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Abstract. These notes cover two presentations:
(1) A general overview and introduction to the field.
(2) Parameterized intractability and complexity classes.

1 Introduction to Parameterized Complexity

1.1 Two Forms of Fixed-Parameter Complexity

Many natural computational problems are defined on input consisting of various
information, for example, many graph problems are defined as having input
consisting of a graph G = (V, E) and a positive integer k. Consider the following
well-known problems:

VERTEX COVER

Input: A graph G = (V, E) and a positive integer k.

Question: Does G have a vertex cover of size at most k7 (A vertex cover is a set
of vertices V' C V such that for every edge uv € E, u € V' or v € V' (or both).)

DOMINATING SET

Input: A graph G = (V, E) and a positive integer k.

Question: Does G have a dominating set of size at most k? (A dominating set is

a set of vertices V' C V such that Vu € V: u € N[v] for some v € V'.)
Although both problems are NP-complete, the input parameter k contributes

to the complexity of these two problems in two qualitatively different ways.

1. There is a simple bounded search tree algorithm for VERTEX COVER that
runs in time O(2%n)

2. The best known algorithm for DOMINATING SET is basically just the brute
force algorithm of trying all k-subsets. For a graph on n vertices this approach
has a running time of O(n*+1).

(Easy) Exercise: What is the search tree algorithm for VERTEX COVER refered
to above?

The table below shows the contrast between these two kinds of complexity.

In these two example problems, the parameter is the size of the solution being
sought. But a parameter that affects the compexity of a problem can be many
things.



n=>50 | n=100 | n=150
k=2 625 2,500 5,625
k=3[ 15,625 | 125,000 | 421,875
k=5 390,625 |6,250,000][31,640,625
k= 10[1.9 x 10™%[9.8 x 10™3.7 x 10™®
k = 20[1.8 x 10%°]9.5 x 10*T[2.1 x 10%®

Table 1. The Ratio 2

o for Various Values of n and k.

Example. The nesting depth of a logical expression. ML is a logic-based pro-
gramming language for which relatively efficient compilers exist. One of the
problems the compiler must solve is the checking of the compatibility of type
declarations. This problem is known to be complete for EXP (deterministic expo-
nential time) [HM91], so the situation appears discouraging from the standpoint
of classical complexity theory. However, the implementations work well in prac-
tice because the ML TYPE CHECKING problem is FPT with a running time of
O(2kn), where n is the size of the program and k is the maximum nesting depth
of the type declarations [LP85]. Since normally k < 5, the algorithm is clearly
practical on the natural input distribution.

The parameter can be size of the solution, or some structural aspect of the
natural input distribution — and many other things (to be discussed below).

In the favorable situations (as for VERTEX COVER and TYPE CHECKING IN
ML), the exponential cost of solving the problem (that is expected, since the
problems are NP-hard) can be entirely confined to an exponential function of
the parameter, with the overall input size n contributing polynomially.

1.2 Clashes of Function Classes; Multivariate Complexity and
Algorithmics

The familiar “P versus NP” framework, that we call the classical framewortk,
is fundamentally centered on the notion of polynomial time, and this is a one-
dimensional framework: there is one measurement (or variable) at work, the
overall input size n.

The classical framework revolves around a contrast between two function
classes: the good class of running times of algorithms of the form: O(n¢), time
that is polynomial in the one measurement n. The bad class of run times is
those of the form 2", and the drama concerns methods for establishing that
concrete problems admit good algorithms (and if so, maybe better algorithms?),
the positive toolkit, or if they only admit bad algorithms (modulo reasonable
conjectures), the negative toolkit that in the classical case is about NP-hardness,
EXP-hardness, etc.

Worth noting at this point is that one of the main motivations to parameter-
ized complexity (and many other approaches) is that while the classical theory
is beautiful, and a handful of important problems are in P, the vast majority of
problems have turned out to be NP-hard or worse.



Parameterized complexity is basically a two-dimensional sequel, based sim-
ilarly on a contrast between two function classes in a two-dimensional setting,
where in addition to the overall input size n, we have a second measurement
(or variable) that captures something else significant that affects computational
complexity (and the opportunities for efficient algorithm design), the parameter
k (that might be solution size, or something structural about typical inputs, ...
or many other things).

How do we formalize this?

Definition 1. A parameterized language L is a subset L C X* x X*. If L is a
parameterized language and (z,k) € L then we will refer to x as the main part,
and refer to k as the parameter.

A parameter may be non-numerical, and it can also represent an aggregate
of various parts or structural properties of the input.

Definition 2. A parameterized language L is multiplicatively fixed-parameter
tractable if it can be determined in time f(k)q(n) whether (z,k) € L, where
|z| = n, q(n) is a polynomial in n, and f is a function (unrestricted).

Definition 3. A parameterized language L is additively fixed-parameter tractable
if it can be determined in time f(k) + q(n) whether (x,k) € L, where |z| = n,
q(n) is a polynomial in n, and f is a function (unrestricted).

(Easy) Exercise. Show that a parameterized language is additively fixed-
parameter tractable if and only if it is multiplicatively fixed-parameter tractable.
This emphasizes how cleanly fixed-parameter tractability isolates the computa-
tional difficulty in the complexity contribution of the parameter.

The following definition provides us with a place to put all those problems
that are “solvable in polynomial time for fixed k” without making the central
distinction about whether this “fixed k£” is ending up in the exponent or not (as
with the brute force algorithm for DOMINATING SET).

Definition 4. A parameterized language L belongs to the class XP if it can be
determined in time f(k)n9%®) whether (z,k) € L, where |z| = n, with f and g
being unrestricted functions.

Is it possible that FPT = X P? This is one of the few structural questions
concerning parameterized complexity that currently has an answer [DF98].

Theorem 1. FPT is a proper subset of XP.

Summarizing the main point: parameterized complexity is about a natural
bivariate generalization of the P versus NP drama. This inevitably leads to two
toolkits: the positive toolkit of FPT methods (that Daniel Marx will lecture
about), and the negative toolkit that basically provides a parameterized analog
of Cook’s Theorem, and methods for showing when fixed-parameter tractable
algorithms for parameterized problems are not possible (modulo reasonable as-
sumptions).

There is a larger context captured by the reasonable question that is often
asked:



If Parameterized Complezity is the natural two-dimensional sequel to P
versus NP, then what is the three-dimensional sequel?

Nobody currently knows the answer. Ideally, one would like to have a fully
multivariate perspective on complexity analysis and algorithm design that meets
the following criteria:

e In dimension 1, you get the (basic) P versus NP drama.

e In dimension 2, you get the (productive) FPT versus XP drama.

e In all dimensions, you have concrete problems where the contrasting outcomes
are natural and consequential, and the theory is routinely doable.

Open research problem. Is there such a fully multivariate mathematical
perspective?

Introducing (at least one) secondary variable k beyond the overall input size
n allows us to ask many new and interesting questions that cannot be asked
in any mathematically natural way in the classical framework. Much of this
interesting traction is based on the various ways that parameterization can be
deployed.

1.3 Parameters Can Be Many Things

There are many ways that parameters arise naturally, for example:

o The size of a database query. Normally the size of the database is huge, but
frequently queries are small. If n is the size of a relational database, and k is the
size of the query, then answering the query (MODEL CHECKING) can be solved
trivially in time O(n*). It is known that this problem is unlikely to be FPT
[DFT96,PY97] because it is hard for W][1], the parameterized analog of NP-
hardness. However, if the parameter is the size of the query and the treewidth
of the database, then the problem is fixed-parameter tractable [GrO1b).

o The number of species in an evolutionary tree. Frequently this parameter is
in a range of k& < 50. The PHYLIP computational biology server includes an
algorithm which solves the STEINER PROBLEM IN HYPERCUBES in order to
compute possible evolutionary trees based on (binary) character information.
The exponential heuristic algorithm that is used is in fact an FPT algorithm
when the parameter is the number of species.

e The number of variables or clauses in a logical formula, or the number of
steps in a deductive procedure. Determining whether at least k clauses of a CNF
formula F are satisfiable is FPT with a running time of O(| F'|+1.381%k2) [BR99)].
Since at least half of the m clauses of F' can always be satisfied, a more natural
parameterization is to ask if at least m/2 + k clauses can be satisfied — this is
FPT with a running time of O(|F| + 6.92"%2?) [BR99]. Implementations indicate
that these algorithms are quite practical [GNOO].

e The number of moves in a game, or the number of steps in a planning problem.
While most game problems are PSPACFE-complete classically, it is known that
some are FPT and others are likely not to be FPT (because they are hard
for W([1]), when parameterized by the number of moves of a winning strategy



[ADF95]. The size n of the input game description usually governs the number
of possible moves at any step, so there is a trivial O(n*) algorithm that just
examines the k-step game trees exhaustively.

o The number of facilities to be located. Determining whether a planar graph
has a dominating set of size at most k is fixed-parameter tractable by an algo-
rithm with a running time of O(8n) based on kernelization and search trees.
By different methods, an FPT running time of 0(336‘/E)n can also be proved.

o An unrelated parameter. The input to a problem might come with “extra
information” because of the way the input arises. For example, we might be
presented with an input graph G together with a k-vertex dominating set in G,
and be required to compute an optimal bandwidth layout. Whether this problem
is FPT is open.

e The amount of “dirt” in the input or output for a problem. In the MAXIMUM
AGREEMENT SUBTREE (MAST) problem we are presented with a collection
of evolutionary trees trees for a set X of species. These might be obtained by
studying different gene families, for example. Because of errors in the data, the
trees might not be isomorphic, and the problem is to compute the largest possible
subtree on which they do agree. Parameterized by the number of species that
need to be deleted to achieve agreement, the MAST problem is FPT by an
algorithm having a running time of O(2.27% + rn3) where r is the number of
trees and n is the number of species [NRO1].

e The “robustness” of a solution to a problem, or the distance to a solution.
For example, given a solution of the MINIMUM SPANNING TREE problem in an
edge-weighted graph, we can ask if the cost of the solution is robust under all
increases in the edge costs, where the parameter is the total amount of cost
increases.

o The distance to an improved solution. Local search is a mainstay of heuristic
algorithm design. The basic idea is that one maintains a current solution, and
iterates the process of moving to a neighboring “better” solution. A neighboring
solution is usually defined as one that is a single step away according to some
small edit operation between solutions. The following problem is completely
general for these situations, and could potentially provide a valuable subroutine
for “speeding up” local search:

k-SPEED UP FOR LOCAL SEARCH

Input: A solution S, k.

Parameter: k

Output: The best solution S’ that is within k edit operations of S.

e The goodness of an approzimation. If we consider the problem of producing
solutions whose value is within a factor of (1 + €) of optimal, then we are imme-
diately confronted with a natural parameter k = 1/e. Many of the recent PTAS
results for various problems have running times with 1/¢ in the exponent of the
polynomial. Since polynomial exponents larger than 3 are not practical, this is
a crucial parameter to consider.



It is obvious that the practical world is full of concrete problems governed
by parameters of all kinds that are bounded in small or moderate ranges. If we
can design algorithms with running times like 2¥n for these problems, then we
may have something really useful.

1.4 Kernelization: Another View of FPT

Preprocessing is a practical computing strategy with a lot of power on real world
input distributions, as shown by the following example.
Example: Weihe’s Train Problem

Weihe describes a problem concerning the train systems of Europe [Wei98§].
Consider a bipartite graph G = (V, E) where V is bipartitioned into two sets S
(stations) and T (trains), and where an edge represents that a train ¢ stops at
a station s. The relevant graphs are huge, on the order of 10,000 vertices. The
problem is to compute a minimum number of stations S’ C S such that every
train stops at a station in S’. This is a special case of the HITTING SET problem,
and is therefore NP-complete.

However, the following two reduction rules can be applied to simplify (pre-
process) the input to the problem. In describing these rules, let N(s) denote the
set of trains that stop at station s, and let N(¢) denote the set of stations at
which the train ¢ stops.

1. If N(s) € N(s') then delete s.
2. If N(¢t) C N(t') then delete t'.

Applications of these reduction rules cascade, preserving at each step enough
information to obtain an optimal solution. Weihe found that, remarkably, these
two simple reduction rules were strong enough to “digest” the original, huge
input graph into a problem kernel consisting of disjoint components of size at
most 50 — small enough to allow the problem to be solved optimally by brute
force.

The following is an equivalent definition of FPT [DFS99).

Definition 5. A parameterized language L is kernelizable if there is there is a
parameterized transformation of L to itself, and a function g (unrestricted) that
satisfies:

1. the running time of the transformation of (z, k) into (z', k'), where |z| = n,
is bounded by a polynomial q(n,k) (so that in fact this is a polynomial-
time transformation of L to itself, considered classically, although with the
additional structure of a parameterized reduction,),

2. k' <k, and

3. |z’ < g(k).

Lemma 1. A parameterized language L is fized-parameter tractable if and only
if it is kernelizable.



The proof of this is essentially the solution to the second exercise above.

The kernelization point of view about FPT has become a major enterprise
all in itself, that will be covered in the lecture by Saket Saurabh.

There are several points to be noted about kernelization that lead to impor-
tant research directions:

(1) Kernelization rules are frequently surprising in character, laborious to prove,
and nontrivial to discover. Once found, they are small gems of data reduction
that remain permanently in the heuristic design file for hard problems. No one
concerned with any application of HITTING SET on real data should henceforth
neglect Weihe’s data reduction rules for this problem. The kernelization for VER-
TEX COVER to graphs of minimum degree 4, for another example, includes the
following nontrivial transformation [DFS99]. Suppose G has a vertex z of degree
3 that has three mutually nonadjacent neighbors a, b, c. Then G' can be simpli-
fied by: (1) deleting x, (2) adding edges from c¢ to all the vertices in N(a), (3)
adding edges from a to all the vertices in N (b), (3) adding edges from b to all
the vertices in N(c), and (4) adding the edges ab and bc. Note that this trans-
formation is not even symmetric! The resulting (smaller) graph G’ has a vertex
cover of size k if and only if G has a vertex cover of size k. Moreover, an optimal
or good approximate solution for G’ lifts constructively to an optimal or good
approximate solution for G. The research direction this points to is to discover
these gems of smart preprocessing for all of the hard problems. There
is absolutely nothing to be lost in smart pre-processing, no matter what the
subsequent phases of the algorithm (even if the next phase is genetic algorithms
or simulated annealing).

(2) Kernelization rules cascade in ways that are surprising, unpredictable in ad-
vance, and often quite powerful. Finding a rich set of reduction rules for a hard
problem may allow the synergistic cascading of the pre-processing rules to “wrap
around” hidden structural aspects of real input distributions. Weihe’s train prob-
lem provides an excellent example. According to the experience of Alber, Gramm
and Niedermeier with implementations of kernelization-based FPT algorithms
[AGNO1], the effort to kernelize is amply rewarded by the subsequently expo-
nentially smaller search tree.

(3) Kernelization is an intrinsically robust algorithmic strategy. Frequently we
design algorithms for “pure” combinatorial problems that are not quite like that
in practice, because the modeling is only approximate, the inputs are “dirty”,
etc. For example, what becomes of our VERTEX COVER algorithm if a limited
number of edges uv in the graph are special, in that it is forbidden to include
both u and v in the vertex cover? Because they are local in character, the usual
kernelization rules are easily adapted to this situation.

(4) Kernelization rules normally preserve all of the information necessary for op-
timal or approximate solutions. For example, Weihe’s kernelization rules for the
train problem (HITTING SET) transform the original instance G into a problem
kernel G’ that can be solved optimally, and the optimal solution for G’ “lifts”
to an optimal solution for G.



The importance of pre-processing in heuristic design is not a new idea.
Cheeseman et al. have previously pointed to its importance in the context of
artificial intelligence algorithms [CKT91]. What parameterized complexity con-
tributes is a richer theoretical context for this basic element of practical algo-
rithm design. Further research directions include potential methods for mecha-
nizing the discovery and/or verification of reduction rules, and data structures
and implementation strategies for efficient kernelization pre-processing.

Lemma 1 of §3 tells us that a parameterized problem is fixed-parameter
tractable if and only if there is a polynomial-time kernelization algorithm trans-
forming the input (x,k) into (2/,k’) where k¥’ < k and |2'| < g(k') for some
function g special to the problem. The basic schema is that reduction rules are
applied until an irreducible instance (a/, k') is obtained. At this point a Kernel
Lemma is invoked to decide all those reduced instances z’ that are larger than
g(k') for the kernel-bounding function g. For example, in the cases of VERTEX
COVER and PLANAR DOMINATING SET, if a reduced graph G’ is larger than
g(k') then (G’, k') is a no-instance. In the case of MAX LEAF SPANNING TREE
large reduced instances are automatically yes-instances. (It is notable that for all
three of these problems linear kernelization, g(k) = O(k), has been established,
in all cases nontrivially [CKJ99,FMcRS01,AFN02].)

How does one proceed to discover an adequate set of reduction
rules, or elucidate (and prove) a bounding function g(k) that
insures for instances larger than this bound, that the question
can be answered directly?

We illustrate a systematic approach with the MAX LEAF SPANNING TREE
problem. Our objective is to prove:

The Kernel Lemma. If (G = (V, E), k) is a reduced instance of MAX LEAF
SPANNING TREE and G has more than g(k) vertices, then (G, k) is a yes-instance.

We will prove the Kernel Lemma as a corollary to the following.

The Boundary Lemma. If G = (V, E) is a reduced instance of MAX LEAF
SPANNING TREE that is a yes-instance for k& and a no-instance for k + 1, then
G has at most h(k) vertices.

Let us first verify that the Kernel Lemma follows from the Boundary Lemma.
We will make the mild assumption that our functions g(k) and h(k) are nonde-
creasing. Take g(k) = h(k). Suppose (G, k) is a counterexample to the Kernel
Lemma. Then G is reduced, and has more than h(k) vertices, but is a no-instance,
that is, G does not have a spanning tree with at least k leaves. Let k¥’ < k be the
maximum number of leaves in a spanning tree of G. Then G is a yes-instance
for k" and a no-instance for ¥’ + 1. Since ¥’ < k and h is non-decreasing, G has
more than h(k’) vertices, but this contradicts the Boundary Lemma.

The form of the Boundary Lemma ( ... which still needs to be proved, and we
still need to discover what we mean by “reduced”, and we also need to identify
the particular bounding function A ... ) is conducive to an extremal theorem
style of argument based on a list of inductive priorities. The proof is sketched as
follows.



Sketch Proof of the Boundary Lemma. The proof is by minimum coun-
terexample. If there is any counterexample, then we can take G to be one that
satisfies:

(1) G is reduced.

(2) G is connected and has more than h(k) vertices.

(3) G is a no-instance for k + 1.

(4) G is a yes-instance for k, as witnessed by an ¢-rooted tree subgraph T of G
that has k leaves. (We do not assume that 7" is spanning. Note that if 7" has k
leaves then it can be extended to a spanning tree with at least as many leaves.)
(5) G is a counterexample where T has a minimum possible number of vertices.
(6) Among all of the G, T satisfying (1-5), T has a maximum possible number
of internal vertices that are adjacent to a leaf of T.

(7) Among all of the G, T satisfying (1-6), the quantity >, d(t,1) is minimized,
where L is the set of leaves of T' and d(¢,1) is the distance in T to the “root”
vertex ¢.

Then we argue for a contradiction.

Comment. The point of all this is to set up a framework for argument that will
allow us to see what reduction rules are needed, and what g(k) can be achieved.
In essence we are setting up a (possibly elaborate, in the spirit of extremal graph
theory) argument by minimum counterexample — and using this as a discovery
process for the FPT algorithm design. The witness structure 7' of condition (4)
gives us a way of “coordinatizing” the situation — giving us some structure to
work with in our inductive argument. How this strucuture is used will become
clear as we proceed.

We refer to the vertices of V —T' as outsiders. The following structural claims
are easily established. The first five claims are enforced by condition (3), that
is, if any of these conditions did not hold, then we could extend T to a tree T’
having one more leaf.

Claim 1: No outsider is adjacent to an internal vertex of T

Claim 2: No leaf of T' can be adjacent to two outsiders.

Claim 3: No outsider has three or more outsider neighbors.

Claim 4: No outsider with 2 outsider neighbors is connected to a leaf of T'.
Claim 5: The graph induced by the outsider vertices has no cycles.

It follows from Claims (1-5) that the subgraph induced by the outsiders consists
of a collection of paths, where the internal vertices of the paths have degree 2 in
G. Since we are ultimately attempting to bound the size of G, this suggests (as
a discovery process) the following reduction rule for kernelization.
Kernelization Rule 1: If (G, k) has two adjacent vertices u and v of degree 2,
then:

(Rule 1.1) If uv is a bridge, then contract uv to obtain G’ and let k' = k.
(Rule 1.2) If uov is not a bridge, then delete the edge uv to obtain G’ and let
kK =k.

The soundness of this reduction rule is not completely obvious, although not
difficult. Having now partly clarified condition (1), we can continue the argument.



The components of the subgraph induced by the outsiders must consist of paths
having either 1,2 or 3 vertices.

Because we are trying to efficiently bound the total number of outsiders (as
well as everything else, eventually, in order to obtain the best possible kernel-
ization bound h(k)), the situation suggests we should look for further reduction
rules to address the remaining possible situations with respect to the outsiders.
This discovery process leads us to the following further kernelization rules.
Kernelization Rule 2:If (G, k) is a (connected) instance of MAX LEAF where G
has a vertex u of degree 1, with neighbor v, and where 3z ¢ N(v) (that is, not
every vertex of G is a neighbor of v), then transform (G, k) into (G’, k'), where
k =k’ and G’ is obtained by:

(1) deleting u, and
(2) adding edges to make N[v] into a clique.

The reader can verify that this rule is sound: (G, k) is a yes-instance if and
only if (G, k') is a yes-instance.

Kernelization Rule 3:If (G, k) is a (connected) instance of MAX LEAF where G
has two vertices u and v such that either:

(1) w and v are adjacent, and N[u] = N[v], or

(2) uw and v are not adjacent, and N(u) = N(v),

and also (in either case) there is at least one vertex of G not in N{u]U N{[v], then
transform (G, k) to (G', k") where k' =k — 1 and G’ is obtained by deleting w.

Returning to our consideration of the outsiders, we are now in the situation
that for a reduced graph, the only possibilities are:

(1) A component of the outsider graph is a single vertex having at least 2 leaf
neighbors in 7.

(2) A component of the outsider graph is a K» having at least three leaf neighbors
inT.

(3) A component of the outsider is a path of three vertices P3 having at least
four leaf neighbors in 7.

The weakest of the ratios is given by case (3). We can conclude that the number
of outsiders is bounded by 3k /4.

The next step is to study the tree 7. Since it has k leaves, it has at most k — 2
branch vertices. Using conditions (5) and (6), but omitting the details, it is
argued that: (1) the paths in 7" between a leaf and its parental branch vertex
has no subdivisions, and (2) any other path in T' between branch vertices has
at most 3 subdivisions (with respect to T'). These statements are proved by
various further structural claims (as in the analysis of the outsider population)
that must hold, else one of the inductive priorities would fail (constructively) —
a tree with k + 1 leaves would be possible, or a smaller T', or a 7" with more
internal vertices adjacent to leaves can be devised, or one with a better score
on the sum-of-distances priority (7). Consequently T has at most 5k vertices,
unless there is a contradiction. Together with the bound on the outsiders in a
reduced graph, this yields a g(k) of 5.75k. O

The above sketch illustrates how the project of proving an FPT kernelization
bound is integrated with the search for efficient kernelization rules. But there is

10



more to the story. The argument above also leads directly to a constant-factor
polynomial-time approximation algorithm in the following way. First, reduce G
using the kernelization rules. It is easy to verify that the rules are approximation-
preserving. Thus, we might as well suppose that G is reduced to begin with. Now
take any tree T' (not necessarily spanning) in G. If all of the structural claims
hold, then (by our arguments above) the tree 7' must have at least n/c leaves for
¢ =5.75, and therefore we already have (trivially) a c-approximation. (It would
require further arguments, but probably the approximation factor is much better
than c.) If at least one of the structural claims does not hold, then the tree T
can be improved against one of the inductive priorities. Notice that each claim
is proved (in the kernelization argument above) by a constructive consequence.
For example, if Claim 1 did not hold, then we can find a tree 77 (by modifying
T) that has one more leaf. Similarly, each claim violation yields a constructive
consequence against one of the inductive priorities in the extremal argument for
the kernelization bound. These consequences can be applied to our original T’
(and its successors) only a polynomial number of times (determined by the list
of inductive priorities) until we arrive at a tree 7" for which all of the various
structural claims hold. At that point, we must have a c-approximate solution.

2 Parameterized Intractability and Structural
Complexity

Is there a parameterized analog of Cook’s Theorem? Yes there is!

2.1 Various Forms of The Halting Problem: A Central Reference
Point

The main investigations of computability and efficient computability are tied to
three basic forms of the Halting Problem.

