “N-process’ (N = Neuts), or the “versatile” process.

{(X(t),N(t));t € R} is a continuous-time Markov chain with a generator structured
as:

Dy D1y Dy ...
Q — Dy Dy Do

Dy D;

A process in the family of Markov additive process.

Markov Modulated Arrival Processes — BMAP 18



‘ MMRP: Markov Modulated Rate Process I

Let {X (¢);t € R} be a continuous-time Markov chain over a finite state space .
Let r; be arrival rates (or accumulation rates), for each i € €.

Arrivals occur according to a fluid process with rate x4y, that is: with rate r; as long

as X (t) = 1.

Let N(t) the quantity arrived at time ¢:

dN
E(t) = TX(t) -

Note: also known as "Markov drift process .

Markov Modulated Arrival Processes — MMRP 19



Example. £ with three states, r3 =0, 0 < r1 < ry:
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‘ Elaborate multiscale processes I

Process with arrivals of sessions, requests, packets:

Multiscale
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‘ Synthesis I

Markov modulated sources of arrivals are described by matrices

e For a MAP:
the generator Q

e For a MMPP/MMRP:
the generator Q, and the rate matrix A

e For a BMAP:

the collection of transition rate matrices Dg, D1, . ..

Most distributions and performance measures are computed using these matrices.

Markov Modulated Arrival Processes — Synthesis
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‘ Examples of computations I

Average arrival rate

For a MMPP/MMRP, with 7 the stationary probability of X,

X = wAl = Z?’(’Z)\Z
€&

Distribution of arrivals

For a MMPP, if A;;(k,T") = P{k arrivals and X (7") = 5 | X(0) = ¢}, then

ZZ’CAZ](]C,T) — (e(Q_(l—Z)A)T)
k

©J
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‘ Markov modulated speeds I

Consider a Markov chain Z which evolves in some state space with a generator

M = (mab).
There is an “environment” X which is a CTMC with generator G = (g;;).

When X is in state ¢, the speed of Z(t) (transition rates) is multiplied by v;:

ratea — b = mg, X v; .

The generator of the process (Z(t), X (t)) has transition rates:

1,0

(i, a)
(i, a)

—  (4,b) with rate mgpv;
—  (j,a) with rate g;;

Application — Markov speeds 24



In block-matrix form:

1M + g1l
|
Q — 921

gl

Or, with the Kronecker notation:
Q =

where

g12l g1kl
v2M + gaol g2kl

GI+Ve M.

V = diag(vi,...,vk) .

Application — Markov speeds
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Problem: compute the transition probabilities, whith are the elements of the matrix
eQt A standard method is to diagonalize Q: find its eigenvalues and eigenvectors.

If one chooses x and y such that:

M = Az
¥y = (aliU,.--,CLNCE):CL@:L‘,
Then
yQ = @®2x) (G 1+ VR M)

= oGzl + aV R xM
= a(G+ V) ® =.

It is enough to choose a such that a(G + AV) = ua for yQ = py to hold.

Application — Markov speeds 26



‘ Diagonalization Algorithm I

Data: an infinitesimal generator Q obtained by modulating a matrix G with speeds

U1,...,VK.
Q=G +Vx M.

Result:  the eigenvalues, left and right eigenvectors of the matrix Q ( =
diagonalization of Q).

Diagonalization 27



Algorithm:
e Find the spectral elements of G:

e For each 7, find the spectral elements of G + \;V:

— (Mij;az'j,bij) 1= 1K, ] = 1..N .

e Obtain the spectral elements of Q:

—  (fijy a4 @ T4, b5 ®@y;)  i=1.K, j=1.N.

Diagonalization
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Complexity:

e soit IV be the sise of the state space, K the number of speeds

e Qisofsize NK x NK
e diagonalizing directly is O(N3K?)
e this algorithm is O(K® + KN3) |

It is not even necessary to store the "big" matrix.

Diagonalization
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‘ Markov modulated queues I

Discrete queues: Markov-modulated arrivals

e exponential /Erlang/Cox service distribution — method of phases,

e general IID services: method of the embedded Markov chain.
Fluid queues:

e partial differential equations (Chapman-Kolmogoroff).

Queues

30



In both cases, the results are:

e Computation through matrix formulas, generating functions, Laplace transforms.

e Spectral expansions of stationary and transient probabilities:

PIW <a; X =i} = ) ajpe .

p

— asymptotics, or bounds.

P{W <x; X =1} ~ a;1 e %", T — 00 .

Queues
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‘ The model of Mitra I

A fluid model of producer/consumer coupled by a buffer with finite capacity.

Kosten (1982), Anick-Mitra-Sohdhy (1982), Stern-Elwalid-Mitra (198x).
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Caracteristics:

® 1 sources, activity on/ofF exponential, peak rate r,
e 1 consumers, activity on/off exponential capacity c,

e buffer capacity X

The generator of one source is:

Queues — Mitra's model
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The arrival process is a MMRP with matrices: generator

( —mA mA \
poo —(m=—DA—p  (m—1)A
Qu = 2% —m—2A—p (m—2)A
\ | . —mp
and rate matrix.
(0 \
A, = 2

\ o

The consumption follows a similar process with parameters (v, 7) and ¢ — Q., A..

Queues — Mitra's model 34



Observe: M(t) is the superposition of m on/off sources, but the generator has been
agregated and its size is m + 1 and not 2.

The superposed process (M (t), C(t)) has a generator:

Q=01 ® Q=@ ®In+1) +Im+1) ® Q2.

Each state (4,) corresponds to a drift of the buffer contents ir — jc. Hence a drift
rate matrix:

A = Al D A.2 = dlag(zr—]c) .

Queues — Mitra's model 35



In the stationary regime, the probability P(x) that the buffer has a level less than x, is
solution of:

It is proved that:

The vectors ¢; have a decomposition: ¢; = @; | ® @, 5, where each @, ; is solution of
a smaller linear problem: find (z, @) such that:

z2p N = Q.

Queues — Mitra's model 36
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