1. THE HALTING PROBLEM
Input: A Turing machine M.
Question: If M is started on an empty input tape, will it ever halt?

2. THE POLYNOMIAL-TIME HALTING PROBLEM FOR NONDETERMINISTIC
TURING MACHINES
Input: A nondeterministic Turing machine M.
Question: Is it possible for M to reach a halting state in n steps, where n is
the length of the description of M?

3. THE k-STEP HALTING PROBLEM FOR NONDETERMINISTIC TURING MA-
CHINES
Input: A nondeterministic Turing machine M and a positive integer k. (The
number of transitions that might be made at any step of the computation is
unbounded, and the alphabet size is also unrestricted.)
Parameter: k
Question: Is it possible for M to reach a halting state in at most k steps?

11



The first form of the HALTING PROBLEM is useful for studying the question:
“Is there ANY algorithm for my problem?”

The second form of the HALTING PROBLEM has proved useful for nearly 30
years in addressing the question:

“Is there an algorithm for my problem ... like the ones for
Sorting and Matrix Multiplication?”

The second form of the HALTING PROBLEM is trivially NP-complete, and es-
sentially defines the complexity class NP. For a concrete example of why it is
trivially NP-complete, consider the 3-COLORING problem for graphs, and no-
tice how easily it reduces to the P-TIME NDTM HALTING PROBLEM. Given a
graph G for which 3-colorability is to be determined, we just create the following
nondeterministic algorithm:

Phase 1. (There are n lines of code here if G has n vertices.)
(1.1) Color vertex 1 one of the three colors nondeterministically.
(1.2) Color vertex 2 one of the three colors nondeterministically.

(1.n) Color vertex n one of the three colors nondeterministically.

Phase 2. Check to see if the coloring is proper and if so halt. Otherwise go into
an infinite loop.

It is easy to see that the above nondeterministic algorithm has the possibility
of halting in m steps (for a suitably padded Turing machine description of size
m) if and only if the graph G admits a 3-coloring. Reducing any other problem
II € NP to the P-TiME NDTM HALTING PROBLEM is no more difficult than
taking an argument that the problem II belongs to N P and modifying it slightly
to be a reduction to this form of the HALTING PROBLEM. It is in this sense that
the P-TiME NDTM HALTING PROBLEM is essentially the defining problem for
NP.

The conjecture that P # NP is intuitively well-founded. The second form of
the HALTING PROBLEM would seem to require exponential time because there is
little we can do to analyze unstructured nondeterminism other than to exhaus-
tively explore the possible computation paths.

When the question is:

“Is there an algorithm for my problem ... like the one for Vertex
Cover?”

the third form of the HALTING PROBLEM anchors the discussion.

The third natural form of the HALTING PROBLEM is trivially solvable in time
O(n*) by exploring the n-branching, depth-k tree of possible computation paths
exhaustively. Our intuition here is essentially the same as for the second form
of the Halting Problem — that this cannot be improved. The third form of the
Halting Problem defines the parameterized complexity class W/[1]. Thus W[1] is
strongly analogous to NP, and the conjecture that FPT # W|1] stands on much
the same intuitive grounds as the conjecture that P # NP. The appropriate
notion of problem reduction is as follows.
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Definition 6. A parametric transformation from a parameterized language L to
a parameterized language L' is an algorithm that computes from input consisting
of a pair (z, k), a pair (z', k') such that:

1. (z,k) € L if and only if (', k') € L',

2. k' = g(k) is a function only of k, and

3. the computation is accomplished in time f(k)n®, where n = |z|, « is a con-
stant independent of both n and k, and f is an arbitrary function.

Hardness for W([1] is the working criterion that a parameterized problem
is unlikely to be FPT. The k-CLIQUE problem is W{l]-complete [DF98], and
often provides a convenient starting point for W/[1]-hardness demonstrations.
This is the parameterized analog of Cook’s Theorem, that the third form of the
HAvLTING PROBLEM is FPT if and only if the k-CLIQUE problem is FPT.

The main classes of parameterized problems are organized in the tower

P Clin(k) Cpoly(k) CFPT C M[1]CW[l]C M[2]CW[2]C---W[P]C XP

2.2 The W][t] Classes

Loosely speaking, the W-hierarchy captures the complexity of the quest for small
solutions for constant depth circuits by stepwise increasing the allowed weft. The
weft of a circuit is the maximum number of large gates (of unbounded fan-in)
on any input-output path of the circuit. More precisely, W[¢t] is characterized by
the complete problem asking for satisfying assignments of (Hamming-)weight k
for constant depth circuits of weft t. Here k is the parameter.

Historically, the W [t]-hierarchy was inspired by the observation that the pa-
rameterized reduction of CLIQUE to the k-weighted satisfiability problem for
circuits produces circuits of weft 1 (and depth 2), while the reduction for Dom-
INATING SET produces circuits of weft 2, and yet there seems to be no parame-
terized reduction from DOMINATING SET to CLIQUE.

Let I' be a set of circuits. The k-weighted satisfiability problem of I' is the
problem WSAT(I'):

Instance: A circuit C € I' and a natural k.
Parameter: k.
Problem: Is there an assignment of weight k satisfying C?

Here the weight of an assignment is the number of variables that it maps to 1.

W/t] contains all and only the parameterized problems that are for some d
fpt reducible to the weighted circuit satisfiability problem WSAT(2; 4) where
£2; 4 is the set of Boolean circuits of weft ¢t and depth at most d. W[P] is defined
similarly by WSAT(CIRC) where CIRC is the set of Boolean circuits.

13



2.3 The MJt] Classes

There is an important class of parameterized problems seemingly intermediate
between FPT and W[1]:
FPT C M[1] C W([1]

There are two natural “routes” to M[1].

The renormalization route to M|[1].

There are O*(2°%)) FPT algorithms for many parameterized problems, such as
VERTEX COVER. In view of this, we can “renormalize” and define the problem:
klogn VERTEX COVER

Input: A graph G on n vertices and an integer k; Parameter: k; Question:
Does G have a vertex cover of size at most klogn?

The FPT algorithm for the original VERTEX COVER problem, parameterized
by the number of vertices in the vertex cover, allows us to place this new problem
in X P. It now makes sense to ask whether the klogn VERTEX COVER problem
is also in FPT — or is it parametrically intractable? It turns out that klogn
VERTEX COVER is M[1]-complete.

The miniaturization route to M[1].
We certainly know an algorithm to solve n-variable 3SAT in time O(2™). Con-
sider the following parameterized problem.

MINI-3SAT
Input: Positive integers k and n in unary, and a 3SAT expression E having at
most k logn variables; Parameter: k; Question: Is E satisfiable?

Using our exponential time algorithm for 3SAT, MINI-3SAT is in XP and we
can wonder where it belongs — is it in FPT or is it parametrically intractable?
This problem also turns out to be complete for M[1].

Dozens of renormalized FPT problems and miniaturized arbitrary problems
are now known to be M[1]-complete. However, what is known is quite problem-
specific. For example, one might expect MINI-MAX LEAF to be M[1]-complete,
but all that is known presently is that it is M[1]-hard. It is not known to be
W1]-hard, nor is it known to belong to W[1].

The following theorem would be interpreted by most people as indicating
that probably FPT # M[1]. (The theorem is essentially due to Cai and Juedes
[CJ01], making use of a result of Impagliazzo, Paturi and Zane [IPZ98].)

Theorem 2. FPT = M[1] if and only if n-variable 3SAT can be solved in time
90(n)

M]1] supports convenient although unusual combinatorics. For example, one
of the problems that is M [1]-complete is the miniature of the INDEPENDENT SET
problem defined as follows.

MINI-INDEPENDENT SET
Input: Positive integers k and n in unary, a positive integer » < n, and a graph
G having at most klogn vertices.

14



Parameter: k
Question: Does G have an independent set of size at least r7

Theorem 3. There is an FPT reduction from MINI-INDEPENDENT SET to ordi-
nary parameterized INDEPENDENT SET (parameterized by the number of vertices
in the independent set).

Proof. Let G = (V, E) be the miniature, for which we wish to determine whether
G has an independent set of size r. Here, of course, |V| < klogn and we may
regard the vertices of G as organized in k blocks Vi, ..., Vi of size logn. We
now employ a simple but useful counting trick that can be used when reducing
miniatures to “normal” parameterized problems. Our reduction is a Turing re-
duction, with one branch for each possible way of writing r as a sum of k terms,
r =1y + -+ rg, where each r; is bounded by logn. The reader can verify
that (logn)* is an FPT function, and thus that there are an allowed number of
branches. A branch represents a commitment to choose r; vertices from block V;
(for each ) to be in the independent set.

We now produce (for a given branch of the Turing reduction) a graph G’
that has an independent set of size k if and only if the miniature G has an
independent set of size r, distributed as indicated by the commitment made
on that branch. The graph G’ consists of k cliques, together with some edges
between these cliques. The ith clique consists of vertices in 1:1 correspondence
with the subsets of V; of size r;. An edge connects a vertex x in the ith clique
and a vertex y in the jth clique if and only if there is a vertex u in the subset
S, C V; represented by z, and a vertex v in the subset S, C V; represented by
y, such that uv € E. Verification is straightforward.

The theorem above shows that M{[1] is contained in W[1].
Cai and Juedes [CJ01] proved the following, opening up a broad program of
studying the optimality of FPT algorithms.

Theorem 4. If FPT # M|1] then there cannot be an FPT algorithm for the
general VERTEX COVER problem with a parameter function of the form f(k) =
20(K) " and there cannot be an FPT algorithm for the PLANAR VERTEX COVER
problem with a parameter function of the form f(k) = 20(VE)

It has previously been known that PLANAR DOMINATING SET, parameter-
ized by the number n of vertices in the graph can be solved optimally in time
O*(Qo(ﬁ)) by using the Lipton-Tarjan Planar Separator Theorem. Combining
the lower bound theorem of Cai-Juedes with the linear kernelization result of
Alber et al. [AFN02] shows that this cannot be improved to O*(2°(v™) unless
FPT = M[1].

2.4 An Example of a W[l]-hardness Reduction

We take as our example, how parameterized complexity can be used to study
the complexity of approximation. Approximation immediately concerns a fun-
damental parameter: k = 1/¢, the goodness of the approzimation.
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To illustrate the issue, consider the following more-or-less random sample of
recent PTAS results:

— The PTAS for the EUCLIDEAN TSP due to Arora [Ar96] has a running time
of around O(n?%0%/¢). Thus for a 20% error, we have a “polynomial-time”
algorithm that runs in time O(n!°900).

— The PTAS for the MULTIPLE KNAPSACK problem due to Chekuri and Khanna
[CKO00] has a running time of O(n!2108(1/€)/¢*)) Thus for a 20% error we have
a polynomial-time algorithm that runs in time O(n?375000),

— The PTAS for the MINIMUM COST ROUTING SPANNING TREE problem due
to Wu, Lancia, Banfna, Chao, Ravi and Tang [WLBCRT98] has a running
time of O(n21?/€1-2). For a 20% error, we thus have a running time of O(n'®).

— The PTAS for the UNBOUNDED BATCH SCHEDULING problem due to Deng,
Feng, Zhang and Zhu [DFZZ01] has a running time of O(n?1081+(1+(1/e),
Thus for a 20% error we have an O(n5%) polynomial-time algorithm.

— The PTAS for TWO-VEHICLE SCHEDULING ON A PATH due to Karuno and
Nagamochi [KN01] has a running time of O(n®(+@/)); thus O(n®®) for a
20% error.

— The PTAS for the MAXIMUM SUBFOREST PROBLEM due to Shamir and
Tsur [ST98] has a running time of on?’ t_l). For a 20% error we thus
have a “polynomial” running time of O(n?%8267391),

— The PTAS for the MAXIMUM INDENDENT SET problem on geometric graphs
due to Erlebach, Jansen and Seidel [EJS01] has a running time of
O(n@W/mA/E+2*(1/E+D*)  Thys for a 20% error we have a running time of
O(n532804),

— The PTAS for the CLASS-CONSTRAINED PACKING PROBLEM due to Shachnai
and Tamir [ST00] has a running time (for 3 colors) of O(n&4/c+(leg(1/e)/e*)y,
Thus for a 20% error (for 3 colors) we have a running time of O(n!021570),

— The PTAS for the problem of BASE STATION POSITIONING IN UMTS NET-
WORKS due to Galota, Glasser, Reith and Vollmer [GGRVO01] has a running
time of O(n23/¢"), and thus O(nS27) time for a 20% error.

— The PTAS for the GENERAL MULTIPROCESSOR JOB SCHEDULING PROBLEM
due to Chen and Miranda [CM99] runs in time O(n(?’mm!)(mmﬂ) for m ma-
chines. Thus for 4 machines with a 20% error we have an algorithm that runs
in time O (7100000000000000000000000000000000000000000000000000000000000000000000)

or So.

Since polynomial-time algorithms with exponent greater than 3 are generally
not very practical, the following question would seem to be important.

Can we get the k£ = 1/¢ out of the exponent?

The following definition captures the essential issue.

Definition 7. An optimization problem II has an efficient P-time approxima-
tion scheme (EPTAS) if it can be approzimated to a goodness of (14-¢€) of optimal
in time f(k)n® where c is a constant and k = 1/e.
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In 1997, Arora gave an EPTAS for the EUCLIDEAN TSP [Ar97].
The following easy but important connection between parameterized com-
plexity and approximation was first proved by Bazgan [Baz95,CT97].

Theorem 5. Suppose that I,y is an optimization problem, and that Iparam
is the corresponding parameterized problem, where the parameter is the value of
an optimal solution. Then Ilparam 1 fived-parameter tractable if I,y has an
efficient PTAS.

Applying Bazgan’s Theorem is not necessarily difficult — we will sketch here
a recent example. Khanna and Motwani introduced three planar logic problems
in an interesting effort to give a general explanation of PTAS-approximability.
Their suggestion is that “hidden planar structure” in the logic of an optimization
problem is what allows PTASs to be developed [KM96]. They gave examples of
optimization problems known to have PTASs, problems having nothing to do
with graphs, that could nevertheless be reduced to these planar logic problems.
The PTASs for the planar logic problems thus “explain” the PTASs for these
other problems. Here is one of their three general planar logic optimization prob-
lems.
Pranar TMIN
Input: A collection of Boolean formulas in sum-of-products form, with all literals
positive, where the associated bipartite graph is planar (this graph has a vertex
for each formula and a vertex for each variable, and an edge between two such
vertices if the variable occurs in the formula).
Output: A truth assignment of minimum weight (i.e., a minimum number of
variables set to true) that satisfies all the formulas.

The following theorem is from joint work with Cai, Juedes and Rosamond

[CFIRO1].

Theorem 6. Planar TMIN is hard for W[1] and therefore does not have an
EPTAS unless FPT = W[1].

Proof. We show that CLIQUE is parameterized reducible to PLANAR TMIN
with the parameter being the weight of a truth assignment. Since CLIQUE is
W([1]-complete, it will follow that the parameterized form of PLANAR TMIN is
W(1]-hard.

To begin, let (G, k) be an instance of CLIQUE. Assume that G has n vertices.
From G and k, we will construct a collection C' of FOFs (sum-of-products for-
mulas) over f(k) blocks of n variables. C' will contain at most 2f(k) FOFs and
the incidence graph of C' will be planar. Moreover, each minterm in each FOF
will contain at most 4 variables. The collection C' is constructed so that G has
a clique of size k if and only if C' has a weight f(k) satisfying assignment with
exactly one variable set to true in each block of n variables. Here we have that
F(k) = O(k").

To maintain planarity in the incidence graph for C, we ensure that each block
of n variables appears in at most 2 FOFs. If this condition is maintained, then
we can draw each block of n variables as follows.
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We describe the construction in two stages. In the first stage, we use k blocks
of n variables and a collection C” of k(k—1)/2+k FOFs. In a weight k satisfying
assignment for C’, exactly one variable v;,j in each block of variables b; =
[Vi1, .., vi 5] Will be set to true. We interpret this event as “vertex j is the ith
vertex in the clique of size k.” The k(k—1)/2+k FOFs are described as follows.

n

For each 1 < i < k, let f; be the FOF \/ v; ;. This FOF ensures that at least
j=1
one variable in b; is set to true. For each pair 1 <i < j <k, let f; ; be the FOF
V  iwvje. Each FOF f; ; ensures that there is an edge in G between the
(u,v)€E
ith vertex the clique and the jth vertex in the clique.

Tt is somewhat straightforward to show that C' = {f1,..., f&, f1,2, - - > fh—1,k}
has a weight k satisfying assignment if and only if G has a clique of size k. To see
this, notice that any weight & satisfying assignment for C’ must satisfy exactly
1 variable in each block b;. Each first order formula f; ; ensures that there is
an edge between the ith vertex in the potential clique and the jth vertex in the
potential clique. Notice also that, since we assume that G does not contain edges
of the form (u, u), the FOF f; ; also ensures that the ith vertex in the potential
clique is not the jth vertex in the potential clique. This completes the first stage.

The incidence graph for the collection C” in the first stage is almost certainly
not planar. In the second stage, we achieve planarity by removing crossovers in
incidence graph for C’. Here we use two types of widgets to remove crossovers
while keeping the number of variables per minterm bounded by 4. The first
widget Ay consists of k + k — 3 blocks of n variables and & — 2 FOFs. This
widget consists of k£ — 3 internal and k external blocks of variables. Each external
block e; = [e;1,...,€in] of variables is connected to exactly one FOF inside
the widget. Each internal block i; = [ij1,...,€;,] is connected to exactly two
FOFs inside the widget. The k — 2 FOFs are given as follows. The FOF f, 1

n
is \/ el,jeg,jilﬁj. For each 2 S l S k— 3, the FOF fa,l = V;L:I il—l,jel+1,jil,j-
j=1
n
Finally, fox—2 = V ik—3j€x—1,j€k,;. These k —2 FOFs ensure that the settings
j=1
of variables in each block is the same if there is a weight 2k — 3 satisfying
assignment to the 2k — 3 blocks of n variables.

The widget Ay can be drawn as follows.
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Since each internal block is connected to exactly two FOFs, the incidence graph
for this widget can be drawn on the plane without crossing any edges.

The second widget removes crossover edges from the first stage of the con-
struction. In the first stage, crossovers can occur in the incidence graphs because
two FOF's may cross from one block to another. To eliminate this, consider each
edge 4,7 in Kj with ¢ < j as a directed edge from ¢ to j. In the construction,
we send a copy of block i to block j. At each crossover point from the direction

of block u = [uq,...,u,] and v = [v1, ..., v,], insert a widget B that introduces
2 new blocks of n variables u; = [uq, ...u1,] and v1 = [v1,...v1,] and a FOF
n n
/B =\ V ujui,vvi,. The FOF fp ensures that u; and v; are copies of u and
j=1l=1 ’

v. Moreover, notice that the incidence graph for the widget B is also planar.

To complete the construction, we replace each of the original k blocks of n
variables from the first stage with a copy of the widget Ax_1. At each crossover
point in the graph, we introduce a copy of widget B. Finally, for each directed
edge between blocks (7, j), we insert the original FOF f; ; between the last widget
B and the destination widget Aj_1. Since one of the new blocks of variables
created by the widget B is a copy of block 4, the effect of the FOF f; ; in this
new collections is the same as before.

The following diagram shows the full construction when k = 5.

Since each the incidence graph of each widget in this drawing is planar, the entire
collection C' of first order formulas has a planar incidence graph.

Now, if we assume that there are c(k) = O(k*) crossover points in standard
drawing of Ky, then our collection has c(k) B widgets. Since each B widget
introduces 2 new blocks of n variables, this gives 2¢(k) new blocks. Since we
have k Ajp_1 widgets, each of which has 2(k — 1) — 3 = 2k — 5 blocks of n
variables, this gives an additional k(2k —5) blocks. So, in total, our construction
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has f(k) = 2c(k) + 2k% — 5k = O(k*) blocks of n variables. Note also that there
are g(k) = k(k —1)/2 + k(k — 2) + c¢(k) = O(k*) FOFs in the collection C.

As shown in our construction C has a weight f(k) satisfying assignment (i.e.,
each block has exactly one variable set to true) if and only if the original graph G
has a clique of size k. Since the incidence graph of C' is planar and each minterm
in each FOF contains at most four variables, it follows that this construction is
a parameterized reduction as claimed. O

In a similar manner the other two planar logic problems defined by Khanna
and Motwani can also be shown to be W[1]-hard.

3 Recommended Books and Articles

Parameterized Complezity — R. Downey and M. Fellows, Springer, 1999.
Parameterized Complezity Theory — J. Flum and M. Grohe, Springer, 2006.

Invitation to Fized Parameter Algorithms— R. Niedermeier, Oxford Univ. Press,
2006.

The Computer Journal, 2008, Numbers 1 and 3 — a double special issue of surveys
of various aspects and application areas of parameterized complexity.
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How to place k fire stations?

» Some simplifications: Bergen is a planar graph and r = 1.

> There is a linear kernel O(k) for dominating set on planar

graph, so 20O aigorithm is possible

How to place k fire stations?

» Some simplifications: Bergen is a planar graph and r = 1.

> There is a linear kernel O(k) for dominating set on planar
graph, so 20O aigorithm is possible

» We show how to get subexponential 2Vkp01) algorithms.

» The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r > 1, and for many other problems

How to place k fire stations?

» Some simplifications: Bergen is a planar graph and r = 1.
> There is a linear kernel O(k) for dominating set on planar
graph, so 20O algorithm is possible

» We show how to get subexponential 2Vkp0) algorithms.

Outline of the tutorial

» Framework for parameterized algorithms: combinatorial
bounds + dynamic programming
» Combinatorial bounds via Graph Minor theorems
» Bidimensionality
» Dynamic programming which uses graph structure

» Catalan structures



Graph Minors

The framework exploits the structure of graph classes that exclude

some graph as a minor

Minors and contractions

le 2
edge

contraction TCImo!

G3 = G2 X G1, G2 = G but also G3 A G2 and G5 A. G

Minors and contractions

H is a contraction of G (H <. G) if H occurs from G after

applying a series of edge contractions.

H is a minor of G (H <,,, G) if H is the contraction of some
subgraph of G.

Notice: <,, and <. are partial relations on graphs

Minors and contractions

A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is again in G.

A graph G is H-minor-free when it does not contain H as a minor.
A graph class G is H-minor-free (or, excludes H as a minor) when

ts members are H-minor-free.



Examples of H-minor-free classes

» Forests: K3

» Outerplanar Graphs: K» 3, Ki

» Planar Graphs: K33, K5

» Link-free Graphs: 7 graphs (X-Y transformations of Kg)

» Graphs of the projective plane: 103 graphs

Graph Minor theorem

Graphs Minor Theorem is not used in our tutorial. However,we
need tools created by Roberston-Seymour in order to prof this

theorem.

Graph Minor theorem

Robertson & Seymour (1986-2004):

Theorem (Graphs Minor Theorem)
Graphs are well-quasi-ordered by the minor relation <,,.

» Consequence: every minor closed graph class G has a finite set

of minimal excluded minors.

Main tool: Branch Decompositions

Definition
A branch decomposition of a graph G = (V, E) is a tuple (T, 1)
where

» T is a tree with degree 3 for all internal nodes.

> 4 is a bijection between the leaves of T and E(G).



Example of Branch Decomposition Edge e € T partitions the edge set of G in A, and B,

Edge e € T partitions the edge set of G in A, and B, Middle set mid(e) = V(A.) NV (B,)




Branchwidth

> The width of a branch decomposition is max.c7 | mid(e)

» The branchwidth of a graph G is the minimum width over all

branch decompositions of G.

VERTEX COVER

A vertex cover C of a graph G, ve(G), is a set of vertices

such that every edge of G has at least one endpoint in C.

Exercises

» What is the branchwidth of a tree?
» Complete graph on n vertices?

> (¢ x {)-grid?

Dynamic programming: Vertex Cover

\



Dynamic programming: Vertex Cover

Dynamic programming: Vertex Cover
A H o ta . L. .u. .8
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Main idea—dynamic programming. 2 —
i 5
» Start from leaves, compute all possible vertex covers of each P =3 -
edge - i}
= |
» We have two branches Left and Right, and middle set M of . T ./\ T ——
vertices separating Left and Right. For every possible \/c
assignment A of VC for vertices M, compute 7
VALUE( Left, A) + VALUE(Right, A) — VALUE(A)

o <8 = =
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Dynamic programming: Vertex Cover Dynamic programming: Vertex Cover

o S

Dynamic programming: Vertex Cover Dynamic programming: Vertex Cover

\/ o 2042 Let £ = bw(G) and m = |E(G)|.
ﬂ\- ) T .. » Running time: size of every table for middle set is O(2%).
.n'll.l,l‘ .|Av CC v

» To compute a new table: O(2%)

.

-\ > Number of steps O(m)

» Total running time: O(2%‘m).

o

Lo
0
i
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Dynamic programming: Vertex Cover Grid Theorem

Exercise Theorem (Robertson, Seymour & Thomas, 1994)

Try to improve the running time, say to DE?&B&. Let £ > 1 be an integer. Every planar graph of branchwidth > 4¢

contains %N as a minor.

Grid Theorem: Sketch of the proof Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (¢ x ¢)-grid as a minor.

NORTH
The proof is based on Menger's Theorem f.,
\

o
s d ; ]
Theorem (Menger 1927) J . \.R

Let G be a finite undirected graph and x and y two nonadjacent

N
N,

vertices. The size of the minimum vertex cut for x and y (the

EAST
minimum number of vertices whose removal disconnects = and y)

is equal to the maximum number of pairwise vertex-disjoint paths

from z to y.



Grid Theorem: Sketch of the proof

Either East can be separated from West, or South from North by

A~ /

,// >

p——r

removing at most ¢ vertices out

Grid Theorem: Sketch of the proof

Partition the edges. Every time the middle set contains only

vertices of East, West, South, and North, at most 4/ in total.

EAST

Grid Theorem: Sketch of the proof

Otherwise by making use of Menger we can construct ¢ x ¢ grid as

a minor

NOKIH

EAST

How to compute branchwidth

> NP-hard in general (Seymour-Thomas, Combinatorica 1994)

» On planar graphs can be computed in time O(n?)
(Seymour-Thomas, Combinatorica 1994 and Gu-Tamaki,

ICALP 2005)

» RST grid theorem provides 4-approximation.



We know enough to solve Vertex Cover!

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth > ¢

G contains an (¢/4 x (/4)-grid

H as a minor

We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth > ¢

We know enough to solve Vertex Cover!

Let G be a planar graph of G contains an (¢/4 x (/4)-grid

branchwidth > ¢ - H as a minor

The size of any vertex cover of H is at least ¢2/32. Since H is a

minor of G, the size of any vertex cover of G is at least Nm\wm.



We know enough to solve Vertex Cover! CHALLENGES TO DISCUSS

Let G be a planar graph of G contains an (¢/4 x (/4)-grid

g
branchwidth > ¢ H as a minor

. . 2 . .
The size of any vertex cover of H is at least £7/32. Since H is a » How to generalize the idea to work for other parameters?

minor of G, the size of any vertex cover of G is at least ¢2/32. o
» Does not work for Dominating Set. Why?

» Is planarity essential?

WIN/WIN
» Dynamic programming. Does MSOL helps here?
If k < ¢2/32, we say “NO”

If & > (%/32, then we do DP in time
0(2%m) = 0(2°VP ).

Parameters EXAMPLES OF PARAMETERS: k-VERTEX COVER

A parameter P is any function mapping graphs to nonnegative

integers. The parameterized problem associated with P asks, for

some fixed k, whether for a given graph G, P(G) < I (for A vertex cover C of a graph G, ve(G), is a set of vertices

h th f G h | int i
minimization) and P(G) > k (for maximization problem). We say such that every edge of & has at least one endpoint in

. . X . C. The k-VERTEX COVER problem is to decide, given a
that a parameter P is closed under taking of minors/contractions P &

(or, briefly, minor/contraction closed) if for every graph H, H < G I (€ el € [PREit (337 s, SMGHE? (€ iES & Ve

/ H <. G implies that P(H) < P(G). cover of size k.



k-VERTEX COVER EXAMPLES OF PARAMETERS: k-DOMINATING SET

A dominating set D of a graph G is a set of vertices such
that every vertex outside D is adjacent to a vertex of D.
The k-DOMINATING SET problem is to decide, given a
graph G and a positive integer k, whether G has a

. . . dominating set of size k.
k-VERTEX COVER is closed under taking minors. €

k-DOMINATING SET (Not exactly related to this tutorial but worth to be

mentioned)

By Robertson-Seymour theory, every minor closed parameter

problem is FPT.

k-DOMINATING SET is not closed under taking minors. However,

it is closed under contraction of edges.



Subexponential algorithms on planar graphs: What is the Meta conditions

main idea?
(A) For every graph G € G, bw(G) < a-+/P(G)+ O(1)
. . (B) For every graph G € G and given a branch decomposition
U<3m3_n _U_\O@—\NBB_JW m:& (T, ) of G, the value of P(G) can be computed in
Grid Theorem Fbw(T1)) - nOW steps.
Algorithm This tutorial:

(A) For every graph G € G, bw(G) < a-+/P(G)+ O(1)

(A) For every graph G € G, bw(G) < a-+/P(G)+ O(1)
(B) For every graph G € G and given a branch decomposition

(B) For every graph G € G and given a branch decomposition

(T, 1) of G, the value of P(G) can be computed in (T, 1) of G, the value of P(G) can be computed in

F(bw(T, 1)) - nOW) steps

Fbw(T, 1)) - nPM steps.

If bw(T, 1) > a- Vk, then by (A) the answer is clear > How to prove (A)

Else, by (B), P(G) can be computed in f(a - vk)-n°®) steps.
» How to do (B)

When f(k) = 204, the running time is 20(VF) . 0




Combinatorial bounds:
Bidimensionality and excluding a grid
as a minor

PLANAR k-VERTEX COVER

H,, for r =10

Reminder

Theorem (Robertson, Seymour & Thomas, 1994)

Let £ > 1 be an integer. Every planar graph of branchwidth > ¢

contains an ((/4 x {/4)-grid as a minor.

PLANAR k-VERTEX COVER




PLANAR k-VERTEX COVER

Let G be a planar graph of

branchwidth > ¢

PLANAR k-VERTEX COVER

Let G be a planar graph of G contains an (¢/4 x (/4)-grid

=
branchwidth > ¢ H as a minor

The size of any vertex cover of H is at least £2/32. Since H is a

minor of G, the size of any vertex cover of G is at least £2/32.

PLANAR k-VERTEX COVER

Let G be a planar graph of G contains an ({/4 x {/4)-grid

branchwidth > ¢ H as a minor

PLANAR k-VERTEX COVER

Let G be a planar graph of G contains an (¢/4 x {/4)-grid

=
branchwidth > ¢ H as a minor

The size of any vertex cover of H is at least (2/32. Since H is a

minor of G, the size of any vertex cover of G is at least £2/32.

Conclusion: Property (A) holds for o = 4v/2, i.e.
bw(G) < f\mi<2ﬂv.



PLANAR k-VERTEX COVER

Dorn, 2006: given a branch decomposition of G of width ¢, the

minimum vertex cover of G can be computed in time

f(0)n = 2%'n, where w is the fast matrix multiplication constant.

PLANAR

k-VERTEX COVER: KERNELIZATION NEVER HURTS

Find a kernel of size O(k) in time n3/2 (use Fellows et al.

crown decomposition method)

Use Seymour-Thomas algorithm to compute a branchwidth of

the reduced planar graph G in time O(k%)
If bw(G) > $~ then G has no vertex cover of size k

Otherwise, compute vertex cover in time

wVE PR,
0(2"V% k) = O(235VEE,)

Total running time O(n%/? + ww.mm,\m@

PLANAR k-VERTEX COVER: PUTTING THINGS TOGETHER

» Use Seymour-Thomas algorithm to compute a branchwidth of
a planar graph G in time O(n®)

v_mUSAQvW ﬁn ﬁ:msQ:mm=o<m3mx8<m_‘0mmm~m\ﬂ
» Otherwise, compute vertex cover in time

2wVE arp
02" n) = 0(2¥VEy)

» Total running time O(n® + 98:56Vkn)

k-FEEDBACK VERTEX SET




k-FEEDBACK VERTEX SET k-FEEDBACK VERTEX SET

» If bw(G) > r, then G >,,, H

rr
11

» fvs is minor-closed, therefore fvs(G) > fvs(H: =) > m\M

we have that bw(G) < 8- /fvs(G)

fve(H, ;)

v
=%

k-FEEDBACK VERTEX SET k-FEEDBACK VERTEX SET

» If bw(G) > r, then G >, mm,m » If bw(G) > r, then G >,, mmvm

2

» fvs is minor-closed, therefore fvs(G) > fvs(Hz z) > &7 » fvs is minor-closed, therefore fvs(G) > fvs(H: =) > m\M

we have that bw(G) < 8- /fvs(G) we have that bw(G) < 8- /fvs(G)

therefore, for p-VERTEX FEEDBACK SET, f(k) = O(vk) therefore, for p-VERTEX FEEDBACK SET, f(k) = O(Vk)
Conclusion:

p-VERTEX FEEDBACK SET has a 200085VR) . O(n) step

algorithm.



PLANAR k-DOMINATING SET

Can we proceed by the same arguments with PLANAR

k-DOMINATING SET?

PLANAR k-DOMINATING SET

Can we proceed by the same arguments with PLANAR
k-DOMINATING SET?
Oops! Here is a problem! Dominating set is not minor closed!

However, dominating set is closed under contraction

PLANAR k-DOMINATING SET

Can we proceed by the same arguments with PLANAR
k-DOMINATING SET?

Qops! Here is a problem! Dominating set is not minor closed!

PLANAR k-DOMINATING SET

H,, forr =10



PLANAR k-DOMINATING SET

a partial triangulation of

Hip10

PLANAR k-DOMINATING SET

» By RST-Theorem, a planar graph G of branchwidth > ¢ can
be contracted to a partially triangulated (¢/4 x ¢/4)-grid
» Since dominating set is closed under contraction, we can

make the following

Conclusion: Property (A) holds for o = 12, i.e.
bw(G) < 124/ds(G).

PLANAR k-DOMINATING SET

Every inner vertex of p.t.

(r=2)?
5

grid mﬁﬁ dominates at most 9 vertices. Thus &mﬁw:v >

PLANAR k-DOMINATING SET

» By RST-Theorem, a planar graph G of branchwidth > ¢ can
be contracted to a partially triangulated (¢/4 x £/4)-grid

» Since dominating set is closed under contraction, we conclude
that PLANAR k-DOMINATING SET also satisfies property (A)
with a = 12.

» Dorn, 2006, show that for k-DOMINATING SET in (B), one

w

can choose f(¢) = 3%%, where w is the fast matrix

multiplication constant.



PLANAR k-DOMINATING SET Bidimensionality: The main idea

» By RST-Theorem, a planar graph G of branchwidth > ¢ can
be contracted to a partially triangulated (¢/4 x ¢/4)-grid

» Since dominating set is closed under contraction, we conclude . . .
If the graph parameter is closed under taking minors or

that PLANAR k-DOMINATING SET also satisfies property (A) . .
contractions, the only thing needed for the proof

with o = 12. . . .
branchwidth/parameter bound is to understand how this parameter

» Dorn, 2006, show that for k-DOMINATING SET in (B), one . . .
behaves on a (partially triangulated) grid.

can choose f(£) = 3¢, where w is the fast matrix

multiplication constant.

» Conclusion: PLANAR k-DOMINATING SET can be solved in

time O(n® + wmm.@,\mi

Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005 Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is called contraction bidimensional with density ¢ if

Definition
A parameter P is minor bidimensional with density & if 1. P is closed under contractions,
1. P is closed under taking of minors, and 2. for any partially triangulated (r x r)-grid R,

_ 2 N2
2. for the (r x r)-grid R, P(R) = (67)2 + o((67)?). P(R) = (dgr)* + o((9rr)?), and
3. 0 is the smallest 0z among all paritally triangulated

(r x r)-grids.



Bidimensionality Examples of bidimensional problems

Vertex cover
Lemma

. .. . . . o Dominating Set
If P is a bidimensional parameter with density § then P satisfies ominating >¢

|
property (A) for a = 4/6, on planar graphs. ndependent Set

(k,r)-center
Proof. Feedback Vertex Set

Let R be an (r x r)-grid. Minimum Maximal Matching

2
P(R) = (dpr)*. Planar Graph TSP

If G contains R as a minor, then bw(G) < 4r < 4/6,/P(G). O Longest Path ..

How to extend bidimensionality to more general graph Bounded genus graphs: Demaine, FF, Hajiaghayi, Thilikos,
classes? 2005
> We need excluding grid theorems (sufficient for minor closed Theorem
parameters) If G is a graph of genus at most y with branchwidth more than r,

» For contraction closed parameters we have to be more careful then G contains a (r/4(y + 1) x r/4(~y + 1))-grid as a minor.



Can we go further?

What about more general graph classes?

» How to define bidimensionality for non-planar graphs?

What about contraction-closed parameters?

We define the following two pattern graphs I';; and II;:

AW

II;, = '+ a new vertex vpew, connected to all the vertices in

«\AH,»V.

The grid-minor-excluding theorem gives linear bounds for H-minor
free graphs:
Theorem (Demaine & Hajiaghayi, 2008)

There is a function ¢ : N — N such that for every graph G
excluding a fixed h-vertex graph H as a minor the following holds:

» ifbw(G) > ¢(h) - k then %r. <m G.

For every minor-closed graph class a minor-closed parameter p is

E@z =Q(k?)

bidimensional if

The grid-minor-excluding theorem gives linear bounds for H-minor

free graphs:

Theorem (Fomin, Golovach, & Thilikos, 2009)

There is a function ¢ : N — N such that for every graph G
excluding a fixed h-vertex graph H as contraction the following
holds:

» ifbw(G) > ¢(h) - k then either Ty, <. G, or II; <. G.



For contraction-closed graph class a contraction-closed parameter

p is bidimensional if

(k) = Q(k?) and p(Il) = Q(K?).

Therefore for every apex-minor free graph class

a contraction-closed parameter p is bidimensional if

Limits of the bounded branchwidth WIN/WIN technique

As for each contraction-closed parameter p that we know, it holds
that p(II;) = O(1) for all k,
Bidimensionality can be defined for apex-minor free graphs

(apex graphs are exactly the minors of II;)

H* is an apex graph if

Jv e V(H*): H* — v is planar

Conclusion

Minor bidimensional: minor- closed and E@C = Q(k?)

Contraction-bidimensional: contraction-closed and

Theorem (Bidimensionality meta-algorithm)

Let p be a minor (resp. contraction)-bidimensional parameter that
is computable in time 20(bw(6)) . ,0(1),
Then, deciding p(G) < k for general (resp. apex) minor-free

graphs can be done (optimally) in time 20(Vk) ., 001)



Limits of the bidimensionality
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More grids
Grids for other problems

EXAMPLE |: t-spanners (ICALP 2008, Dragan, FF, Golovach)

Remark
Bidimensionality cannot be used to obtain subexponential algorithms for

contraction closed parameterized problems on H-minor free graphs.

For some problems, like k-DOMINATING SET, it is still possible to design

subexponential algorithms on H-minor free graphs.

The main idea here is to use decomposition theorem of Robertson-Seymour about
decomposing an H-minor free graph into pieces of apex-minor-free graphs, apply
bidimensionality for each piece, and do dynamic programming over the whole

decomposition.

t-spanners

Definition (¢-spanner)

Let ¢ be a positive integer. A subgraph S of G, such that

V(S) =V(Q), is called a t-spanner, if distg(u,v) <t - distg(u, v)
for every pair of vertices u and v. The parameter ¢ is called the

stretch factor of S.



Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

Examples of spanners

3 and 2-spanners

Spanners of bounded branchwidth

Problem (k-Branchwidth ¢-spanner)

Instance: A connected graph G and positive integers k and ¢.

Question: TIs there a t-spanner of G of branchwidth at most k?



Planar graphs Sketch of the proof

Walls and grids

Theorem (Bounds for planar graphs)

Let G be a planar graph of branchwidth k and let S be a t-spanner

of G. Then the branchwidth of S is Q(k/t).

Sketch of the proof Sketch of the proof

Walls and grids Walls and grids




Sketch of the proof Sketch of the proof

Walls and grids Walls and grids

. S .
Sketch of the proof Sketch of the proof
Walls and grids Walls and grids
'd 1\ '

———————] ]




Sketch of the proof Algorithmic consequences

Walls and grids

s N Theorem (Dragan, FF, Golovach, 2008)

Deciding if a planar graph G has a t-spanner of treewidth at most

k is solvable in time O(f(k,t) - n).

Theorem (Dragan, FF, Golovach, 2008)

Let H be a fixed apex graph. For every fixed k and t, the existence

of a t-spanner of treewidth at most k in an H-minor-free graph G

) \

can be decided in linear time.

T
iR
il

EEERi
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Another example Induced cycle

Induced cycle spanning a specified set of vertices

Problem (Induced Cycle Problem)

Instance: Planar graph G and and a subset S C V(G) of

(SODA 2009, KOBAYASHI and KAWARABAYASHI) terminal vertices of size k.

Question: Is there an induced cycle in G containing all terminal

vertices S7

Parameter k.



Algorithm sketch Bidimensional theory: Conclusion

» If there is a vertex which is far from each of the If P is a parameter that

terminals—just remove it, it does not change the solution. (A) is minor (contraction) bidimensional

(Far here means that there are 22k + 2 nested disjoint cycles L (1
(B) can be computed in f(bw(G)) - n°®) steps.

around v.)
then there is a f(O(v/k)) - n®") step algorithm for checking

» If every vertex is “close” to each of the terminals, then the .
whether P(G) < k for H (apex) -minor free graphs.

branchwidth of the graph O(k%/2). To prove this, one has to

look at the erid! We now fix our attention to property (B) and function f.
grid!

Dynamic programming for branch decompositions

» We root the tree T" of the branch decomposition (T, 7),

» We define a partial solution for each cut-set of an edge e of T

Dynamic programming and Catalan
structures

> We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(¢) - n) if we have a branch decomposition

of width at most /.



Dynamic programming for branch decompositions

> We root the tree T' of the branch decomposition (T, 7),
» We define a partial solution for each cut-set of an edge e of T

> We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(¢) - n) if we have a branch decomposition
of width at most /.

f(¢) depends on the number of partial solutions we have to
compute for each edge of T'.

» To find a good bound for f(¢) is important!

However: There are (many) problems where no general

20(bw (%)) . ;,0(1) step algorithm is known.

For many problems, 20(bw(C)) . ,0(1)

step algorithms exist.
Dynamic programming on graphs with small branchwidth gives
such algorithms for problems like

VERTEX COVER,

DOMINATING SET, or

EDGE DOMINATING SET, (and others...)

However: There are (many) problems where no general

20(bw (%)) . ;,0(1) step algorithm is known.

Such problems are
LONGEST PATH, LONGEST CYCLE, CONNECTED DOMINATING
SET, FEEDBACK VERTEX SET, HAMILTONIAN CYCLE, MAX

LEAF TREE and GrRAPH METRIC TSP



Example: k-LONGEST PATH
However: There are (many) problems where no general

20(bw(C)) . ,0(1) step algorithm is known.

Such problems are

1 3 ol 3 ARVl J Bl al . . .
LONGEST PATH, LONGEST CYCLE, CONNECTED DOMINATING The k-LONGEST PATH problem is to decide, given a

SET, FEEDBACK VERTEX SET, HAMILTONIAN CYCLE, MAX graph G and a positive integer k, whether G contains a

LEAF TREE and GRAPH METRIC TSP path of length k.

For the natural parameterizations of these problems, no 20(VE) . o)

X . R o L This problem is closed under the operation of taking minor.
step FPT-algorithm follows by just using bidimensionality theory and

dynamic programming.

Example: k-LONGEST PATH Example: k-LONGEST PATH
k-LONGEST PATH has a k-LONGEST PATH has a
20(VEklogh) . ,0(1) step algorithm. 20(Vklogh) . ;,0(1) step algorithm.
Because Because

(A) The parameter is minor bidimensional



Example: k-LONGEST PATH Why log bw(G)?

k-LONGEST PATH has a

20(VElogh) . ;,0(1) step algorithm.

Let P be a path in G. An edge ¢ of a branch

Because . . .
decomposition T splits G into G, and G\ G..

(A) The parameter is minor bidimensional
(B) to find a longest path in a graph G takes

20(bw(C)loz bw(G) . 1, steps

Why log bw(G)?

e Therefore, the complexity of dynamic programming depends on
s

\ < |[pairs(mid(e))|, which is Q(bw

This obstacle does not allow to break 20(bW(G)-log bw(C)) .,

barrier.
Let P be a path in G. An edge ¢ of a branch

decomposition T splits G into G, and G\ G..
» The restriction of a P to G, is a collection P of internally disjoint
paths in G, with ends in mid(e).
» Each P corresponds to some pairing (a disjoint set of paths in the

clique formed from mid(e))

» For a set S, let pairs(S) be the set of all pairings of .S



Therefore, the complexity of dynamic programming depends on
|pairs(mid(e))|, which is Q(bw!).

This obstacle does not allow to break 20(bw(G)-log bw(G)) ),
barrier.

» Problem: The local info in dynamic programming is too big!

Therefore, the complexity of dynamic programming depends on
|[pairs(mid(e))|, which is Q(bw!).

This obstacle does not allow to break 20(PW(G)-log bw(¢))

-n
barrier.

» Problem: The local info in dynamic programming is too big!
» Issue: The same problem appears in many dynamic
programming algorithms!

» |dea: as long as we care about sparse graph classes, we can take

their structure into consideration!

Therefore, the complexity of dynamic programming depends on
|[pairs(mid(e))|, which is Q(bw!).

This obstacle does not allow to break 20(bW(G) 1oz bw(C)) .,
barrier.

» Problem: The local info in dynamic programming is too big!
» Issue: The same problem appears in many dynamic

programming algorithms!

Sphere-cut decomposition
Let G be a planar graph embedded on the sphere Sy

A sphere-cut decomposition of G is a branch decomposition (7', 7)
where for every ¢ € E(T'), the vertices in mid(e) are the vertices in

a Jordan curve of Sy that meets no edges of G.




Seymour-Thomas 1994, Dorn-Penninkx-Bodlaender-FF

2005

Theorem
Every planar graph G of branchwidth ¢ has a sphere-cut
decomposition of width (. This decomposition can be constructed

in O(n?) steps.

For doing dynamic programming on a sphere cut decomposition
(T, 7) of width ¢ we define, for every e € E(T') the set
pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound on the size of pairs(mid(e)) is 20(1log?)

For doing dynamic programming on a sphere cut decomposition
(T, ) of width ¢ we define, for every ¢ € E(T') the set

pairs(mid(e)) be the set of all pairings of mid(e)

For doing dynamic programming on a sphere cut decomposition
(T, 7) of width ¢ we define, for every e € E(T') the set
pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound on the size of pairs(mid(e)) is 20(¢leg?)
However, we now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings cannot be crossing because of planarity.
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It follows that pairs(mid(e)) = O(C(Jmid(e)])) = O(C(¥))
Where C(¢) is the (-th Catalan Number.

. 3 y
It is known that C'(¢) ~ Nm\w‘,\m =200
Therefore: dynamic programming for finding the longest path of a
planar graph GG on a sphere cut decompositions of GG with width

< ¢ takes O(2°0) . ) steps.

It follows that pairs(mid(e)) = O(C(|mid(e)|)) = O(C(¥))
Where C'(¢) is the ¢-th Catalan Number.
= 20(0)

It is known that C'(¢) ~ $

It follows that pairs(mid(e)) = O(C(Jmid(e)|)) = O(C(¥))
Where C'(¢) is the ¢-th Catalan Number.
. R U
It is known that C(¢) ~ ‘E\w,\m =200
Therefore: dynamic programming for finding the longest path of a

planar graph GG on a sphere cut decompositions of GG with width

< ( takes O(2°0) . ) steps.

Conclusion: [by bidimensionality]

Planar k-Longest Path can be solved in OQQ?\@ -n +n?) steps



» The same holds for several other problems where an analogue of

pairs(mid(e)) can be defined for controlling the size of the tables in

dynamic programming.

How to use Catalan structure in non-planar graphs?

We say that branch decomposition (7', 7) of width ¢ has the

Catalan Structure for k-LONGEST PATH if

Veepr) pairs(mid(e)) = 20(0)

» The same holds for several other problems where an analogue of
pairs(mid(e)) can be defined for controlling the size of the tables in

dynamic programming.

» Like that one can design 20(V%) . ,O() step algorithms for
parameterized planar versions of CYCLE COVER, PATH COVER,
LONGEST CYCLE, CONNECTED DOMINATING SET, FEEDBACK
VERTEX SET, HAMILTONIAN CYCLE, GRAPH METRIC TSP, MAX

LEAF TREE, etc.

How to use Catalan structure in non-planar graphs?

We say that branch decomposition (T',7) of width ¢ has the

T ParTH if

Catalan Structure for k-LONG
Veep(r) pairs(mid(e)) = 20(0)

» We have seen that, for planar graphs, one can construct a
branch decomposition with the Catalan structure for the

k-LONGEST PATH problem.



Dorn-FF-Thilikos 2008 Consequences:

Theorem » For H-minor free graphs, one can construct an algorithm that

For any H-minor free graph class G there is a constant cy; solves the k-LONGEST PATH problem in 200VE) . ,0(1) gteps.
(depending only on H) such that the following holds: For every

graph G € G and any positive integer w, it is possible to construct

a ey -n%W_step algorithm that outputs either

1. a correct report that bw(G) > w or

2. a branch decomposition (T, T) with the Catalan structure and

of width ¢y - w.

Consequences:

» For H-minor free graphs, one can construct an algorithm that . . . . .
: grap ! gort By applying modifications it is possible to define an analogue of

solves the k-LONGEST PATIT problem in 20000 steps. Catalan Structure property for other problems like FEEDBACK

» Using the same result one can also solve, for H-minor free VERTEX SET, CONNECTED DOMINATING SET, and MAX LEAF
graphs, in 200VF) . ;0() steps, the the standard parameterization TREE

of LonGEST CyCLE, and CycLE/PAaTn COVER, parameterized

either by the total length of the cycles/paths or the number of the

cycles/paths.



Proof idea: again Graph Minors

[Robertson and Seymour — GM 16]: any H -minor free graph can
roughly be obtained by identifying in a tree-like way small cliques
of a collection of components that are almost embeddable on

bounded genus surfaces.

In the plane, we use sphere cut decompositions, that permit to encode
collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

Proof idea: again Graph Minors

[Robertson and Seymour — GM 16]: any H -minor free graph can
roughly be obtained by identifying in a tree-like way small cliques
of a collection of components that are almost embeddable on

bounded genus surfaces.

» Proof idea: We construct an "almost”-planarizing with certain
topological properties, able to reduce the high genus
“almost” -embeddings to planar ones where the planarizing vertices

are “almost”-cyclically arranged in the plain.

In the plane, we use sphere cut decompositions, that permit to encode
collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

» This provides the so-called Catalan structure of the decomposition and

permits us to suitably bound the ways a path may cross its separators.



In the plane, we use sphere cut decompositions, that permit to encode
collections of paths that may pass through a separator as non crossing

pairings of the vertices of a cycle.

» This provides the so-called Catalan structure of the decomposition and

permits us to suitably bound the ways a path may cross its separators.

» This decomposition is used to build a decomposition on the initial
almost embeddible graph (following the tree-like way these components

are linked together).

Open problems |

Lower bounds on dynamic programming over branchwidth. Is it
possible to prove (up to some conjecture in complexity theory)
that Longest Path on graphs of branchwidth ¢ cannot be solved in
90(Clog £) 02

Can Vertex Cover be solved faster than 20017

Open problems |

Lower bounds on dynamic programming over branchwidth. Is it
possible to prove (up to some conjecture in complexity theory)

that Longest Path on graphs of branchwidth ¢ cannot be solved in

20(t1og ) 7

Open problems Il

When applying our technique on different problems we define, for
each one of them, an appropriate analogue of pairs and prove
that it also satisfies the Catalan structure property (i.e. is bounded

by 20(Imid(e)D)y,



Open problems

When applying our technique on different problems we define, for
each one of them, an appropriate analogue of pairs and prove
that it also satisfies the Catalan structure property (i.e. is bounded

by 20(Imid())).

» It is challenging to find a classification criterion (logical or
combinatorial) for the problems that are amenable to this

approach.

Open problems I

Sufficient condition: Bidimensionality (plus fast dynamic
programming) yields subexponential parameterized algorithm.
What are the necessary conditions?

Remark: Every problem on planar graphs for which we know
subexponential parameterized algorithm is either bidimensional, or

can be reduced to a bidimensional problem.

Open problems I

Sufficient condition: Bidimensionality (plus fast dynamic

programming) yields subexponential parameterized algorithm.

Open problems IV

Branchwidth: Polynomial time algorithm for graphs of bounded

genus? H-minor free graphs?
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1 Introduction

The aim of exact algorithms is to exactly solve NP-hard problems in the smallest possible
(exponential) worst-case running time. This field dates back to the sixties and seventies,
and it has started to attract a growing interest in the last two decades. There are several
explanations to the increasing interest in exact algorithms:

e There are certain applications that require exact solutions of NP-hard problems, al-
though this might only be possible for moderate input sizes. This holds in particular
for NP-complete decision problems.

e Approximation algorithms are not always satisfactory. Various problems are hard to
approximate. For example, maximum independent set is hard to approximate within
O(n'~¢), for any constant £ > 0, unless P = NP [25].

o A reduction of the base of the exponential running time, say from O(2") to O(1.9"),
increases the size of the instances solvable within a given amount of time by a constant
multiplicative factor; running a given exponential algorithm on a faster computer can
enlarge the mentioned size only by a (small) additive factor.

e The design and analysis of exact algorithms leads to a better understanding of NP-hard
problems and initiates interesting new combinatorial and algorithmic challenges.

1.1 Branch & Reduce algorithms

One of the major techniques in the design of exact algorithms is Branch € Reduce, which
traces back to the paper of Davis and Putnam [5] (see also [4]). A typical Branch & Reduce
algorithm for a given problem P works as follows. If P is a base instance, the problems is solved
directly in polynomial time. Otherwise the algorithm transforms the problem by applying a
set of polynomial-time reduction rules. Then it branches, in polynomial-time, on two or more
subproblems Py, ..., Py, according to a proper set of branching rules. Such subproblems are
solved recursively, and the partial solutions obtained are eventually combined, in polynomial
time, to get a solution for P.

*Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma Tor Vergata, via del Politecnico
1, 00133 Roma, Italy, grandoni@disp.uniroma2.it.



Branch & Reduce algorithms are usually analyzed with the bounded search tree technique.
Suppose we wish to find a time bound for a problem of size n. Assume that the depth of the
search tree is polynomially bounded (which is trivially true in most cases). It is sufficient to
bound the maximum number P(n) of base instances generated by the algorithm: the running
time will be O*(P(n))!. If P is a base instance, trivially P(n) = 1. Otherwise, consider a
possible branching step b, generating subproblems P?, ... 7772(1))7 and let n — Jjb. < n be the

size of subproblem P;-’. The vector 6° = (8%,.. .,52(1))) is sometimes called branching vector.
It follows that
h(b)
P(n) <Y P(n—4).
j=1
Consider function
h(b)

frlay=1-3"a"".
j=1

This function has a unique positive root X\> = bf(8%) (branching factor of §*). Branching
factors can be easily computed numerically (see Appendix A). It turns out that P(n) < A",
where A = max, {\°}.

We say that a branching vector § dominates a branching vector ¢’ if 6 < ¢, i.e. § is
component-wise not larger than §. It is not hard to see that, when & < &', bf () > bf(d').
Hence, with respect to the running time analysis, it is sufficient to consider a dominating set
of branching vectors. In other words, each time we replace the branching vector of a feasible
branching with a branching vector dominating it, we obtain a pessimistic estimate of the
running time. These properties will be extensively used in these notes.

1.2 Measure & Conquer

Branch & Reduce algorithms have been used for more than 40 years to solve NP-hard prob-
lems. The fastest known such algorithms are often very complicated. Typically, they consist
of a long list of non-trivial branching and reduction rules, and are designed by means of a
long and tedious case distinction. Despite that, the analytical tools available are still far from
producing tight worst-case running time bounds for this kind of algorithms.

In these notes we present an improved analytical tool, that we called Measure & Conquer.
In the standard analysis, n is both the measure used in the analysis and the quantity in
terms of which the final time bound is expressed. However, one is free to use any, possibly
sophisticated, measure m in the analysis, provided that m < f(n) for some known function
f. This way, one achieves a time bound of the kind O*(A\™) = O*(Af(), which is in the
desired form. The idea behind Measure & Conquer is focusing on the choice of the measure.
In fact, a more sophisticated measure may capture phenomena which standard measures are
not able to exploit, and hence lead to a tighter analysis of a given algorithm.

We apply Measure & Conquer to a toy algorithm mis for MIS. According to a standard
analysis, the running time of this algorithm is O*(1.33™). Thanks to a better measure, we
prove that the same algorithm has indeed running time O*(1.26™). This result shows that
a good choice of the measure can have a tremendous impact on the time bounds achievable,

!Throughout this paper we use a modified big-Oh notation that suppresses all polynomially bounded factors.
For functions f and g we write f(n) = O*(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.
Also while speaking about graph problems, we use n to denote the number of nodes in the graph.



comparable to the impact of improved branching and reduction rules. Hence, finding a good
measure should be at first concern when designing Branch & Reduce algorithms.

2 The Maximum Independent Set Problem

Let G = (V, E) be an n-node undirected, simple graph without loops. Sometimes, we also
use V(G) for V and E(G) for E. The (open) neighborhood of a node v is denoted by N (v) =
{u € V :uv € E}, and its closed neighborhood by N[v] = N(v) U {v}. We let d(v) = |[N(v)|
be the degree of v. By N*(v) we denote the set of nodes at distance z from v. In particular,
Nl(v) = N(v). Given a subset V' of nodes, G[V'] is the graph induced by V', and G — V' =
GIV\V']. We use G — v for G — {v}.

A set S C V is called an independent set for G if the nodes of S are pairwise non adjacent.
The independence number a(G) of a graph G is the maximum cardinality of an independent
set of G. The mazimum independent set problem (MIS) asks to determine a(G).

Suppose that the considered algorithm, at a given branching or reduction step, decides
that a node v belongs or does not belong to the optimum solution. In the first case we say
that v is selected, and otherwise discarded.

Let us describe some simple properties of maximum independent sets.

Lemma 1 Let G be a graph with a connected component C C G. Then
a(G) = a(C) + a(G - C).

Lemma 2 Let G be a graph and v and w two nodes of G with N[w] C N[v] (w dominates
v), then
a(G) = a(G —v).

Lemma 3 Let G be a graph and v any node of G. Then there exists a maximum independent
set either containing v or at least two of its neighbors N (v).

Exercise 1 Prove Lemmas 1, 2, and 3.

We will use the following folding operation, which is a special case of the struction oper-
ation defined in [6], and which was introduced in the context of exact algorithm for MIS in

[1, 3]. A node v is foldable if N(v) = {u1,uz,...,u4y)} contains no anti-triangle®. Folding a
given foldable node v of G is the process of transforming G into a new graph G, by:
(1) adding a new node u;; for each anti-edge w;u; in N(v);

2

—

)

) adding edges between each u;; and the nodes in N(u;) U N(uj) \ N[v];
(3) adding one edge between each pair of new nodes;

)

(4) removing Nv].

Note that nodes of degree at most two are always foldable. Examples of folding are given in
Figure 1. The following simple property holds.

2An anti-triangle is a triple of nodes which are pairwise not adjacent. Similarly, an anti-edge is a pair of
non-adjacent nodes.



Figure 1 Examples of folding.
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Lemma 4 Consider a graph G, and let G, be the graph obtained by folding a foldable node
v. Then

a(G) =1+ a(Gy).
Exercise 2 Prove Lemma 4. Hint: use Lemma 3

We eventually introduce the following useful notion of mirror defined in [11, 13]. Given
a node v, a mirror of v is a node u € N2(v) such that N(v) \ N(u) is a (possibly empty)
clique. We denote by M (v) the set of mirrors of v. Examples of mirrors are given in Figure 2.
Intuitively, when we discard a node v, we can discard its mirrors as well without modifying

Figure 2 Example of mirrors: u is a mirror of v.

P G T g

the maximum independent set size. This intuition is formalized in the following lemma.

Lemma 5 For any graph G and for any node v of G,
a(G) = max{a(G —v— M()),1 +a(G — Nv])}.

Exercise 3 Prove Lemma 5. Hint: use Lemma 3

3 A Simple MIS Algorithm

In this section we describe a toy algorithm mis for MIS, and show that its running time is
07*(1.33"™) via a standard analysis. Algorithm mis is described in Figure 3. When the graph
is empty (base case) the algorithm simply returns 0. Otherwise it applies, when possible, the
Folding Lemma 4 to a node v of degree at most 2, considering nodes of smaller degree first
in case of ties:

nis(G) = 1+ nis(Gy).

As a last choice, the algorithm greedily takes a node v of maximum degree, and branches by
either discarding v or selecting v (and discarding its neighbors)

nis(G) = maz{mis(G —v),1 +mis(G — N[v])}.

Theorem 1 Algorithm mis solves MIS in O*(1.33") time.



Figure 3 Algorithm mis for the maximum independent set problem.

int mis(G) {
if (G = 0) return 0; //Base case
//Folding
Take v of minimum degree
if (d(v) <2) return 1 + mis(G,);
// “Greedy” branching
Take v of maximum degree;
return max{ mis(G —v), 1 + mis(G — N[v]) };

Proof. Let P(n) be the number of base instances generated by the algorithm to solve
an instance of size n. The depth of the recursion is O(n) since in each step the number of
nodes decreases at least by one. Moreover, the algorithm takes polynomial time, excluding
the time needed for the recursive calls. It follows that the running time of the algorithm is
O(P(n)n°M) = O0*(P(n)).

We next show by induction that P(n) < A" for A < 1.33. In the base case n = 0 and
P(0) = 1 < X0 for every A > 0. When the algorithm folds a node, the number of nodes
decreases at least by one. Hence, for every A\ > 1,

P(n) < Pn—1) <Xl <am

When the algorithm branches at a node v with d(v) > 4, in one subproblem it removes 1
node (i.e. v), and in the other it removes 1 + d(v) > 5 nodes (i.e. N[v]). Let A\; =bf(1,5) =
1.32... < 1.33 be the positive root of 1 — 2=t — 275 For A > \; we obtain

P(n) < Pn—1)+Pn—5) < XL An78 < \m,

Otherwise, the algorithm branches at a node v of degree exactly 3, hence removing either
1 or 4 nodes. However, in the first case a node of degree 2 is folded afterwards, with the
removal of at least 2 more nodes. Let Aa = bf(3,4) = 1.22... < 1.23 be the positive root of
1—273 —2=% For A > Ay,

P(n) < P(n—3)+ P(n—4) < \"3 4 Am4 <\,

The claim follows. O

The time bound above is the best one can achieve via a standard analysis. We will see how
a non-standard analysis can provide much better time bounds.

4 A Refined Analysis via Measure & Conquer

The classical approach to improve on mis would be designing refined branching and reduction
rules. In particular, one tries to improve on the tight recurrences. We next show how to get
a much better time bound thanks to a better measure of subproblems size (without changing



Figure 4 Case analysis of folding for m = n>3.

d(u) | d(w) | d(uw) | m/
2 2 2 m
2 >3 | >3 m—-1+1
>3 >3 |>4 |m-2+1

the algorithm!). We will start by introducing in Section 4.1 an alternative, simple, measure.
This measure does not immediately give a better time bound, but it will be a good starting
point to define a really better measure.

4.1 An Alternative Measure

Nodes of degree at most 2 can be removed without branching. Hence they do not really
contribute to the size of the problem. For example, if the maximum degree is 2, then mis
solves the problem in polynomial time! In view of that, let us define the size of the problem
to be number of nodes of degree at least 3.

More formally, let n; denote the number of nodes of degree i, and n>; = Zj>i n;. We
define the size of the problem to be m = n>3 (rather than m = n). We remark that, since
m = n>3 < n, if we prove a running time bound of type O*(A\), we immediately get a O*(A"™)
time bound.

Let us give an alternative proof of Theorem 1.

Proof. (Theorem 1) Let us define G a base instance if the maximum degree in G is 2
(which implies m = n>3 = 0). Let moreover P(m) be the number of base instances generated
by the algorithm to solve an instance of size m. By the usual argument the running time is
O*(P(m)). We prove by induction that P(m) < A™ for A < 1.33, which implies the claim
being m < n. In the base case m = 0. Thus

P0)=1< ).

Let m’ be the size of the problem after folding a node v. It is sufficient to show that m’ < m,
from which
P(m) < P(m/) <A™ <A™

for A > 1. This condition trivially holds when folding only removes nodes. In the remaining
case, N(v) = {u,w} with uw ¢ E. In this case we remove {v,u,w} and add a node uw with
d(uw) < d(u) + d(w) — 2. By case analysis (see Figure 4) m’ < m also in this case.

Suppose now that we branch at a node v with d(v) > 4. Note that all the nodes of the
graph have degree > 3 (since we do not fold). Hence by the standard argument

P(m) < P(m —1) + P(m —5) < AL 4 Am=5 <™,

Recall that the inequality above is satisfied for A > 1.33.

Eventually, consider branching at v, d(v) = 3. In this case we remove either 1 or 4 nodes
of degree 3. However, in the first case the degree of the 3 neighbors of v drops from 3 to 2,
with a consequent further reduction of the size by 3:

P(m) < P(m —4) + P(m — 4) < X4 ym=t <\,



The inequality above is satisfied for A > bf(4,4) = 1.18.... The claim follows. O

4.2 A Better Measure

When we branch at a node of large degree, we decrement by 1 the degree of many other
nodes. This is beneficial on long term, since we can remove nodes of degree at most 2 without
branching. We are not exploiting this fact to its full extent in the current analysis.

An idea is then to attribute a larger weight w; < 1 to nodes v of larger degree i, and
let the size of the problem be the sum of node sizes. This way, when the degree of a node
decreases, the size of the problem decreases as well. More formally, for a constant w € (0, 1]
to be fixed later, we let

0 ifi<2;
w;=qw ifi=3;
1 otherwise.

We also use w(v) for wy(,). The size m = m(G) of graph G = (V, E) is

m= Zw(v) =w- N3+ n>4.
veV

Thanks to this new measure of subproblems size, we are able to refine the analysis of mis.
Theorem 2 Algorithm mis solves MIS in O*(1.29") time.

Proof. With the usual notation, let us show that P(m) < A™ for A < 1.29. In the base
case m = 0, and thus
P(0)=1< ).

In case of folding of node v, let m’ = m(G,) be the size of the corresponding subproblem.
Also in this case it is sufficient to show that m’ < m. This condition is satisfied when nodes
are only removed (being the weight increasing with the degree). The unique remaining case
is N(v) = {u,w}, with v and w not adjacent. In this case we remove {v,u,w}, and add a
node uw with d(uw) < d(u) + d(w) — 2. Hence it is sufficient to show that

w(v) + w(u) + ww) — wluw) = w(u) + w(w) — w(uw) > 0.

By a simple case analysis (see Figure 5), it follows that this condition holds for w > 0.5.
Consider now the case of branching at a node v, d(v) > 5. Let d; be the degree of the ith
neighbor of v (which thus has weight wg,). Then

d(v) d(v)
P(m) < P(m — wyy — »_(wa, — wa,—1)) + P(m — wa) — Y wa,)
i=1 i=1
5 5
<P(m—1=3 (wa, —wi1) +Pls =1 wa)-
i=1 i=1

Observe that we can replace d; > 6 with d; = 5. In fact in both cases wg, = 1 and wg, —wg;—1 =
0. Hence we can assume d; € {3,4,5}. This is crucial to obtain a finite number of recurrences!
We obtain the following set of recurrences

P(m) SP(mf 17153(&)70)7&1(170.))7155(17 1))+P(mf 1 7t3w7t47t5),



Figure 5 Case analysis of folding for m = wng + n>4.

d(u) | d(w) | d(uw) | w(u) + w(w) — w(uw) >0
2 2 2 0+0-0>0
2 3 3 O+w—-—w>0
2 >4 | >4 |041-1>0
3 3 4 w+w—12>20
3 >4 | >4 w+1-12>0
>4 | >4 | >4 1+1-1>0

where t3, t4, and t5 are non-negative integers satisfying ts + t4 + t5 =

number of neighbors of v of degree

Consider now branching at a node v, d(v) = 4. By a similar argument (with d; € {3,4}),

).

5. (Intuitively, ¢; is the

we obtain
Pm—-1-4-w-0-1-w)+Pm—-1—-4-w—-0-1)
Pm—-1-3-w—1-1-w)+Pm—-1-3-w—1-1)
Pm)<{Pm-1-2-w—-2-1-w)+Pm—-1-2-w—2-1)
Pm-1-1-w-3-1-w)+Pm—-1-1-w—-3-1)
Pm-1-0-w—4-1-w)+Pm—-1-0-w—4-1)

Consider eventually branching at a node v, d(v) = 3. By an analogous argument (with
w(v) =w3 =w and d; = 3)

P(m) < P(m—w—3w)+P(m—w—3w).

For every w € [1/2,1], the set of recurrences above provides an upper bound A(w) on
A. Our goal is minimizing A(w) (hence getting a better time bound). Via exhaustive search
over a grid of values for w we obtained A(0.7) < 1.29 (see Appendix B for a C++ program
computing it). The claim follows. O

4.3 An Even Better Measure

We can extend the analysis from previous section to larger degrees. For example, we might
let the weight w; associated to degree-i nodes be:

if 1 = 4;

Here w and w’ are two proper constants, with 0 < w < ' < 1. Using this measure, and an
analysis similar to the one from previous section, it is not hard to prove the following result
(see Appendix C for a C++ program optimizing the weights).



Theorem 3 Algorithm mis solves MIS in O*(1.26™) time.
Exercise 4 Prove the theorem above. Hint: w = 0.750 and w’ = 0.951.

Exercise 5 What happens if we set ws = " for a further weight w' < w” <12 Do you see
any pattern?

Exercise 6 Design a better algorithm for MIS, possibly using the other mentioned reduc-
tion rules (mirroring etc.). Analyze this algorithm in the standard way and via Measure &
Conquer.

Exercise 7 Can you see an alternative, promising measure for MIS?

5 Lower bounds

Despite the big improvements in the running time bounds, it might be that our refined analysis
is still far from being tight. Hence, it is natural to ask for (exponential) lower bounds. Notice
that we are concerned with lower bounds on the complexity of a particular algorithm, and
not with lower bounds on the complexity of an algorithmic problem. A lower bound may give
an idea of how far the analysis is from being tight.

In this section we prove a Q(Z”/4) lower bound on the running time of mis. The large
gap between the upper and lower bound for mis suggests the possibility that the analysis of
that algorithm can be further refined (possibly by measuring the size of the subproblems in
a further refined way).

Theorem 4 The running time of mis is Q(2"/4) = Q(1.18").

Proof. Consider the graph Gy consisting of k = n/4 copies of a 4-clique (see Figure 6).
We let P(k) be the number of subproblems generated by mis to solve MIS on Gj. Consider
any clique C = {a,b,¢,d} € Gi. The algorithm might branch at a. In the subproblem where
a is discarded, the algorithm removes b, ¢, and d via folding. In the other subproblem the
algorithm removes Na] = {a, b, ¢,d}. Hence in both cases C is deleted from the graph, leaving
an instance Gk_1 which is solved recursively. We thus obtain the following recurrences:

— H > .
P > 2P(k — 1) ith > 1,
1 if k= 0.

We can conclude that P(k) > 2k = 27/4, O

Exercise 8 Find a larger lower bound on the running time of mis. Hint: Q(3"/6) = Q(1.207),
maybe better.

Exercise 9 Consider the variant of mis where the algorithm, after the base case, branches
on connected components when possible. Can you find a good lower bound on the running

time of this modified algorithm?

Remark 1 Typically finding lower bounds on connected graphs is much more complicated.



Figure 6 Example of the lower bound graph Gy for k = 3.

6 Quasiconvex Analysis of Backtracking Algorithms

When the number of distinct weights grows, there is a computational problem which one has
to face. In fact, both the number of recurrences and the space of candidate weights tend to
grow exponentially in the number of weights. Of course the best weights need to be computed
only once, and this computation has no impact on the actual behavior of the algorithm. Still,
this can be a problem during the design of the algorithm, when having a quick feedback is
important. In this section we outline a general way to cope with the optimization of the
weights (for a given set of recurrences), described by Eppstein [8].

6.1 Multivariate Recurrences

Consider a collection of integral measures my, ..., mq, describing different aspects of the
size of the problem considered. For example, in the analysis of mis in Section 4.2 we used
mp = n3 and me = n>4. Let P(my,...,my) be the number of base instances generated
by the algorithm to solve a problem with measures my,...,mg. Consider a given branching
step b, and let 63 ; be the decrease of the ith measure of the jth subproblem. The following
multivariate recurrence holds

P(my,...,mgq) < P(my *511),17~~-7md*53,1)+~-

+ P(m1 =) s ma = 05 jry)

Remark 2 Some of the 62]. s might be negative. For example, when we delete one edge
incident to a node of degree 4, n>4 decreases but nz grows.

Solving multivariate recurrences is typically rather complicated. A common alternative is
turning them into univariate recurrences by considering a linear combination of the measures
(aggregated measure)

m(w) =wimy+ ...+ wgmg

Here w = (wy,...,wy) plays a role analogous to the weights w; in the analysis of mis. In
particular, in Section 4.2 we set w; = w € (0,1] and wy = 1.

The weights w; are in general rational, possibly negative, numbers. However, they need to
satisfy the constraint 5? =D, w; 55-’7 ; > 0 for every branching b and corresponding subproblem
j. In words, the aggregated measure m(w) decreases in each subproblem®. For example, in
the analysis of mis, this condition is satisfied for every w € [0.5,1].

3In the degenerate case h(b) = 1 (a unique subproblem), & = 6%7,1 > 0 is allowed (provided that the
branching depth can be bounded in an alternative way).
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Figure 7 Example of quasiconvex function, with a corresponding convex level set.

fﬁu xT

The resulting set of univariate recurrences can be solved in the standard way (for fixed
weights). In particular, for each branching b, we compute the (unique) positive root A?(w) of

function
h(b)

fb(x7 ’LU) =1 Z €T Z?:l wi(st .
j=1
This gives a running time bound of the kind O*()\(w)zz“’i ™mi) where \(w) := maxb{)\b(w)}.

6.2 Quasiconvexity

Function A(w) has a very special property, which simplifies considerably its minimization.
We recall that a function f: D — R, with D C R? convex, is quasiconvez if its level set

fse .= {reD: f(z) <a}

is convex for any a € R. An example of quasiconvex (but not convex) function is given in
Figure 7.

Theorem 5 Function \(w) is quasiconvex over R?.

Proof. The maximum over a finite number of quasiconvex functions is quasiconvex. Hence
it is sufficient to show that each A’(w) is quasiconvex. Recall that A’(w) is the unique

positive root of fo(z,w) = 1 — > Ziwidl;  Define ¢ (z,w) = > 2~ 2% From the
monotonicity of f°(x,w)

ASt = Ly e RY: P2, w) > 0} = {w € RY: gb(a,w) < 1} = DSt

Function gb is the sum of convex functions, and hence is convex. Then trivially its level sets,
including ¢”<!, are convex. O

Corollary 1 Function A(w) is quasiconvez over any convex D C R,

Proof. It follows from the proof of Theorem 5, and the fact that the intersection of convex
sets is convex. O

11



6.3 Applications to Measure & Conquer

We can use Theorem 5 to optimize the weights in a much faster way with respect to exhaustive
grid search. Suppose we define a set of linear constraints on the weights such that:

(a) the size of each subproblem does not increase;

(b) m(w) < n, where n is a standard measure for the problem.

This gives a convex domain of weights w. On that domain we can compute the minimum
value A\() of the quasiconvex function A(w). The resulting running time is O*(A(w)™).

There are known techniques to find efficiently the minimum of a quasi-convex function (see
e.g. [8]). We successfully applied [12, 13, 14] the following, very fast and easy to implement,
approach based on randomized local search (in simulated annealing style):

e We start from any feasible initial value w;
e We add to w a random vector Aw in a given range [-A, A];
e If the resulting w' is feasible and gives A(w') < A(w), we set w = w';

o We iterate the process, reducing the value of A if no improvement is achieved for a large
number of steps;

e The process halts when A drops below a given value A’.

Appendix D contains a C++ program applying this method to the optimization of the weights
in the analysis of Section 4.3.

Remark 3 The local search algorithm above does not guarantee closeness to the optimal
A(w). Howewver it is accurate in practice. More important, it always provides feasible upper
bounds on the running time.

7 Other Examples of Measure & Conquer

In this section we briefly describe other (more or less explicit) applications of the Measure &
Conquer approach.

The first non-trivial algorithm for the minimum dominating set problem (MDS) is based
on Measure & Congquer [17, 18]2. The basic idea is developing an algorithm for the minimum
set cover problem (MSC). This algorithm is analyzed by measuring the size of the subproblems
in terms of the sum of the number n of sets and number m of elements. The resulting running
time is O*(1.381"7™). The size of the MSC formulation of a MDS instance on n nodes is 2n.
It follows that MDS can be solved in O*(1.381%") = O*(1.803") time. The same algorithm
is re-analyzed in [10, 13|, using a refined measure which assigns different weights to sets of
different size and elements of different frequency. This way the time bound is refined to
0*(1.527™), an impressive improvement.

A similar, but more complex measure is used in [12] to develop the first better-than-trivial
algorithm for the connected version of MDS, where the dominating set is required to induce a
connected graph. Here, besides cardinalities and frequencies, the measure takes into account
the local connectivity properties of the original graph.

“In the same year, slower but better-than-trivial algorithms for MDS were independently developed in
(15, 22).
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In a paper on 3-coloring and related problems [2], Beigel and Eppstein consider a reduction
to constraint satisfaction, and measure the size of the constraint satisfaction problem with
a linear combination of the number of variables with three and four values in their domain,
respectively. A more sophisticated measure is introduced by Eppstein in the context of cubic-
TSP [7]: let F be a given set of forced edges, that is edges that we assume belonging to the
optimum solution. For an input cubic graph G = (V, E), the author measures the size of
the problem in terms of |V| — |F| — |C|, where C' is the set of 4-cycles which form connected
components of G — F.

Gupta et al. [19] used Measure & Conquer while analyzing exact algorithms for finding
maximal induced subgraphs of fixed node degree. Razgon [23], using a non-standard measure,
derived the first non-trivial algorithm breaking the O*(2") barrier for the feedback vertex set
problem (see also [9]). Kowalik [20] used Measure & Conquer in his branching algorithm for
the edge coloring problem. The analysis of Gasper-Liedloff’s algorithm for the independent
dominating set problem in [16] is based on Measure & Conquer. Another example is the
paper by Kratsch and Liedloff on the minimum dominating clique problem [21]. We are also
aware of a number of other (still unpublished) papers using the same kind of approach.

Measure & Conquer can be used also as a tool to prove tighter combinatorial bounds.
For example, using this kind of approach and the same measure which is mentioned above
for MDS, Fomin et al. [14] proved that the number of minimal dominating sets in a graph
is O*(1.721™). Based on this result, they also derived the first non-trivial exact algorithms
for the domatic number problem and for the minimum-weight dominating set problem. The
bounds on the number of minimal feedback vertex sets (or maximal induced forests) obtained
in [9] are also based on Measure & Conquer.

Of course, a non-standard measure can be used to design better algorithms in the standard
way: one considers the tight recurrences for a given algorithm (and measure), and tries to
design better branching and reduction rules for the corresponding cases. A very recent work
by van Rooij and Bodlaender goes in this direction [24].
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Appendix A

#include <cstdlib>
#include <iostream>
#include <stdlib.h>
#include <math.h>

#include <stdio .h>

#define PRECISION 40
#define MAXN 100

using namespace std;

/x

branchFactor () receives in input a branching vector

It returns the corresponding branching factor 7bf”

This is done via doubling + binary search. The desired value satisfies
I—sum_{j=0} {n—1}bf " (=V[i])=0

The binary search is anyway interrupted when the wvalue is accurate enough
*

/

double branchFactor (int n, doublex V){

double left =0.0;
double right=1.0;
double f;
//we compute an upper bound right on the branching factor wvia doubling
do{

right = right %2;

f=1.0;

for (int j=0; j<n; j++) {

f —= pow(right , =V[j]);

}while (f <=0);
//we compute the branching factor wvia binary search
double bf;
for (int i=0; i<PRECISION; i++) {
bf = (left+right)/2.0;
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f=1.0;
for (int j=0; j<n; j++) {
f —= pow(bf, —V[j]);

if (f==0) return bf;
if (£>0) right = bf;
else left = bf;

return right;//this way we return an upper bound

}

int main() {

int n;
double V[MAXN];
double d;

while (1) {
cout << endl << "#.of_branchings:”;
cin >> n;
if (n<=0 || n>MAXN) exit (1);

for (int i=0; i<n; i++) {
cout << "delta(” << i << 7):7;
cin >> d;
if (d<0) exit(1);
Vii]=d;
}

double bf = branchFactor(n, V);
printf (?bf=%.8f_.(%.8f)\n”, bf, log(bf)/log(2));
}

return 0;

}

Appendix B

#include <stdlib.h>

using namespace std;
double branchFactor (int n, doublex V){

}
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/x

lambda is the wvalue of the branching factor for given (feasible) weights.
7stampa” is used to print or not some details

*/

double computeLambda(double a, int stampa) {

double V[10]; //we assume that we branch on at most 10 subproblem , which is the c
double lambda, lambda_max= —1;

//We don’t need to consider the base case and folding

//Branch at degree >=5
//n3 and n4 are the neighbors of degree 3 and /J
//nd are the neighbors of degree at least 5
for (int n3=0; n3<=5; n3++){
for (int n4=0; nd<=5-n3; nd++){
int n5 = 5—n3-n4;
V[0]=14n3*a+nd*(1—a)+n5x0;
V[1]=1+n3*a+nd*1+n5x*1;
lambda = branchFactor (2, V);
if (stampa) printf(”branchoat.5:  1+%d*at%d«(1—a)+%d+0/1+%d* a+%d+14+%d*1=%.811 \
lambda_max = MAX(lambda_max, lambda);
}
}

//Branch at degree 4
for (int n3=0; n3<=4; n3++){
int n4d = 4-n3;
V[0]=1+n3xat+nd*(1—a);
V[1]=1+n3xa+nd1;
lambda = branchFactor (2, V);
if (stampa) printf(”branchoat.4:_1+%d*a+%d*(1—a)/14+%d*a+%d*1=%.81f\n” , n3, nd,
lambda_max = MAX(lambda_max, lambda);

//Branch at degree 3

V[0]=4xa;

V([l]=4xa;

lambda = branchFactor (2, V);

if (stampa) printf(”branch.at.3:.4a/4a=%.81f\n", lambda);
lambda_max = MAX(lambda_max, lambda);

if (stampa) printf(”\nlambda_max(a=%.81f)=%.81f\n”, a, lambda_max);

return lambda_max;

17



//Here we put the constraints on the weights: in our case a\in [0.5,1.0]
bool feasible (double a){

if (a>=0.5 & a<=1.0) return true;

else return false;

}

int main() {

double lambdamin = 1000;
double amin = 1000;

//we search for the best a in a grid with offset 1/grid
int grid=100;
for (int i=1; i<=grid; i++){
double a=(double)i/grid;
if (feasible(a)){
double lambda = computeLambda(a,0);
printf (”lambda (a=%1f)=%.81f\n”, a, lambda);
if (lambda < lambdamin){
lambdamin = lambda;
amin = a;
}
}

printf (”\n\nBEST_BOUND\n" );
computeLambda (amin ,1);
//  printf(”\nlambdamin (amin=%1f)=%.81f\n”, amin, lambdamin );

system ("PAUSE” ) ;
return 0;

Appendix C

#include <stdlib.h>

using namespace std;
double branchFactor (int n, doublex V){

}

1R



lambda is the wvalue of the branching factor for given (feasible) weights.
7stampa” is used to print or not some details

*

double computeLambda(double a3, double a4, int stampa) {

double V[10]; //we assume that we branch on at most 10 subproblem , which is the c
double lambda, lambda_max= —1;

//We don’t need to consider the base case and folding

//Branch at degree >=06
//Here n6 are the neighbors of degree at least 6
for (int n3=0; n3<=6; n3++){
for (int n4=0; nd<=6-n3; nd++){
for (int n5=0; n5<=6-n3-n4; n5++){
int n6 = 6—n3-n4-nj;
V[0]=1+n3*a3+n4*(ad—a3)+nd*(1—ad)+n6x*0;
V[1]=14+n3*a3+nd*ad4ndxl+n6=1;
lambda = branchFactor (2, V);
if (stampa) printf(”branch.at.6: 1+%d*a3+%d*(ad—a3)+%d*(1—ad)+%d+0/1+%d* a3+
n3, n4, n5, n6, n3, nd, nb, n6, lambda);
lambda_max = MAX(lambda_max, lambda);
}
}
}

//Branch at degree 5
for (int n3=0; n3<=5; n3++){
for (int n4=0; nd4<=5-n3; nd++){
int n5 = 5—n3-—n4;
V[0]=1+n3*a3+n4«(a4—a3)+ndx(1—ad);
V[l]=1+n3*a34+nd+ad4nd*1;
lambda = branchFactor (2, V);
if (stampa) printf(”branch.oat.5: 1+%d*a3+%d*(ad—a3)+%d*(1—a4)/14+%d *a3+%d*ad+%
n3, n4, n5, n3, n4, nb5, lambda);
lambda_max = MAX(lambda_max, lambda);
}
}

//Branch at degree 4
for (int n3=0; n3<=4; n3++){
int n4d = 4-n3;
V[0]=ad+n3xa3+nd*(ad—a3);
V[1l]=ad44n3*a34nd*ad;
lambda = branchFactor (2, V);
if (stampa) printf(”branch_at.4:.ad+%dxa3+%d*(ad—a3d)/adt%d*ad3+%d*ad=%.81f\n" ,
n3, n4, n3, n4, lambda);
lambda_max = MAX(lambda_max, lambda);

}

//Branch at degree 3
int n3 = 3;

10



V[0]=a34n3xa3;
V[1]=a3+4n3xa3;
lambda = branchFactor (2, V);

if (stampa) printf(”branch_at_3:_a3+%d+a3/a3+%d*a3=%.81f\n",

n3, n3,lambda);
lambda_max = MAX(lambda_max, lambda);

if (stampa) printf(”\nlambda.max(a3=%.81f ,a4=%.811)=%.81f\n”, a3, a4, lambda.max)

return lambda_max;

//Here we put the constraints on the weights
bool feasible (double a3, double a4){

if (ad<=1 && a3<=ad && a3>0 && 2xa3>=ad & 2xad>=1 && ad4>=1-a3) return true;

else return false;

}

int main() {

double lambda_min = 1000;
double a3min = 1000;
double ad4min = 1000;

//we search for the best a in a grid with offset 1/grid

int grid=100;
for (int i=1; i<=grid; i++){
for (int j=1; j<=grid; j++){
double a3=(double)i/grid;
double a4=(double)j/grid;
if(feasible (a3,a4)){

double lambda = computeLambda(a3,a4,0);
printf (”lambda (a3=%1f ,a4=%1f)=%.81f\n" ,

if (lambda < lambda_min){

lambda_min = lambda;
a3min = a3;
admin = a4;
}
}
}

}
printf (”\n\nBEST_BOUND\n" );
computeLambda(a3min, admin ,1);

system ("PAUSE” ) ;
return 0;

9N

a3, a4, lambda);



Appendix D

#include <stdlib.h>
using namespace std;

double branchFactor (int n, doublex V){

}

double uniform (double left , double right) {
return left + (right—left )« ((double)rand())/RANDMAX;
}

double computeLambda(double a3, double a4, int stampa) {

}

bool feasible (double a3, double a4){

}

int main() {

double lambda_min;
double a3min;
double admin;

//compute an initial random solution
do{
a3min = uniform (0.0,1.0);
a4min = uniform (0.0,1.0);
}while (! feasible (a3min, admin));
lambda_min = computeLambda(a3min,ad4min,0);
printf (”lambda (a3=%lf ,a4=%1f)=%.81f\n” , a3min, ad4min, lambda_min);

double deltamin = 0.0001; //final step
double delta = 0.01; //initial step

int counter = 0; //measures for how long we don’t make any progress
do{

double a3rand = a3min + deltasxuniform (—1.0,1.0);

double ad4rand = a4min + deltasuniform(—1.0,1.0);

counter++; //a new proposal is generated
if (feasible (a3rand,adrand)) {
double lambda_rand = computeLambda(a3rand ,adrand ,0);
if (lambda_rand < lambda_min) {
counter = 0;
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lambda_min = lambda_rand;

admin = a3rand;

a4dmin = adrand;

printf (”lambda (a3=%lf ,ad=%1f)=%.81f\n” , a3min, admin, lambda_min);

if (counter >= 1000){
counter = 0;
delta = delta /2.0;
printf (”\ndelta=%.10f\n\n” , delta);

}while(delta >= deltamin);

printf (”\n\nBEST_.BOUND\n” );

computeLambda(a3min, admin,1);

system ("PAUSE” ) ;
return 0;

DD]
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This document attempts to survey techniques that appear in exact,
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spective over previous surveys, and to form an opinion of the flexibility
of Levitin’s framework. I have made no attempt to be comprehensive.
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Brute force

A brute force algorithm simply evaluates the definition, typically lead-
ing to exponential running times.

TSP. For a first example, given a weighted graph like

TN

G= /' /43;\2

55 N2 s

——7

5

with n vertices V = {vy,...,v,} (sometimes called “cities”) the traveling salesman
problem is to find a shortest Hamiltonian path from the first to the last city, i.e., a
path that starts at s = vy, ends at t = v, includes every other vertex exactly once,
and travels along edges whose total weight is minimal. Formally, we want to find

n—1
min Y w(n(i), n(i+1)),

i=1
where the sum is over all permutations 7w of {1,2,...,n} that fix 1 and n. When the
weights are uniformly 1, the problem reduces to deciding if a Hamiltonian path at
all.

This above expression can be evaluated within a polynomial factor of n! op-
erations. In fact, because of certain symmetries it suffices to examine (n — 2)! per-
mutations, and each of these requires take O(n) products and sums. On the other
hand, it’s not trivial to iterate over precise these permutations in time O((n — 2)!).
We will normally want to avoid these considerations, since they only contribute
a polynomial factor, and write somewhat imprecisely O*(n!), where O*(f(n))
means O(n°f(n)) for some constant c.

Independent set. A subset of vertices U C V in an n-vertex graph G = (V,E)
is independent if no edge from E has both its enpoints in U. Such a set can be found
by considering all subsets (and checking independence of each), in time O*(2").

3-Satisfiability. A Boolean formula ¢ on variables x1, ..., x, is on 3-conjunctive
normal form if it conists of a conjunction of m clauses, each of the form (a VbV c),
where each of the literals a, b, c is a single variable or the negation of a single vari-
able. The satisfiability problem for this class of formulas is to decide if ¢ admits a
satisfying assignment. This can be decided by considering all assignments, in time
O*(2"). (Note that m can be assumed to be polynomial in 7, otherwise ¢ would
include duplicate clauses.)
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FIGURE 1. A bipartite graph and 2 of its 3 perfect matchings.

Perfect matchings. A perfect matching in a graph G = (V, E) is an edge subset
M C E that includes every vertex as an endpoint exactly once; in other words

M| =3lv] UM=V.

In fact, famously, a matching can be found in polynomial time, so we are inter-
ested in the counting version of this problem: how many perfect matchings does
G admit? From the definition, this still takes O* (2") time.

We will look at this problem for bipartite graphs as well as for general graphs.

These are all difficult problems, typically hard for NP or # P, so we cannot
expect to devise algorithms that run in polynomial time. Instead, we will improve
the exponential running time. For example, for some problems we will find vertex-
exponential time algorithms, i.e., algorithms with running time exp(O(#)) instead
of exp(O(m)) or O*(n!) O*(n"). Other algorithms will improve the base of the
exponent, for example from O*(2") to O(1.732").



Greedy

A greedy algorithm does “the obvious thing” for a given ordering, the
hard part is figuring out which ordering. A canonical example is
interval scheduling.

In exponential time, we can consider all orderings. This leads to
running times around n! and is seldom better than brute force, so this
class of algorithms does not seem to play a role in exponential time
algorithmics. An important exception is given as an exercise.



Recursion

Recurrences express the solution to the problem in terms of solutions of
subproblems. Recursive algorithms compute the solution by applying
the recurrence until the problem instance is trivial.

1. Decrease and conquer

Decrease and conquer reduces the instance size by a constant, or a
constant factor. Canonical examples include binary search in a sorted
list, graph traversal, or Euclid’s algorithm.

In exponential time, we produce several smaller instances (instead
of just one), which we can use this to exhaust the search space. Maybe
“exhaustive decrease and conquer” is a good name for this variant—
this way, the technique becomes an umbrella of exhaustive search tech-
niques such as branch-and-bound.

3-Satisfiability. An instance to 3-Satisfiability includes at least one clause with
3 literals. (Otherwise it’s an instance of 2-Satisfiability, which can be solved in
polynomial time.) Pick such a clause and construct three new instances:

Tx*: set the first literal to true,
FTx: set the first literal to false and the second to true,
FFT: set the first two literals to false and the third to true,

These three possibilites are disjoint and exhaust the satisfying assignments. (In
particular, FFF is not a satisfying assignment.)

problem P, size n

Q,size<n

Solution to Q T T T

FIGURE 1. Decrease and conquer with one (left) and many (right) subproblems.

o
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Each of these assignments resolves the clause under consideration, and maybe
more, so some cleanup is required. In any case, the number of free variables is
decreased by at least 1, 2, or 3, respectively. We can recurse on the three resulting
three instances, so the running time satisfies

Tn)=Tn—1)+Tn—2)+T(n—3)+0(m+m).

The solution to this recurrence is O(1.8393"). (The analysis of this type of algo-
rithm is one of the most actively researched topics in exact exponential-time algo-
rithmics and very rich.)

Independent set. Let v be a vertex of with at least three neighbours. (If no
such vertex exists, the independent set problem is easy.) Construct two new in-
stances to independent set:

G[V —v]: the input graph with v removed. If I Z v is an independent set in
G then it is also an independent set in G[V — v].
G[V — N(v)]: the input graph with v and its neighbours removed. If I > v
is an independent set in G, then none of v’s neighbours belong to I, so
that I — {v} is an independent set in G[V — N(v)].
These two possibilities are disjoint and exhaust the independent sets.

We recurse on the two resulting instances, so the running time is no worse

than
Tn)=Tn—1)+T(n—4)+0(n+m).
The solution to this recurrence is O(1.3803").

TSP. Galvanized by our successes we turn to TSP.

Foreach T C V and v € T, denote by OPT(T,v) the minimum weight of a
path from s to v that consists of exactly the vertices in T. To construct OPT(T, v)
foralls € T C Vand all v € T, the algorithm starts with OPT({s},s) = 0, and
evaluates the recurrence
(1) OPT(T,v) = min OPT(T\ {v},u) +w(u,v) .

ueT\{v}
While this is correct, there is no improvement over brute force: the running time
is given by
T(n)=n-T(n—1)
which solves to O(n!). However, we will revisit this recurrence later.

2. Divide and conquer

The divide and conquer idea partitions the instance into two smaller
instances of roughly half the original size and solves them recursively.
Mergesort is a canonical example.

An essential question is how to partition the instance into smaller
instances. In exponential time, we simply consider all such partitions.
This leads to running times of the form

T(n) = 2"n°WT(1n),

which is O(c"), and the space is polynomial in n. Maybe “exponential
divide and conquer” is a good name for this idea.
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( problem P, size n )

AN

CQ, size n/2 R, size n/Z)
, ,

| Solution to Q | | Solution to R |

Solution to P

FIGURE 2. Divide and conquer with one (left) and an exponential number (right) of
divisions.

problem P, size n

Solution to P

TSP. Let OPT(U, s, t) denote the shortest path from s to ¢ that uses exactly the
vertives in U. Then we have the recurrence
2 OPT(U,s,t) = mslr} OPT(S,s,m) + OPT(T, m,t),
m,

where the minimum is over all subsets S, T C U and vertices m € U such that
SE€ESteT,SUT=USNT={m},and |S| = [Ln|+1,|T|=n—|S|+1.

The divide and conquer solution continues using this recurrence until the sets
U become trivial. At each level of the recursion, the algorithm considers (n —
2)(y¢ nS)Z /21) partitions and recurses on two instances with fewer than i1+ 1cities.
Thus, the running time is

T(n)=(n—2)- <[(nnf_2)2/2]> :2-T(n/2+1),

which solves to O(4"nl°8").

The space required on each recursion level to enumerate all partitionings is
polynomial. Since the recursion depth is polynomial (in fact, logarithmic) in 7, so
the algorithm uses polynomial space.



Transformation

Transformations compute a problem by computing a different problem
in its stead.

1. Moebius inversion

For a function f on subsets define

Then
fX)= Y ()X Wg(v).
YCX
This result is called Moebius inversion, or, in a special case, the principle of inclusion—
exclusion. For a proof see Dr. Kaski’s presentation.

TSP. We'll do Hamiltonian path, because the idea stands cleaner.

For X C V withs,t € X, let g(X) denote the number of walks of length n
from s to t using only vertices from X. (A walk can use the same vertex many
times, or once, or not at all.) Although it is not obvious, g(X) can be computed in
polynomial time for each X C V; the value is given in row s and column f of A",
where A is the adjacency matrix of G[X].

Now, let f(X) denote the number of walks of length n from s to t that use
exactly the vertices from X. In particular, f(V) is the number of Hamiltonian
paths from s to t. By Moebius inversion,

fV)= ¥ (=)I"Vg(x).
YCv
so the number of Hamiltonian paths can be counted in time O*(2") and polyno-
mial space.

To make this work for TSP, we need to handle every total distance separately,
details omitted.

Perfect matchings. For Y C V Let f(Y) denote the number of ways of pick-
ing %n edges using exactly the vertices in Y (all of them); the number of perfect
matchings is then given by f(V). For a moment, let ¢(Y) denote the number of
ways of picking 1n edges using only the vertices in Y (but not necessarily all of
them). Then, by Moebius inversion

fFV)= Y (=n"Vg(y).

Ycv
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Since g(Y) is easy to compute for given Y, we can count the number of perfect
matchings in time O*(2").

For bipartite graphs, we can do slightly better. So, let V. = LUR with |L| =
R| = %n and assume all edges have an endpoint in L and an enpoint in R. Now,
for Y C R (rather than Y C V), let g(Y) denote the number of ways of picking
%n edges using all the vertices in L and some of the vertices in Y, and let f(Y)

denote the number of ways of picking %n edges using all the vertices in L and all
the vertices in Y. Then

fV) = ¥ (-)Ifg(v),
YCR
in particular, the sum has only 2"/2 terms. For each Y C R, the value g(Y) is easy
enough to compute: if vertex v; € L has d; neighbours in R then

gY)=dy--dy.

Thus, the total running time is O*(2""/2) = O(1.732"). See fig. 1 for an example.
In fact, this is a famous results in combinatorics, the Ryser formula for the per-
manent, often expressed in terms of a 01-matrix A of dimension k x k as

k
®3) perA= Y (-D)FMTTY Ay

YC{1,...k} i=1jey

The connection is that A is the upper right quarter of the adjacency matrix of G.

2. Finding triangles
The number of triangles of undirected d-vertex graph T is given by
% tr A3,

where A denotes the adjacency matrix of T and tr, the frace, is the sum of the
diagonal entries. To see this, observe that the ith diagonal entry counts the number
of paths of length 3 from the ith vertex to itself, and each triangle contributes six-
fold to such entries (once for every corner, and once for every direction).

To compute A3 = A- A- A we need two matrix multiplications, which takes
time O(d“), w < 3 (see Dr. Kaski’s presentation).

Independent set. We want to find an independent set of size kin G = (V,E),
and now we assume for simplicity that 3 divides k.

Construct G’ = (V/,E’), where each vertex v € V’ corresponds to an inde-
pendent set in G of size %k. Two vertices are joined by an edge uv € E’ if their
corresponding sets form an independent set of size Zk. The crucial feature is that
a triangle in G’ corresponds to an independent set of size k in G. The graph G’ has
(73) < 1%/3 vertices, so the whole algorithm takes time O* (#“*/3), rather than the
obvious (}).
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FIGURE 1. The input graph has three
perfect matchings, in columns 1, 5, and 12.
The first row shows all 12 = 3 - 2- 2 ways to
map the left vertices to the right. Every row
of the table shows the mappings that avoid
various vertex subsets X, drawn as o. We
omit the rows whose contribution is zero,
like X = {1,2}, X = {2,3} and

X = {1,2,3}. Of particular interest is
column 8, which is subtracted twice and
later added again. The entire calculation is
12—-4-2-4+1+0+0—0,withis
indeed 3.
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Perfect matchings. The next example is somewhat more intricate, and uses
both transformations from this section.

We return to perfect matchings, but now in regular graphs. Let G[n = r;m =
k] denote the number of induced subgraphs of G with r vertices and k edges. For
such a graph, the number of ways to pick %n edges is k"/2, so we can rewrite

fv)y =Y (=1)"\Wg(y) Z S (“1)°Gln = rm = kK2
YCV =1r=2

Thus, we have reduced the problem to computing G[n = r; m = k] for given r and
k, and we’ll now do this faster than in the obvious 2" iterations.
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We are tempted to do the following: Construct a graph T where every vertex
corresponds to a subgraph of G induced by a vertex subset U C V with %r vertices
and %k edges. Two vertices in T are joined by an edge if there are %k edges between
their corresponding vertex subsets. Then we would like to argue that every trian-
gle in T corresponds to an induced subgraph of G with r edges and k edges. This,
of course, doesn’t quite work because (1) the three vertex subsets might overlap
and (2) the edges do not necessarily partition into such six equal-sized families.
Once identified, these problems are easily adressed.

The construction is as follows. Partition the vertices of G into three sets Vj, V1,
and V), of equal size, assuming 3 divides n for readability. Our plan is to build a
large tripartite graph T whose vertices correspond to induced subgraphs of G that
are entirely contained in one the V;.

Some notation: An induced subraph of G has r; vertices in Vj, k; edges with
both endpoints in Vj, and kj, edges between V; and V,. Define 1o, 13, ko , k3,
ko3, and ki3 similarly. We will solve the problem of computing G[n = r;m =
k] separately for each choice of these parameters such that r; +r, +r3 = r and
k1 + ko + k3 + k12 + ko3 + k13 = k. We can crudely bound the number of such new
problems by 13 + mb, i.e., a polynomial in the input size.

The tripartite graph T is now defined as follows: There is a vertex for every
induced subgraph G[U], provided that U is entirely contained in one of the V;, and
contains exactly r; vertices and k; edges. An edge joins the vertices corresponding
tolU; C V;and U; C V;ifi # j and there are exactly k;; edges between U; and Uj;
in G. The graph T has at most 3 - 2"/3 vertices and 3 - 22"/3 edges. Every triangle
in T uniquely corresponds to an induced subgraph G[U; U U U Us] in G with the
parameters described in the previous paragraph.

The total running time is O* (n®*/3) = (1.732").



Iterative improvement

Iterative improvement plays a vital role in efficient algorithms and in-
cludes important ideas such as the augmentating algorithms used to
solve maximum flow and bipartite matching algorithms, the Simplex
method, and local search heuristics. So far, very few of these ideas have
been explored in exponential time algorithmics.

1. Local search

3-Satisfiability. Start with a random assignment to the variables. If all clauses
are satisfied, we're done. Otherwise, pick a falsified clause uniformly at random,
pick one of its literals unformly at random, and negate it. Repeat this local search
step 3n times. After that, start over with a fresh random assignment. This proces
finds a satisfying assignment (if there is one) in time O* ((%)”) with high probabil-
ity.
v The analysis considers the number d of differences between the current as-
signment A and a particular satisfying assignment A* (the Hamming distance).
In the local search steps, the probability that the distance is decreased by 1 is at
least % (namely, when we pick exactly the literal where A and A* differ), and the
probability that the distance is increased by 1 is at most 2. So we can pessimisti-
cally estimate the probability p(d) of reducing the distance to 0 when we start at
distance d (0 < d < n) by standard methods from the analysis of random walks in
probability theory to

pd) =271

(Under the rug one finds an argument that we can safely terminate this random
walk after 3n steps without messing up the analysis too much.)

The probability that a ‘fresh” random assignment has distance d to A* is

(-

so the total probabilty that the algorithm reaches A* from a random assignment is

at least . .
n 1 n 1
3 ()= g 1 ()2 = pas =
2 4
= (d) 2n = \d 2n
Especially, in expectation, we can repeat this proces and arrive at A* or some other

satisfying assignment after (£)" trails.



Time-Space tradeoffs

Time-space tradeoffs avoid redundant computation, typically “recom-
putation,” by storing values in large tables.

1. Dynamic programming over the subsets

Dynamic programming consists of describing the problem (or a more general form
of it) recursively in an expression that involves only few varying parameters, and
then compute the answer for each possible value of these parameters, using a table
to avoid redundant computation. A canonical example is Knapsack.

In exponential time, the dynamic programme can consider all subsets (of ver-
tices, for example). This is, in fact, one of the earliest applications of dynamic
programming, dating back to Bellman'’s original work in the early 1960s.

TSP. We'll solve TSP in O(2"12), a bound that is still the best known. We go
back to the decrease and conquer recurrence

OPT(T,v) = uéx;{?v}OPT(T\ {v},u) +w(u,v) .

The usual dynamic programming trick kicks in: The values OPT(T, v) are stored a
table when they are computed to avoid redundant recomputation, an idea some-
times called memoisation. The space and time requirements are within a polyno-
mial factor of 2", the number of subsets T C V. Figure 2 shows the first few steps.

BRUTE~FORCE DyNAMIC .
SOLUTION: PROGRAMMING SELUNG ON EBAY:
0(nn) ALGORITHMS: (1)
| O (n*2")
STILL WORKING
ON YOUR ROUTE?
AN
~
SHUT THE
HEW UP

FIGURE 1. The dynamic programming algorithm for TSP mentioned in xkcd nr. 399.

13
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FIGURE 2. The first few steps of filling out a table for OPT(T, v) for the example graph.
The starting vertex s is at the top, v is circled, and T consists of the black vertices. At this
stage, the values of OPT(T, v) have been computed for all | T| < 3, and we just computed
the value 9 at the bottom right by inspecting the two underlined cases. The “new” black
vertex has been reached either via a weight 2 edge, for a total weight of 2 + 7, or viaa
weight 1 edge for a total weight of 12 + 1. The optimum value for this subproblem is 9.
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It is instructive to see what happens if we start with the divide and conquer
recurrence instead:

OPT(U, s, t) = min OPT(S, s, m) + OPT(T,m,t);
m,S,
recall that S and T are a balanced vertex partition of U. We build a large table
containing the value of OPT(X, u,v) for all vertex subsets X C V and all pairs of
vertives u, v. This table has size 2”12, and the entry corresponding to a subset
X of size k can be computed by accessing 2 other table entries corresponding to
smaller sets. Thus, the total running time is within a polynomial factor of

ké <Z>2k = (2+1)" =3"

We observe that the benefit from memoisation is smaller compared to the decrease
and conquer recurrence, which spent more time in the recursion (“dividing”) and
less time assembling solutions (“conquering”).

2. Dynamic programming over a tree decomposition

The second major application of dynamic programming is over the tree decompo-
sition of a graph. We don’t cover that here, for lack of time.
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3. Meet in the middle

TSP. If the input graph is 4-regular (i.e., every vertex has exactly 4 neigh-
bours), it makes sense to enumerate the different Hamiltonian paths by making
one of three choices at every vertex, for a total of at most O*(3") paths, instead of
considering the O*(n!) different permutations. Of course, the dynamic program-
ming solution is still faster, but we can do even better using a different time—space
trade-off.

We turn again to the “divide and conquer” recurrence,

OPT(U,s,t) = msir}OPT(S, s,m) +OPT(T,m,t).
m,S,

This time we evaluate it by building a table for all choices of m and T > t with
|T| = n— | 4n]. No recursion is involved, we brutally check all paths from m to
t of length |T|, in time O*(3"/2). After this table is completed we iterate over all
choices of S 5 s with |S] = [%nj 41 the same way, using 3"/2 iterations. For each
S and m we check our dictionary for the entry corresponding tom and V — T.

It is instructive to compare this idea to the dynamic programming approach.
There, we used the recurrence relation at every level. Here, we use it only at the
top. In particular, the meet-in-the-middle idea is qualitatively different from the
concept of using memoisation to save some overlapping recursive invocations.

4. Fast Transforms

— Dr. Kaski

5. Fast Matrix multiplication

— Dr. Kaski



Exercises

An graph can be k-coloured if each vertex can be coloured with one of k differ-
ent colours such that no edge connects vertices of the same colour.

This set of exercises asks you do solve the k-colouring problem in various ways
for a graph with n vertices and m edges
Exercise 1. Using brute force, in time O* (1¥).

Exercise 2. Using a greedy algorithm, in time O*(n!).

Exercise 3. Using decrease-and-conquer, in time in time O*(((1 + +/5)/2)"*™).
Hint: That’s the solution to the “Finonacci” recurrence T(s) = T(s — 1) + T(s — 2).

Exercise 4. Using divide-and-conquer, in time O*(9").
Exercise 5. Using Moebius inversion, in time O*(3"). Hint: {1 (1)2! = (2 + 1)".
Exercise 6. Using dynamic programming over the subsets, in time O*(3").

Exercise 7. Using Yates’s algorithm and Moebius inversion, in time O* (2").
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LINEAR AND BILINEAR TRANSFORMATIONS
FOR MODERATELY EXPONENTIAL ALGORITHMS
(LECTURE NOTES FOR AGAPE 09)

PETTERI KASKI

1. INTRODUCTION

Many basic tasks in algebra can be reduced to the problem of evaluating a set
of linear or bilinear forms over a ring R (for example, over the integers).
In the linear case, the task is to evaluate

n
(1) yi = Z‘lz‘j%‘ for 1 <i<m,
j=1
where the a;; are coefficients in R, and the x; are elements of R given as input.
In the bilinear case, the task is to evaluate

n L
(2) zi = Z Z bijrrjyr for 1 <i<m,
j=1k=1
where the b;;;, are coefficients in R, and the z; and gy, are elements of R given as
input.

Here the coefficients a;; and b;;, are understood to be static (that is, part of
the problem definition) and not part of the formal input. Put otherwise, (1) is
essentially the task of multiplying a given vector with an implicit m x n matrix,
and (2) asks us to evaluate a bilinear product of given two vectors. For example,
taking the average %27:1 x; reduces to (1) with m = 1, and the inner product
Z?:1 xjy; reduces (2) with m =1 and n = s.

Exercise 1. Express the task of multiplying two complex numbers, 1 + x2S and

y1 + Y2, as the task of evaluating a set of two bilinear forms.

Exercise 2. Fxpress the task of multiplying two polynomials of degrees p and q,
respectively, as the task of evaluating a set of p+ q+ 1 bilinear forms.

Exercise 3. Ezxpress the task of multiplying two matrices of sizes p X q¢ and q¢ X r,
respectively, as the task of evaluating a set of p - r bilinear forms.

In this lecture we study algorithms based on “faster-than-obvious” evaluation
strategies for specific linear and bilinear transformations. Our measure of efficiency
in this setting is the number of basic arithmetic operations in the ring R.

Exercise 4. The obvious way to multiply two complex numbers requires four real
multiplications:
(21 + 22S) (Y1 + 129) = 2191 — 222 + (21y2 + Y122)S.

Show that three real multiplications suffice.
1
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In many cases it is possible to view an evaluation strategy as an R-arithmetic
circuit that transforms a given input into the desired output via a circuit of (i)
arithmetic gates (addition, negation, multiplication) and (ii) constant gates taking
values in R. We assume that all arithmetic gates have a fan-in of at most two.

Example 5. A real arithmetic circuit for multiplying two complex numbers with
three multiplications.

Note that multiplication in an arbitrary ring R need not be commutative, in
which case one must explicitly indicate the left and right inputs to a multiplication
gate.

2. TWO EXAMPLES OF FAST EVALUATION

2.1. Yates’s algorithm. The n-dimensional binary hypercube (the n-cube) is the
graph whose vertices are the binary strings s = (s1, s2,...,,) € {0,1}", and any
two vertices are joined by an edge if and only if they differ in exactly one position.

Example 6. The n-cube for n = 4.

Consider the following task. Let & : {0,1}> — R and x : {0,1}" — R be given
as input. We must output the function y : {0,1}" — R, defined by

(3) y &y (H k(ti,si)>x(s) for t € {0,1}"™.

s€{0,1}n “i=1

Observe that (3) in fact asks us to evaluate a set of 2" linear forms, one for each
vertex ¢ of the n-cube. Thus, we are looking at an instance y(t) = Y, a(t, s)z(s) of
(1), where the coefficients a(t, s) = [];_, k(t;, s;) are determined by the auxiliary
input k.

A direct evaluation of (3) takes O(4"n) ring operations.



To arrive at more efficient evaluation, one possibility is to view [T\, k(t;, s;) in
(3) as the “weight” of a “walk” from s to ¢ in the n-cube, where each step s; — t;
contributes the weight k(¢;,s;). In particular, we can view y(t) as the weighted
sum of “messages” x(s) transmitted along walks to t. A direct evaluation of (3)
corresponds to considering each individual walk separately, but it turns out that
the walks can be processed in aggregate using dynamic programming.

Let us make more precise the notion of a “walk” in this context. Let s and ¢ be
any two vertices of the n-cube. The walk from s to ¢ is a sequence of n steps, where
step i = 1,2,...,n consists of the rule s; — t; applied to position .

Example 7. The walk from s = (0,1,1,0) to t = (1,1,0,0) is (0 — 1,1 — 1,1 —
0,0 — 0). The sequence of vertices visited by the walk appears below.

0 (0—~1) 1 1 1 1
1 1 (1—1) 1 1 1
1 1 1 (1—0) 0 0
0 0 0 0 (0—0) 0

Observe that a walk uniquely determines the sequence of vertices it visits.

Exercise 8. Conclude that for any vertex u € {0,1}" there are exactly 2" walks
that are at u after exactly j steps, 0 < j <mn.

The intuition in the following algorithm is that z;(u) contains an aggregate of
the walks that are at u after exactly j steps. In particular, these walks originate

from the vertices (s1,...,8;,ujt1, ..., up) for s1,...,s; € {0,1}.
The algorithm proceeds in n rounds. First, for every s € {0,1}", set
def
(4) 20(s) = z(s).
In round j =1,2,...,n, for every u € {0,1}", set
Zi (U, uy) def
(5) k(u;,0) - zj—1(wr, .. w51, 0,541, - Up)
+h(uj, 1) zjm1(ur, o1, L g, oo ).

Lemma 9. For all j =0,1,...,n and u € {0,1}"™ it holds that

6)  z(ur,..un)= > (ﬁk(ui,si)>x(sl,...,s_i,uj+1,...,un).

51,...,8;€{0,1} Vi=1
Proof. By induction on j. O

Exercise 10. Give a full proof for Lemma 9.

In particular, (3) and (6) imply that z,(¢t) = y(t) for all ¢ € {0,1}". Thus,
Yates’s algorithm given by (4) and (5) evaluates (3) in O(2"n) ring operations.

Observe that we may think of (4) and (5) as a specification of an arithmetic
circuit with inputs for x and outputs for y = z,.

r — (3) ==
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Exercise 11. Draw Yates’s algorithm as an arithmetic circuit when n = 3 and
k(0,0) =1, k(1,0) =1, k(0,1) =0, k(1,1) = 1.

Exercise 12. Let A and B be mxn and px q matrices, respectively. The Kronecker
product A ® B is the mp X nq matriz defined by

(lllB a12B e alnB

N B def ang CLQQB e aan
®B = . . . .

amlB am,QB e amnB

Express (3) as a matriz—vector product, where the matriz is obtained via Kronecker
products. Using this representation, design a recursive version of Yates’s algorithm.

Exercise 13. Ezxtend Yates’s algorithm to evaluate sums of the form

y(t17--47tn) =
mp—1mg—1 my—1
Z Z Z kl(tlaw-7tn>51)k2(t27~~~7tn:52)"'kn(tnysn)z(slaw-75n)
s1=0 s2=0 sp=0

where t; =0,1,...,m; — 1 fori=1,2,...n.

Exercise 14. Consider the one-dimensional discrete Fourier transform for a se-
quence x(0),z(1),...,2z(2" — 1) of length 2™:

= 27 st
y(t):Eexp( — )x(s) fort=0,1,...,2" — 1.

2

s=0
Reduce to the form in the previous exercise.

2.2. Strassen’s algorithm. How many multiplications does it take to multiply
two 2 X 2 matrices? A direct evaluation takes 8 multiplications:

a b e ae+bg a bh
X:{c d}’ Y:{g H XY:{ceidg cj}:idh}'
However, as was discovered by Strassen in 1968, 7 multiplications suffice:
XY:{Q5+Q4*Q2+(16 q1+ g2 }7
43+ qa q1+4s — 43 —qr
where
@ =a(f—h), g5 =(a+d)(e+h),
@=(a+bh, g=(b-d)(g+h),
g3 = (c+d)e, gr=(a—c)le+f),
qgu=d(g—e).
Exercise 15. Ezxpress Strassen’s formula as an arithmetic circuit with three levels

of gates (addition, multiplication, addition).

Now, suppose we want to multiply two n x n matrices, X and Y. Assuming n
is even (if not, insert a row and column of 0s to both matrices), we can partition
X and Y each into four [n/2] x [n/2] submatrices

xeles] velen]



whereby the product XY can be expressed in similarly partitioned form as

AE+ BG AF+ BH
CE+DG CF+DH |°

Déja vu? Indeed, Strassen’s discovery tells us how to compute the matrix product
XY using only 7 multiplications of [n/2] x [n/2] matrices! By recursion, we obtain
that two n X n matrices can be multiplied in

(7) T(n) = 7T([n/2]) + O(n?)

arithmetic operations, that is, T'(n) = O(n'°827) = O(n?*%1). Computing directly
from the definition takes ©(n®) operations.

Can one do better than O(n28!)? Put otherwise, for which exponents o do
there exist algorithms such that one can multiply n x n matrices in time O(n®)?
Obviously a > 2. Let w be the greatest lower bound for such exponents a. We say
that w is the exponent of matriz multiplication. Currently the best upper bound is
w < 2.376 (see §5.3), but many conjecture that w = 2.

XY =

3. TRANSFORMATIONS ON THE SUBSET LATTICE

Let U = {1,2,...,n} and denote by 2V the set of all subsets of U. The basic set
operations (AUB, ANB, A\ B, ...) on 2V induce natural bilinear transformations
on functions f : 2V — R. We study two such transformations, the union product
and the disjoint union product.

3.1. The union product. Let f : 2V — R and g : 2V — R. Define the union
product f Ug:2Y — R by

def
(8) (FUgS)= Y f(A)(B) for SCU,
AUB=S
where the sum is understood to range over all pairs A, B C U such that AUB = S.
Observe that (8) is an instance of (2).
Exercise 16. (fUg)Uh= fU(gUh).

Exercise 17. (fiU faU---U fi)(S) = 3" 4, uapu-uap—s f1(A1) f2(A2) -+ fr(Ar).

Exercise 18. For a given S C U, how many pairs (A, B) are there such that
AUB = S? Given f and g as input, how many arithmetic operations does it take
to compute f U g directly from the definition?

3.2. Moebius inversion. The principle of Moebius inversion states that any finite
partially ordered set (X, <) has a pair of mutually inverse linear transformations,
the zeta transform and the Moebius transform, for manipulating functions f : X —
R. In particular, this applies to (2V,C), and will reduce f U g into a pointwise
product amenable for fast evaluation.

Lemma 19. A finite nonempty set has equally many subsets of even and odd size.

Proof. Let x € U. Partition the subsets of U into pairs by associating S C U \ {z}
with S U {z}. Exactly one set in each pair has even (odd) size. O

Exercise 20. Give an algebraic proof for Lemma 19. Hint: the Binomial Theorem
(x+y)" =2, (a'y"
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Let f:2Y — R. Define the zeta transform f¢: 2V — R by

) FOM) LS f(8) for TCU.
scT
Define the Moebius transform fu:2Y — R by
(10) (F)(T) 3T ()T F(S) for T C U
scT

Observe that both (9) and (10) are examples of (1). Also observe that if we are
working over an abstract ring R, then “1” in (10) refers to the multiplicative identity
element of R.

Exercise 21. Given f as input, how many arithmetic operations does it take to
compute fC directly from the definition?

For a logical proposition P, we use Iverson’s bracket notation [P] as a shorthand
for 1 when P is true, and for 0 when P is false. This notation will be convenient
when simplifying nested sums, such as in the proof of the following lemma.

Lemma 22. The zeta- and Moebius transforms on (2V, C) are mutual inverses.

Proof. We show that f(u = f and leave fu( = f as Exercise 23. Consider an
arbitrary S C U. We have

(FC)(S) = Y (=1)IeHIsI(£¢)(Q) (definition)
QCS
= Z (—1)lQiF1s] Z f(P) (definition)
QCS PCQ

= Z[Q C S](—1)lQIFIs] Z[P C QIf(P) (to brackets)
= Z Q C S|(— ‘Q‘Hsl[P C QJf(P) (expand)
QP
= (- Zf(P Z DIRIP CQIQ C 8] (collect)

‘Sl Z f(p Z |Q‘ [PCQCS] (simplify brackets)

Q
1)\5|Zf(p)[Pgs] Z (_1)|P|+|X\ (X defQ\P)
XCS\P
=(- 1)‘S'Zf DIFIP = 5] (Lemma 19)
= f(S). (simplify sum)

Exercise 23. Show that fu¢ = f.

Exercise 24. What do the matrices associated with { and p look like if we consider
the subsets indexing the rows and columns of the matrices in lexicographic order?
Construct the matrices for small values of n. By looking at the matrices, can you
devise a fast recursion for computing f¢ and fu given f as input?
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Exercise 25. Generalize the zeta transform to functions f : X — R, where X is an
arbitrary finite set equipped with a partial order <. Prove that the zeta transform
on X is invertible. Derive an explicit form for the Moebius transform on your
favourite partially ordered set, say, the set of positive divisors of the integer n,
partially ordered by divisibility.

2 1(9)g(S) for S C U.

Define the pointwise product f-g:2Y — R by (f-g)(S)
Lemma 26. (fUg)¢ = (fC) - (9Q).

Proof. For aT C U, we have

(fUQOT) = > (Fug)(S) (definition)
scT
=3 > (AygB) (definition)
SCT AUB=S

=Y [SCT]> [AUB=S]f(A)g(B) (to brackets)
S A,B

= S ISCTAUB =SIf(A)g(B)  (expand)
S,A,B

f(A)g(B)Y [SCTIAUB=S] (collect)

I
7

A.B s
= f(A)g(B) Z[A UB=S5CT] (simplify brackets)
A.B s
= f(A)g(B)[AUB CT] (simplify sum)
A.B
=Y f(A)g(B)ACT|BCT] (simplify brackets)
AB
=D [ACTIf(A)) [BCTlg(B) (collect)
A B
= f(4) Z g(B) (to sums)
ACT BCT
= (fOT)(gONT) . (definition)

O

By Moebius inversion, we can recover the union product by taking the Moebius
transform on both sides:

(11) fUg=((fO) (g

Again we may think of (11) as a circuit specification:

fUg
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Exercise 27. (fiU faU---U fx)¢ = (f10) - (f20) - ... (fxC)-
Exercise 28. How many operations does it take to directly evaluate the right-hand
side of fUfU---Uf = (fO)*u? What if we only want (fU fU---U f)(U)?
—_—
k terms

3.3. Disjoint union product (subset convolution). Let us consider a variant
of the union product where we require the unions A U B = S to be disjoint, that
is, that AN B = () must also hold.

For brevity, let us write A U B = S as a shorthand for AUB = S and ANB = §.
More generally, let us write Ay UAdsU--UAy,=8for AAUAU--UA, =S8
and A;NA;=0foralll1 <i<j<k.

Define the disjoint union product f U g:2Y = Rby

(12) (FUES)E Y [(A)g(B) for SCU.
AUB=S
The union product is also called the subset convolution because of the “convolution-
like” equivalent form

(fUg)(S) =D f(T)g(S\T).
TCS

Again observe that (12) is an instance of (2).
Exercise 29. (fUg)Uh=fU(gUh).

Exercise 30. (fy U fo U---U fz)(S) = ZAIQAQU‘--UAK:S J1(A1) fa(Az2) -+ fr(A).

Exercise 31. Given f and g as input, how many arithmetic operations does it take

to compute f U g directly using the convolution form?

Let us now reduce f U g via “polynomial extension” to the union product. The
following fact will provide the crux of the argument.

Lemma 32. For A,B,S C U we have AUB = S and AN B = 0 if and only if
AUB =S and |[A|+ |B| =|S|.

Let w be a polynomial indeterminate, and denote by R{*) the associated univari-
ate polynomial ring with coefficients in R. For a polynomial p = 3, a;w' € R,
denote by {w’}p the coefficient of the monomial w’ in p, that is, {w’}p = a;.

Exercise 33. Can we use an R-arithmetic circuit to simulate an R®) -arithmetic
circuit? What if we introduce an R -arithmetic gate {w’} that takes as input
a polynomial and outputs (as a polynomial of degree zero) the coefficient of the
monomial w’ for a constant j %

Exercise 34. Can we replace computations with explicit polynomials by compu-
tations with evaluations of such polynomials in sufficiently many distinct points
w = wp, w1, ..., wq to enable recovery of the polynomial coefficients (as necessary)
via interpolation? Can we interpolate in an arbitrary ring?

Let us now proceed with the reduction. Suppose we are given f : 2V — R
and g : 2V — R as input. Define f{*) : 2V — R{®) and ¢g(w) : 2V — R by
FE(8) = f(S)w!S! and g{*)(S) = g(S)w!S! for S C U.
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Note in the following equality that the union product on the right-hand side is
evaluated in R(®),

Lemma 35. (f U g)(S) = {w!SI}(f®) U gtw)(9).

Proof.
{w (0 U g™)(8) = {w!®} Z Fr(A)g™(B) (definition)
AUB=5
= {w®l} Z F(Awg(B)w!P! (definition)
AUB=S
Z {w!S1} f(A)w! A g(B)w! P! (linearity)
AUB=5
Z {w N f(A)g(B)w! 1B (collect)
AuB=S

=Y [AUB = S|{w!*1} f(A)g(B)w! 1Pl (to brackets)

=Y [AUB = S|[|A] +|B| = |S[]f(A)g(B) (definition)
A,B

=Y [AUB =S][AnB =0]f(A)g(B) (Lemma 32)
A,B

Z f(A)g(B) (to sums)
ARB=i

> f(A)g(B) (definition)

AUB=S
= (fUg)(S). (definition)
O

Again we may view the result as a circuit specification:

== =

Exercise 36. (f1 U fo U---uU fe)(S) = {’w‘s‘}(flw> Uf2<w> U--- Uf;im)(s)‘

Exercise 37. Consider the disjoint union product. Suppose we relax AUB = S to
A,B C S, but still require that AN B = 0. Study the resulting “disjoint packing”
product. Can you reduce the disjoint packing product to the disjoint union product?

4. TWO EXAMPLES OF ALGEBRAIZATION

We consider two examples of algebraization and associated time—space tradeoffs
enabled by fast evaluation.
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4.1. Graph coloring. Let G be an undirected loopless graph with vertex set V.
A set I C V is independent in G if no two vertices in I are joined by an edge of
G. We say that G is k-colorable if there exist independent sets Iy, Is, ..., I such
that I; U T, U --- U Iy = V. Such an ordered tuple (I1,Is,...,1I}) is a (proper)
k-coloring of G. Indeed, the intuition is that the vertices in I; have “color” i; a
coloring is proper if and only if the ends of every edge have distinct colors.

The k-coloring problem asks, given a graph G and a positive integer k as input,
whether G has a proper k-coloring.

4.2. Algebraizing graph coloring. Denote by Z the ring of integers. Let f :
2V — Z be the indicator function for independent sets in G, that is, f(I) =
[I is independent in G] for I C V. Note that f is implicitly defined by the input
G.

The number of distinct proper k-colorings of G is, by an iterated application of
the disjoint union product,

(13) > SIS (T = {wl (O R (V).
LULU-- U=V
Assuming that |V| = n and k = O(n), a direct evaluation of the right-hand side
of (13) requires O*(3") time and O*(1) space, where O*(-) hides a multiplicative
factor polynomial in n.

4.3. A time-space tradeoff via fast Moebius inversion. The evaluation of
product forms such as (13) can be expedited if sufficient space is available.

Lemma 38. The zeta transform on the subset lattice can be computed in O(2"n)
ring operations given space for O(2™) ring elements.

Proof. Recall that we assume U = {1,2,...,n}. Identify S C U with the binary
string s = (s1,82,...,8,) € {0,1}" by ¢ € S if and only if s;, = 1 for 1 < i < n.
In particular, we have [S C T] = [[;_,[s; < ¢;]. Thus, Yates’s algorithm with
x(s) — f(S) and k(b,a) < [a < b] in (3) uses O(2"n) ring operations to compute
(fO(T) = y(t) for all T C U. Storage for O(2") ring elements suffices because z;
depends only on z;_; in (5). O

Exercise 39. Show that the Moebius transform admits a similar tradeoff.
Theorem 40. The union product can be computed in O(2™n) ring operations given
space for O(2™) ring elements.

Proof. We take advantage of (11) and Lemma 38. Given f and g as input, compute
f¢ and g¢, take the pointwise product (f()-(¢9¢), and finally compute the Moebius
transform ((f¢) - (¢¢))p to obtain f U g. Each of the three steps takes O(2"n)
operations. O

Exercise 41. Show that the disjoint union product can be computed in O(2"n?)
ring operations given space for O(2™) ring elements.

Thus, given O*(2") space, we can solve graph coloring in O*(2") time by evalu-
ating the right-hand side of (13).

Exercise 42. Can you give other examples of natural “partitioning problems” that
can be solved using product forms such as (13)?
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Exercise 43. Algebraize the task of counting connected spanning subgraphs of a
given graph with n vertices. Develop an algorithm with O*(2"™) running time. Hint:
A graph with e edges has exactly 2¢ spanning subgraphs, each of which partitions
into one or more connected components.

4.4. Maximum satisfiability (M AX-SAT). Let 21,23, ...,z, be variables tak-
ing values in {0,1}. A literal is a variable z; or its negation Z;. A positive literal
x; (respectively, a negative literal Z;) is satisfied by an assignment of values to the
variables if z; = 1 (respectively, x; = 0). A clause of length k (a k-clause) is a set
of k literals. A clause is satisfied if at least one of its literals is satisfied.

The k-satisfiability problem (k-SAT) asks, given a collection of k-clauses as input,
whether there exists an assignment of values to the variables such that all input
clauses are satisfied. The mazimum k-satisfiability problem (MAX-k-SAT) asks,
given a collection of k-clauses as input, for the maximum number of input clauses
that can be satisfied by an assignment of values to the variables.

4.5. Algebraizing MAX-SAT. Suppose a collection of m clauses over n variables
has been given as input. Let us view an assignment of values to the variables
x1,%2,...,Ty as an n-tuple t = (t1,t,...,t,) € {0,1}", where t; is the value
assigned to x; for 1 <1i <n.

For an assignment ¢ € {0,1}", denote by N(t) the number of input clauses
satisfied by ¢. Introduce the generating function

(14) Gw)= > w"®.

te{0,1}n

Observe that G(w) is a polynomial of degree at most m with nonnegative integer
coefficients that sum to 2". In particular, the degree of G(w) is the maximum
number of input clauses that can be satisfied by an assignment.

4.6. A time-space tradeoff via fast matrix multiplication. We now restrict
to the case k = 2 (MAX-2-SAT). Assume that 3 divides n (if not, insert new
variables). Partition the variables arbitrarily into three types A, B, C' so that there
are exactly n/3 variables of each type. Partition the input clauses into types A, B, C
so that a clause of type T' does not contain a variable of type T. Because k = 2,
such a partition of the input clauses always exists.

We can now split an assignment ¢ € {0,1}" into three sub-assignments a,b, ¢ €
{0, 1}”/ 3 for the variables of each type. The number of satisfied input clauses splits
accordingly into

(15) N(t) = N¢(a,b) + Ng(a,c) + Na(b, c)

where N¢, N, and N4 count the number of satisfied input clauses of each respec-
tive type. In particular, Nt is independent of the sub-assignment to variables of
type T'.

We proceed to split G(w) using (15) and recover a matrix product. Let Néf”,
Néw, N(gw be matrices of size 2"*/3 x 2"/3 with entries defined for a, b, ¢ € {0,1}"/3
by

Néw)(a,b) def whVe(@b), ngw)(a,c) def wlVB (@), NX” (b,¢) def yNa(be),
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‘We now have

G(w) = Z wNe (@) +Np(a,c)+Na(b.c) (split to types)
ab.e
= 37 e leby Nala)y Nalbo) (expand)
abe
(16) = ZU)NB(“’C) Z’IUNC(a’b>11)NA(b’C) (collect)
ac b

= Z Ng”> (a,¢) Z Néw> (a, b)N/gw> (b,¢) (in matrix form)
a,c b

= Z N]g”u> (a,c) (NémN/(xw)) (a,c). (to matrix product)

A trivial algorithm for MAX-2-SAT runs in O*(2") time and O*(1) space. Using
(16), we can now trade space for time by first constructing the matrices N, ém, N g”),

Néw> and then using fast matrix multiplication to determine the product NN, g">NX”>
in O((2"/3)“+€) ring operations for any fixed € > 0, which leads to O*(2(«+)n/3)
time and O*(22"/3) space for MAX-2-SAT.

Exercise 44. Observe that one can carry out the computations in (16) with evalu-
ations of the generating function G(w) at m+1 distinct points w = wo, Wi, . .., W,
and then recover G(w) via interpolation.

5. FURTHER EXERCISES AND REMARKS

5.1. Transforms on the subset lattice. The following exercises develop and
relate to each other some further transformations on the subset lattice.
Define the up-zeta transform f¢': 2V — R by

TS f(S) for TCU.

TCS

Define the up-Moebius transform fu': 2V — R by

F(T) ST ()T E(S) for T C U
TCS

Exercise 45. Observe that in matriz form we obtain ¢’ from ¢ by taking the trans-
pose. Similarly for p/ and p.

Define the complement transform fr : 2V — R by
(Fe)(S) & f(U\S) for SCU.
Define the odd-negation transform fo :2Y — R by
(Fo)($) = (~1)¥If(S) for SCU.
Exercise 46. (' = k(k, ' = kpk, p=0lo, (=ouoc.
Exercise 47. ('u = (ko, (' = ok, @'¢ = pokr, p¢' = p'ko.

Exercise 48. Present a natural definition for o def (k. Show that 6 = ('o(.
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Exercise 49. Define the intersection product f N g : 2V — R by (f N g)(S) &
> anpes [(A)g(B) for S CU. Show that (fNg)k = (fr)U(fk). Take the up-zeta
transform of f N g and simplify to a pointwise product. Establish (f Ng) N h =
fn(gnh).

def

Exercise 50. Define the difference product f\ g : 2V — R by (f \ 9)(S) =
> ap=s f(A)g(B) for S CU. Show that f\ g = f N (gk).

Exercise 51. Define the Walsh-Hadamard transform (the Fourier transform on

the n-cube) fé: 2V — R by (f6)(S) < S0 (~1)ISOTIF(T) for § C U. Show that
fo? =2"f. Is ¢ invertible if R is an arbitrary ring?

Exercise 52. For A,B C U, define the symmetric difference A @® B 4 (A\B)U

(B\ A). Define the symmetric difference product f © g:2Y — R by (f ® 9)(95) def

Y aap=s f(A)g(B) for S C U. Show that (f © g)¢ = (f¢) - (9¢). Establish
(fegeh=[fa(gah).

Exercise 53. Reduce the disjoint union product to the symmetric difference prod-
uct.

Exercise 54. Let f: 2V — R and k : 2V — R. Define the k-intersection transform
fri 2V — R by (Ffri)(S) = S0 k(SNT)F(T) for S C U. Show that frf =
((kp) - (FC))E.

Exercise 55. Observe that ¢ reduces to 11 for a specific k. Simplify the pointwise
product form of the k-intersection product when k is 1 on sets of size j, and 0
elsewhere.

Exercise 56. Define similar k-union, k-difference, and k-symmetric difference
transforms. Reduce each to a pointwise product form.

Exercise 57. Are all the transforms in this section computable in O*(2™) ring
operations given space for O*(2"™) ring elements?

5.2. Trimming. This section investigates “trimming” of transforms on 2Y when
the input and output are restricted to subsets of 2.
Our first objective is a “closure trimming lemma” for fast Moebius inversion.
Let ¥ C 2V, Denote by 1F the up-closure of F, that is, the set consisting of
the sets in F and all their supersets in 2V. Denote by |F the down-closure of F,

that is, the set consisting of the sets in F and all their subsets in 2V. Define the

elementwise complement of F by U\F def {U\S:S €T}

Exercise 58. U\1F = |[U\F, U\|F =1U\T.

Lemma 59. There exist algorithms that, given & C 2V and F C 2V as input,
construct an R-arithmetic circuit with input gates for f : F — R and output gates
that evaluate to any of f( : &€ - R, f¢': &€ - R, fu:& — R, or fu' : &€ — R,
with construction time any of O*(|T€| + [1F]), O*([1&| + |1 F]), O*(|LE] +[1F]), or
O (|LE] + [1F1).

Proof. Because u = oo and p/ = o('o, it suffices to consider ¢ and ¢’ only.

Because ¢’ = k(r, it suffices to consider ¢ only. To evaluate f¢ : & — R it suffices
to consider f: |€ — R because f outside |€ does not affect f¢ in &.
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Time O*(|1€] + |F|). Consider Yates’s algorithm with k£(0,0) = 1, k(0,1) = 0,
k(1,0) =1, and k(1,1) = 1, that is, the output is the zeta transform of the input.
In this case any walk in the n-cube that has a 1 — 0 step has weight 0 because
k(0,1) = 0. Thus, such walks may be discarded. Furthermore, all walks to vertices
in € that do not have a 1 — 0 step traverse only vertices in |E€. Thus, Yates’s
algorithm in fact specifies an R-arithmetic circuit of size O(n||&|) with inputs and
outputs indexed by |€. The construction is completed by connecting the inputs in
F with corresponding input gates in the zeta circuit; any inputs to the zeta circuit
not in F are forced to 0.

Time O*(|€] + |1F]). Observe that f¢ vanishes outside 1F. Furthermore, all
walks to 1F from F stay within 1F. Restrict Yates to 1F and output 0 outside 5.

Time O*(|1€] + |1F]). Observe that ¢ = ('o(x. Let us develop the right-hand
side into a sequential circuit by “meeting in the middle.”

T H o H (e
Starting from the left, given the inputs at F, we have that the output of ¢’ vanishes
outside |F. Starting from the right, the outputs at & require input at U\E for
. Thus, we require input for ¢ at |U\& to evaluate the outputs at U\E. The
odd-negation layer o thus requires input and output at [U\E. We now connect
the outputs of the left part with the corresponding inputs of the right part at
(I1F)N(LU\E), and force any remaining inputs of the right part to 0. Observe that
JU\E = U\1€ and that |U\TE| = [1€]. O

Exercise 60. Open problem: Can one evaluate fC : & — R for given &, F C 2V and
f:F — R using an R-arithmetic circuit of size O*(|1€] + |F|) or O*(|€] + |1F]|)?

Let us sketch an application of Lemma 59 in counting long paths in graphs.
Recalling Exercise 49, consider the intersection product fNg : &€ — R for given
f:F—> Rand g: 9 — R. We have

frg=(fC)- (gD
Observe that (f¢’) - (g¢’) vanishes outside (|F) N (]G). Thus, Lemma 59 implies
that we can evaluate fNgin O*(|| €| +||F|+ ||§]|) ring operations, given space for

O*(|1€]+ |1F]) +1G]) ring elements. In particular, letting & = {0}, we can evaluate
the sum

() Fno®= 3 f(AgB)
AeF,BeS
ANB=0
in O*(||F| + |1G|) ring operations, given space for O*(||F| + || §|) ring elements.

Now consider an undirected graph G with vertex set V, |V| = n. Suppose we
want to compute the number of (s, t)-paths of length k& for given G, 1 <k <n-—1,
and distinct s,t € V. (The length of a path is the number of edges in it.) For
simplicity, we assume that k is even.

Observe that every (s,t)-path of even length &k has a unique midpoint v € V'\
{s,t} that splits the path into two halves of equal length; that is, into an (s, v)-path
and a (v, t)-path, both of length k/2.

We proceed to “count in halves” via (17). Let v € V' \ {s,t} and U = V' \ {v}.
Let f,(A) be the number of (s, v)-paths in G with vertex set AU{v}, and let g,(B)
be the number of (v, t)-paths in G with vertex set B U {v}.
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Exercise 61. Design a dynamic programming algorithm that computes f, : (152) —
Z and g, : (152) — 7Z in time O*((kr;z)).

It now follows from (17) that we can count in time and space O*((k72)) the
number of (s, t)-paths of length & in G, that is,

S Y AA)eB).
veV\sith A Be(Vf5?)
ANB=0

5.3. Bibliography. Donald Knuth’s The Art of Computer Programming (Vol-
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Abstract

We provide an introduction to the design and analysis of moder-
ately exponential-time branching algorithms via the study of a col-
lection of such algorithms among them algorithms for Maximum In-
dependent Set, SAT and 3-SAT. The tools for simple running time
analysis are presented. The limits of such an analysis including lower
bounds for the worst-case running time of some particular branching
algorithms are discussed. Some exercices are given.
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1 A First Independent Set Algorithm

We first study a simple branching algorithm for the Maximum Independent
Set algorithm. The algorithm uses the standard branching rule in MIS algo-
rithms. ”For every vertex v there is a maximum independent set containing
v, or there is a maximum independent set not containing v.” Note that when
deciding that v is in the independent set then all its neighbors cannot be in
it and thus they can be deleted safely. Therefore we may write the standard
branching rule of the IS problem, that can be applied to any vertex v, as
follows:
mis(G) = max(1 4+ mis(G — N[v]), mis(G — v)).

The algorithm applies this rule to any vertex v of degree at most three in
the current graph as long as this is possible. The recursion is stopped when
the current graph has maximum degree two, i.e. it is a union of cycles and
paths. In such a graph a maximum independent set can be computed in
polynomial time.

It is not difficult to see that this algorithm is correct and indeed re-
turns the size of a maximum independent set of the input graph. Usually
correctness of branching algorithms is not hard to see (if not obvious).

How shall one estimate the overall running time of such a branching
algorithm? There is a well-established procedure for such an analysis that is
based on using linear recurrences. For our algorithm let T'(n) be the largest
number of leaves (graphs of maximum degree two) of an input graph on n
vertices for which the polynomial time algorithm is called. Then the running
time of the algorithm is O*(T'(n)). The branching rule implies

Tn) <Tn—-1)+T(n—-dwv)—1)<T(n-1)4+T(n—4).

Thus we shall say that our branching rule has branching vector (1,d(v)+ 1)
and the worst case is achieved if d(v) = 3. The corresponding branching
vector is (1,4).

It is knwon that all basic solutions of such a linear recurrence are of the
form " where « is a root of the polynomial

" = xn—l 4 xn—4‘

Since we want to upper bound the running time we are interested in the
largest solution of the characteristic polynomial. Fortunately it is known
that this is always the unique positive real root of the polynomial. Using
some system like Maple, Mathematica, Matlab etc. we obtain that our
algorithm has running time O*(1.3803™).

This analysis does not seem to take into account what the algorithm is
really doing. Somehow with this tool we can analyze branching algorithms
without understanding well what happens during an execution. But can
this really provide the worst-case running time?



2 Fundamental Notions and Tools

We set up the scenario of a typical (moderately exponential time) branching
algorithm.

Such an algorithm consists of a collection of reduction rules and branch-
ing rules. There are also halting rules and it needs to be specified which rule
to apply on a particular instance. A reduction rule simplifies an instance
(without branching). A branching rule recursively calls subproblems of the
instance. The correctness of a branching algorithm follows from the correct-
ness of all its reduction and branching rules (which in many cases is easy to
see).

Search trees are very useful to illustrate an execution of a branching
algorithm and to facilitate the time analysis of a branching algorithm. A
search tree of an execution of a branching algorithm is obtained as follows:
assign the root node of the search to the input of the problem; recursively
assign a child to a node for each smaller instance reached by applying a
branching rule to the instance of the node. Note that we do not assign a
child to a node when an reduction rule is applied. Hence as long as the
algorithm applies reduction rules to an instance the instance simplifies but
the instance corresponds to the same node of the search tree.

What is the running time of a particular execution of the algorithm
on an input instance? To obtain an easy answer, we assume that during
its execution the running time of the algorithm corresponding to one node
is polynomial. Under this assumption, that is satisfied for all branching
algorithms to be presented, the running time of an execution is equal to the
number of nodes of the corresponding search tree up to a polynomial factor.

Thus analysing the worst-case running time of a branching algorithm
means to determine the maximum number of nodes in a search tree corre-
sponding to the execution of the algorithm on an input of size n, where n is
e.g. the number of vertices of a graph, the number of variables of a boolean
formula.

The time analysis of branching algorithms is based on upper bounding
the number of leaves of a search tree of an input of size n. Let T'(n) be the
maximum number of leaves on any search tree of an input of size n. Now
each branching rule is analyzed separately and finally we use the worst-case
time over all branching rules as upper bound of the running time of the
algorithm.

Let b be a branching rule of the algorithm to be analyzed. Consider an
application of b to any instance of size n. Suppose it branches into r > 2
subproblems of size at most n—t1, n—ts, ..., n—t,, for all instances of size
n > max{t; : i = 1,2,...7}. Then we call b= (t1,t9,...t,) the branching
vector of branching rule b. Hence

Tn)<T(n—t1)+T(n—ta)+---+T(n—t).



It is known that the largest solution of any linear recurrence obtained by a
branching algorithm is the unique positive real root of

Sometimes this root is called the branching factor of branching vector b.

Having computed the branching factors «; for every branching vector b;
we simply take the largest base «; to achieve an upper bound of the running
time: o = max;a;. Then T'(n) = O*(«*) and the running time of the
branching algorithm is O*(a™).

3 The Second Independent Set algorithm

The algorithm consists of one branching rule which is based on the fact
that if / is a maximal independent set of G, then if v is not in I, then at
least one of the neighbors is in I. This is because otherwise I U {v} would
be an independent set, which contradicts the maximality of I. Hence the
algorithm picks a vertex of minimum degree and for each vertex from its
closed neighborhood it recursively computes a maximal independent set of
the current graph.

int mis(G = (V,E)) {
if(|V]| = 0) return 0;
choose a vertex v of minimum degree in G
return 1 + max{mis(G — N[y]) : y € N[v]};

T W N~

}

To analyze the running time let G be the input graph of a subproblem.
Suppose the algorithm branches on a vertex v of minimum degree d(v). Let
Y1,Y2; - - - Yd(v) be the neighbors of v in G. Thus for solving the subproblem
G the algorithm recursively solves the subproblems G — N{z], G— Nyi], ...
,G — N[yg()]- Hence we obtain immediately the recurrence

d(v)
T(n) <T(n—d(v)—1)+ Y _ T(n—d(y;) - 1).

i=1
Since the algorithm is branching on a vertex of minimum degree, we have:
foralli =1,2,...,d(v), d(v) <d(v;), n—d(v;) —1 <n—d(v)—1 and, by
the monotonicity of T, T'(n — d(v;) — 1) < T'(n — d(v) — 1). Consequently

d(v)
T(n) <T(n—dv)—1)+ ZT(n —d(v) —1) < (d(w) +1)T(n—d(v) — 1)

i=1



Taking s = d(v) + 1, we establish the recurrence T'(s) < sT'(n — s), which
has the solution T'(s) = s™/*. Since this function has its maximum value for
integral s when s = 3, we obtain T'(n) < 3"/3. Hence the running time of
the algorithm is O*(3"/3).

To mention some features of the algorithm. Any set of vertices selected
for an independent set in a leave of the search tree is a maximal independent
set of the input graph; and each maximal independent set corresponds to
at least one leaf of the search tree. Thus the algorithm can be used to
enumerate all maximal independent sets of a graph in time O*(3"/?), and
hence a graph on n vertices has 0*(3"/3) maximal independent sets. This
provides a new and simpler proof the well-known combinatorial theorem of
Moon and Moser. Since the bound is tight we also obtain that the worst-case
running time of the algorithm is ©*(3%/3).

4 The Third Independent Set algorithm

We discuss various fundamental ideas of branching algorithms for the inde-
pendent set problem and use them to construct a Third Independent Set
algorithm.

The first one is a reduction rule called domination rule.

Lemma 1. Let G = (V, E) be a graph, let v and w be adjacent vertices of
G such that N[v] C N[w]. Then

a(G) = a(G —w).

Proof. We have to prove that G has a maximum independent set not con-
taining w. Let I be a maximum independent set of G' such that w € I.
Since w € I no neighbor of v except w belongs to I. Hence I — w + v is
an independent set of GG, and thus a maximum independent set of G not
containing w. O

Now let us study the branching rules of our algorithm. The standard
branching has already been discussed:

a(G) = max(a(G — N[v]),a(G —v)).

Lemma 2. Let G = (V,E) be a graph and let v be a vertex of G. If no
maximum independent set of G contains v then every mazimum independent
set of G contains at least two vertices of N(v).

Proof. Every maximum independent set of G is also a maximum indepen-
dent set of G — v. Suppose there is a maximum independent set I of G — v
containing at most one vertex of N(v). If I contains no vertex of N[v] then



I + v is independent and thus [ is not a maximum independent set, contra-
diction. Otherwise, let 7 N N(v) = {w}. Then I —w + v is an independent
set of G, and thus there is a maximum independent set of G' containing v,
contradiction. O

Using the above Lemma, standard branching has been refined recently.
Let N?(v) be the set of vertices in distance 2 to v in G, i.e. the set of the
neighbors of the neighbors of v, except v itself. A vertex w € N2(v) is called
a mirror of v if N(v) \ N(w) is a clique. Calling M (v) the set of mirrors of
v in G, the standard branching rule can be refined via mirrors.

Lemma 3. Let G = (V, E) be a graph and v a vertex of G. Then
a(G) = max(a(G — N[v]),a(G — (M (v) +v)).

Proof. If G has any maximum independent set containing v then «(G) =
a(G — N[v]) and the lemma is true. Otherwise suppose that no maximum
independent set of G contains v. Then every maximum independent set
of G contains two vertices of N(v). Since w is a mirror the vertex subset
N(v) \ N(w) is a clique, and thus at least one vertex of every maximum
independent set belongs to N(w). Consequently, no maximum independent
set contains w, and thus w can be safely discarded. O

We call the corresponding rule mirror branching.
Lemma 2 also implies the following reduction rule that we call simplicial
rule.

Lemma 4. Let G = (V, E) be a graph and v be a vertex of G such that N[v]
is a clique. Then

a(G) =14 (G — N[v)).

Proof. If G has a maximum independent set containing v then the lemma
is true. Otherwise, by Lemma 2 a maximum independent set must contain
two vertices of the clique N(v), which is impossible. O

Sometimes our algorithm uses yet another branching rule. Let S C V be
a (small) separator of the graph G, i.e. G — S is disconnected. Then for any
maximum independent set I of G, I NS is an independent set of G. Thus
we may branch into all possible independent sets of S.

Lemma 5. Let G be a graph, let S be a separator of G and let Z(S) be the
set of all independent subsets of S. Then

a(G) = Alélza()é) |A] + o(G — (SUNIA])).



Our algorithm uses the corresponding separator branching only under
the following circumstances: the separator S is the set N?(v) and this set
is of size at most 2. Thus the branching is done in at most 4 subproblems
and for each of it is easy to find out the optimal choice among the vertices
of Nv].

The third Independent Set algorithm will be presented and analyzed
during the talk.

5 Two Algorithms for SAT

First we present the rules of the DPLL algorithm to solve the SAT prob-
lem from the early sixties. This branching algorithm has triggered a lot
of research in the SAT community and its ideas are used in modern SAT
solvers.

Then we study the algorithm of Monien and Speckenmeyer which was
the first one with a proven upper bound of O*(¢") with ¢ < 2 for 3-SAT.
Indeed this algorithm solves k — SAT for any fixed k£ > 3 in time O*(¢;")
with ¢ < 2, where ¢;, depends on k.

The algorithm recursively computes CNF formulas obtained by a partial
truth assignment of the input k-CNF formula, i.e. by fixing the boolean
value of some variables and literals, respectively, of F. Given any partial
truth assignment ¢ of the k-CNF formula F' the corresponding k-CNF for-
mula F’ is obtained by removing all clauses containing a true literal, and by
removing all false literals. Hence the instance of any subproblem generated
by the algorithm is a k-CNF formula. The size of a k-CNF formula is its
number of variables.

We first study the branching rule of the algorithm. Let F' be any k-CNF
formula and let ¢ = (¢1 V€3V --- V £;) be any clause of F. Branching on
clause ¢ means to branch into the following ¢ subproblems obtained by fixing
the boolean values of some literals as described below:

e Fy: [/ =true

o Iy : (= false, {5 = true

e F3: (1 =false, {5 = false, {3 = true

o [y : (1 =false, o =false, --- , {;_1 = false, {; = true

The branching rule says that F' is satisfiable iff at least one F;, i =1,2,...,¢
is satisfiable, and this obviously is correct. Hence recursively solving all
subproblem instances F; we can decide whether F' is satisfiable.

Suppose F' has n variables. Since the boolean values of i variables of
F are fixed to obtain the instance F;, i = 1,2,...,¢, the number of (non
fixed) variables of F; is n — i. Therefore the branching vector of this rule



is (1,2,...,t). To obtain the branching factor of (1,2,...,t) we solve the
linear recurrence

Tn)<Tn-1)+Tn-2)+---+T(n—1t)

by computing the unique positive real root of

gt =gt g gt2 g8 1=,
which is equivalent to
e -2t 1 =0.

For any clause of size t we denote the branching factor 5;. Then s ~ 1.6181,
B3 =~ 1.8393, B4 =~ 1.9276 and §5 ~ 1.9660.

We note that on a clause of size 1, there is only one subproblem and thus
this is indeed a reduction rule. By adding some simple reduction rules for
termination saying that a formula containing an empty clause is unsatisfiable
and that the empty formula is satisfiable we would obtain a first branching
algorithm consisting essentially of the above branching rule. Of course we
may also add the reduction rule saying that if the formula is in 2-CNF then
a polynomial time algorithm will be used to decide whether it is satisfiable.
The running time of such a simple branching algorithm is O*(3;") since
given a k-CNF as input all instances generated by the branching algorithm
are k-CNF, and thus every clause the algorithm branches on has size t < k.

Notice that the branching factor 3; depends on the size ¢ of the clause ¢
chosen to branch on. Hence it is natural to aim at branching on clauses of
as small size as possible. Thus for every CNF formula being an instance of
a subproblem the algorithm chooses a clause of minimum size to branch on.
Using some nice logic insights one can guarantee that for an input k-CNF
the algorithm always branches on a clause of size at most k — 1 (except
possibly the very first branching). Such a branching algorithm solves k-SAT
in time O*(ay™) where a = fr—1. Hence the algorithm solves 3-SAT in
time O(1.6181™).

6 Worst-Case Running Time and Lower Bounds

Lower bounds for the worst-case running time of branching algorithms are
of interest since the current tools for the running time analysis of branch-
ing algorithms (including Measure & Conquer) seem not strong enough to
establish the worst-case running time.

A lower bound of Q*(c™) to the (unknown) worst-case running time of a
particular branching algorithm is established by constructing instances and
showing that the algorithm needs running time Q*(¢") on those instances.
Clearly the goal is that lower and upper bound of the worst-case running
time of a particular algorithm are close.



Theorem 1. The first Independent Set algorithm has worst case running
time ©*(a™), where « is the branching factor of (1,4).

Proof. We need to prove the lower bound Q*(a™). To do this, consider
the graph G, = ({1,2,...,n}, E), where {i,j} € E < |i — j| < 3. For
this graph we assume that algorithm will solve ties by always choosing the
leftmost remaining vertex to branch on, which always has degree 3. Hence
on G, the algorithm branches into G;_1 and G;_4. Thus if the search tree
generated on Gy, has T'(n) leaves then T'(n) < T'(n—1)+T(n—4), and thus
T(n) = Q(a™). O

Suppose we modify the first Independent Set algorithm such that it
branches on a maximum degree vertex. This will not change the upper
bound analysis, however the lower bound does not apply anymore. Is this a
coincidence or has the modified algorithm really a better worst-case running
time?

7 Memorization

Memorization in branching algorithms has been introduced by M. Robson.
The goal is to speed up the algorithm by storing already computed results
in a database to look them up instead of recomputing them many times on
different branches of the search tree.

The technique can be used to obtain algorithms with better upper
bounds on the running time. Unfortunately the technique leads to algo-
rithms needing exponential space, while the original branching algorithm
needs only polynomial space.

8 Branch & Recharge

This is a new approach to construct and analyse branching algorithms. The
key idea is to explicitely use weights in the algorithm to guarantee that the
running time is governed by few recurrences; and thus running time analysis
is easy. On the other hand, correctness is no longer obvious and needs a
careful analysis of the branching algorithm. A typical operation of such an
algorithm is a redistribution of the weights called recharging.

In the algorithm to be presented, every vertex is assigned a weight of 1 at
the beginning. A value € > 0 is fixed depending on the problem. Then by a
recharging procedure, it is guaranteed that in each branching on any vertex
v the overall weight of the input decreases by 1 when not taking vertex v in
the solution set S, and it decreases by 1 + € when selecting v in S. Hence
the only branching vector of the algorithm is (1,14 €) and one immediately
obtains the running time.



Exercices

The

1.

exercices are ordered from easy ones to research problems.

The HAMILTONIAN CIRCUIT problem can be solved in time O*(2") via
dynamic programming or inclusion-exclusion. Construct a O*(3™/3) branch-
ing algorithm deciding whether a graph has a hamiltonian circuit, where m
is the number of edges.

. Let G = (V, E) be a bicolored graph, i.e. its vertices are either red or blue.

Construct and analyze branching algorithms that for input G, k1, ko decide
whether the bicolored graph G has an independent set I with k; red and ko
blue vertices. What is the best running time you can establish?

. Construct a branching algorithm for the 3-COLORING problem, i.e. for

given graph G it decides whether G is 3-colorable. The running time should
be O*(3"/3) or even O*(c¢") for some ¢ < 1.4.

. Construct a branching algorithm for the DOMINATING SET problem on

graphs of maximum degree 3.

. Is the following statement true for all graphs G. If w is a mirror of v and

there is a maximum independent set of G not containing v, then there is a
maximum independent set containing neither v nor w.

. Modify the first IS algorithm such that it always branches on a maximum

degree vertex. Provide a lower bound. What is the worst-case running time
of this algorithm?

. Construct a O*(1.49™) branching algorithm to solve 3-SAT.
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Goals

Demonstrate techniques that were successfully used in the analysis of
parameterized problems.
There are two goals:

Determine quickly if a problem is FPT.

Design fast algorithms.
Warning: The results presented for particular problems are not necessarily
the best known results or the most useful approaches for these problems.
Conventions:

Unless noted otherwise, k is the parameter.

O™ notation: O* (f(k)) means O(f (k) - n®) for some constant c.

Citations are mostly omitted (only for classical results).

We gloss over the difference between decision and search problems.

FPT algorithmic techniques — 497

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

¢ ~~Graph Minors Theorem
a

Itefative compression

EPT aigorithmic techniques - p.2/97

Kernelization
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (I’, k') such that

(I, k) is a yes-instance if and only if (I’, k") is a yes-instance,

k' < k,and

|I’| < f(k) for some function f(k’).
Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I’, k”) by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f (k)n® algorithm for the problem.

If £(k) < n, then solve the instance in time f (k)n® < n°**, and output a
al yes- or no-instance.

If n < f(k), then we are done: a kernel of size f (k) is obtained.
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Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1: If v is an isolated vertex = (G \ v, k)

Rule 2: If d(v) > k= (G \ v,k — 1)

Rule 3: If d(v) = 1, then we can assume that its neighbor u is in the
solution = (G \ (uw Uwv),k —1).

If none of the rules can be applied, then every vertex has degree at least 2.
Now |E(G)| < k? implies |V (G)| < k2.

£PT algorthmic techniques — p.7197

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of
the rules can be applied and the size of the instance is still larger than f(k),
then the answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1: If v is an isolated vertex = (G \ v, k)
Rule 2: If d(v) > k= (G \ v,k —1)

If neither Rule 1 nor Rule 2 can be applied:

If [V(G)| > k(k + 1) = There is no solution (every vertex should be the
neighbor of at least one vertex of the cover).

Otherwise, |V (G)| < k(k + 1) and we have a k(k + 1) vertex kernel.

EPT aigorithmic techniques - p 6127

COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, find k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points,
thus there are at most n? candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points = (P \ S,k — 1).

If this rule cannot be applied and there are still more than k2 points, then there
is no solution = Kernel with at most k2 points.




Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before
attacking the problem with whatever method we have. “It does no harm” to
try kernelization.

Some kernelizations use lots of simple reduction rules and require a
complicated analysis to bound the kernel size. ..

... while other kernelizations are based on surprising nice tricks (Next:
Crown Reduction and the Sunflower Lemma).

ity to prove lower bounds (S. Saurabh’s lecture).
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Crown Reduction

Definition: A crown decomposition is a partition C U H U B of the vertices
such that

C
C is an independent set,
there is no edge between C and B, i 1 T H
there is a matching between C and H /
B

that covers H.

Crown rule for VERTEX COVER:

The matching needs to be covered and we can assume that it is covered by H
(makes no sense to use vertices of C)

= (G\ (HUOC),k — |HI).
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Crown Reduction
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an

polynomial time we can either

find a matching of size k + 1, = No solution!
find a crown decomposition, = Reduce!
or conclude that the graph has at most 3k vertices.

= 3k vertex kernel!

This gives a 3k vertex kernel for VERTEX COVER.

i techniques  p12197



Proof

Lemma: Given a graph G without isolated vertices and an integer k, in
polynomial time we can either

find a matching of size k + 1,
find a crown decomposition,

or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Kénig's Theorem.

7(G) : size of the minimum vertex cover
v(G) : size of the maximum matching (independent set of edges)

Theorem: [K&nig, 1931] If G is bipartite, then

7(G) = v(G)

EPT algorithmic techniques - 1397

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in
polynomial time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.
Proof: Case 1: The minimum vertex cover con-

tains at least one vertex of X
= There is a crown decomposition.

Case 2: The minimum vertex cover contains only  x (77 ¢
vertices of I = It contains every vertex of I
= There are at most 2k + k vertices.
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in
polynomial time we can either

find a matching of size k + 1,
find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its
size is at least k& + 1, then we are done. The rest X I
of the graph is an independent set I. L a—

Find a maximum matching/minimum vertex cover
in the bipartite graph between X and I.

EPT aigorithmic techniques - p.14/97

DuAL oF VERTEX COLORING

Also known as SAVING k COLORS.

Task: Given a graph G and an integer k, find a vertex coloring with
|V (G)| — k colors.

Crown rule for DUAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a
KXXTYY

distinct color.

Because of the matching, H can be colored ﬁ * * w H
using only these |C| colors. e

These colors cannot be used for B. / B
(G\ (HUC),k - |H|)
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Crown Reduction for DUAL OF VERTEX
COLORING

Use the key lemma for the complement G of G:

Lemma: Given a graph G without isolated vertices and an integer k, in
polynomial time we can either

find a matching of size k + 1, = YES: we can save k colors!
find a crown decomposition, = Reduce!

or conclude that the graph has at most 3k vertices.
= 3k vertex kernel!

This gives a 3k vertex kernel for DUAL OF VERTEX COLORING.
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Sunflower lemma

Definition: Sets S1, Sz, . .., Sk form a sunflower if the sets
Si\ (S1NSz2N---N Sy) are disjoint.

o
PS =

g2

center

Lemma: [Erd6s and Rado, 1960] If the size of a set system is greater than

(p — 1)? - d! and it contains only sets of size at most d, then the system
contains a sunflower with p petals. Furthermore, in this case such a sunflower
can be found in polynomial time.

EPT algorithmic techniques — p.18/97

Sunflower Lemma
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Sunflowers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer
k, find a set S of k elements that intersects every set of S.

\ AIV petals

center
Reduction Rule: If k 4 1 sets form a sunflower, then remove these sets from
S and add the center C to S (S does not hit one of the petals, thus it has to hit
the center).

If the rule cannot be applied, then there are at most k% - d! = O(k?) sets.
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Sunflowers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer
k, find a set S of k elements that intersects every set of S.

center
Reduction Rule (variant): Suppose k + 1 sets form a sunflower.
If the sets are disjoint = No solution.

Otherwise, remove one of the sets.

If the rule cannot be applied, then there are at most k% - d! = O(k?) sets.

EPT algorithmic techniques - p.19197

Graph Minors

Some consequences of the Graph Minors Theorem give a quick way of
showing that certain problems are FPT.

However, the function f (k) in the resulting FPT algorithms can be HUGE,
completely impractical.

History: motivation for FPT.
Parts and ingredients of the theory are useful for algorithm design.

New algorithmic results are still being developed.

EPT algorithmic techniques - p21/97

Graph Minors

Neil Robertson Paul Seymour
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Graph Minors

Definition: Graph H is a minor G (H < G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

Nz

u v
deleting :‘a\ Azzmoz:m uv
u v w

Example: A triangle is a minor of a graph G if and only if G has a cycle (i

is not a forest).

EPT algorithmic techniques - p.22197



Graph minors
Equivalent definition: Graph H is a minor of G if there is a mapping ¢ that
maps each vertex of H to a connected subset of G such that

@(u) and ¢(v) are disjoint if w # v, and

if uv € E(QG), then there is an edge between ¢ (u) and ¢(v).

EPT algorithmic techniques - p2397

Forbidden minors

Let G be a minor closed set and let F be the set of “minimal bad graphs”:
H € FifH ¢ G, but every proper

Characterization by forbidden minors:
GeEG «— VHeEF,HLG
The set F is the obstruction set of property G.

Theorem: [Wagner] A graph is planar if and only
K3,3 minor.

does not have a K5 or

In other words: the obstruction set of planarity is # = {Ks, Ks,3}.

Does every minor closed property have such a finite characterization?

EPT algorithmic techniques - p25/97

Minor closed properties

Definition: A set G of graphs is minor closed if whenever G € G and
H < G,then H € G as well.

Examples of minor closed properties:
planar graphs
acyclic graphs (forests)
graphs having no cycle longer than k
empty graphs

Examples of not minor closed properties:
complete graphs

regular graphs

bipartite graphs
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property G has a
te obstruction set.

Note: The proof is contained in the paper series “Graph Minors I-XX".
Note: The size of the obstruction set can be astronomical even for simple
properties.

Theorem: [Robertson and Seymour] For every fixed graph H, there is an
O(n®) time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property G, there is an O (n®) time algorithm
for testing whether a given graph G isin G.

EPT algorithmic techniques - p.26/97



Applications

PLANAR FACE COVER: Given a graph G and an integer k, find an embedding
of planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every fixed k, the class G of graphs of yes-instances is minor closed.

13

For every fixed k, there is a O(n®) time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.

EPT algorithmic techniques 27197

g + k vertices

Let G be a graph property, and let G + kv contain graph G if there is a set
S C V(G) of k vertices suchthat G\ S € G.

S

Lemma: If G is minor closed, then G + kv is minor closed for every fixed k.
= Finding the smallest k such that a given graph is in G + kv is FPT.

If G = forests = G + kv = graphs that can be made acyclic by the
deletion of k vertices = FEEDBACK VERTEX SET is FPT.

If G = planar graphs = G + kv = graphs that can be made planar by the
deletion of k vertices (k-apex graphs) = k-APEX GRAPH is FPT.

If G = empty graphs = G + kv = graphs with vertex cover number at
most k = VERTEX COVER is FPT.
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Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, find a spanning
tree with at least k leaves.

Technical modification: Is there such a spanning tree for at least one
component of G?

One line argument:

For every fixed k, the class G of no-instances is minor closed.

U

For every fixed k, k-LEAF SPANNING TREE can be solved in time O (n®).
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Two types of problems

We have to solve some problems.

Typically minimization problems: VERTEX COVER,
HITTING SET, DOMINATING SET, covering/stabbing
problems, graph modification problems, .. .

Bounded search trees, iterative compression

We have to find something nice hidden somewhere.

Typically maximization problems: k-PATH, DISJOINT
TRIANGLES, k-LEAF SPANNING TREE, ...

Color coding, matroids
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Forbidden subgraphs

EPT algorithmic techniques - p3197

TRIANGLE DELETION

Search tree:

height <k +1

The search tree has at most 3* leaves and the work to be done is polynomial
at each step = O* (3*) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3* leaves.

EPT algorithmic techniques - p3397

Forbidden subgraphs

General problem class: Given a graph G and an integer k, transform G with
at most k modifications (add/remove vertices/edges) into a graph having
property P.

Example:

TRIANGLE DELETION: make the graph triangle-free by deleting at most k
vertices.

Branching algorithm:
If the graph is triangle-free, then we are done.

If there is a triangle v1v2v3, then at least one of v1, v2, vs has to be
deleted = We branch into 3 directions.
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Hereditary properties

Definition: A graph property P is hereditary if for every G € P and induced
subgraph G’ of G, we have G’ € P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a (finite or
infinite) set F of forbidden induced subgraphs:

GeEP&SVHEF,HZwG

Theorem: If P is hereditary and can be characterized by a finite set F of for-
bidden induced subgraphs, then the graph modification problems corresponding
to P are FPT.
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Hereditary properties

Theorem: If P is hereditary and can be characterized by a finite set F of
forbidden induced subgraphs, then the graph modification problems
corresponding to P are FPT.

Proof:

Suppose that every graph in F has at most r vertices. Using brute force,
we can find in time O(n") a forbidden subgraph (if exists).

If a forbidden subgraph exists, then we have to delete one of the at most r
vertices or add/delete one of the at most (;) edges = Branching factor is
a constant ¢ depending on F.

The search tree has at most c* leaves and the work to be done at each
node is O(n").
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CHORDAL COMPLETION

Definition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k&
edges to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
= Not a finite set!

Lemma: At least k — 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

C.: xz — 3 edges

Cr—z42: k —x — 1 edges
Cr: (x=3)+(k—z—1)+1 =
k — 3 edges

Ch
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such
that every component is a clique in the resulting graph.

X >

*—e [ ]

Property P: every component is a clique.

Forbidden induced subgraph:

0 (3*) time algorithm.
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CHORDAL COMPLETION

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial
time).

If no such cycle exists = Done!
If C has more than k + 3 vertices = No solution!
Otherwise, one of the

1) —1e1 < 3k + 2072 - k= 00

missing edges has to be added =- Branch!

Size of the search tree is k).
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CHORDAL COMPLETION — more efficiently

Definition: Triangulation of a cycle.

Ci

Lemma: Every chordal supergraph of a cycle C contains a triangulation of the
cycle C.

Lemma: The number of ways a cycle of length k can be triangulated is exactly
the (k — 2)th Catalan number

EPT algorithmic techniques - 39197

Iterative compression

EPT aigor
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CHORDAL COMPLETION — more efficiently

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial
time).

If no such cycle exists =- Done!
If C has more than k + 3 vertices = No solution!

Otherwise, one of the < 4/€! triangulations has to be in the solution =
Branch!

Claim: Search tree has at most Tr, = 4* leaves.
Proof: By induction. Number of leaves is at most

T < 4190 T o) < 4191 447101 = 4%,

EPT alg
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Iterative compression

A surprising small, but very powerful trick.
Most useful for deletion problems: delete & things to achieve some
property.

Demonstration: ObD CYCLE TRANSVERSAL aka BIPARTITE DELETION aka
GRAPH BIPARTIZATION: Given a graph G and an integer k, delete k
vertices to make the graph bipartite.

Forbidden induced subgraphs: odd cycles. There is no bound on the size
of odd cycles.
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BIPARTITE DELETION

Solution based on iterative compression:

Step 1:

Solve the annotated problem for bipartite graphs:
Given a bipartite graph G, two sets B, W C V (G), and an integer
k, find a set S of at most k vertices such that G \ S has a 2-coloring
where B \ S is black and W'\ S is white.

Step 2:

Solve the compression problem for general graphs:
Given a graph G, an integer k, and a set S’ of k + 1 vertices such
that G \ S’ is bipartite, find a set S of k vertices such that G \ S is
bipartite.

Step 3:
Apply the magic of iterative compression. . .
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Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C and
R, i.e., no component of G \ S contains vertices from both C'\ S and R\ S.

Proof:

= In a 2-coloring of G \ S, each vertex either remained the same color or
changed color. Adjacent vertices do the same, thus every component either
changed or remained.

<= Flip the coloring of those components of G \ S that contain vertices from
C'\ S. No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set
S that separates C' and R. It can be done in time O (k| E(G)|) using k
iterations of the Ford-Fulkerson algorithm.
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Step 1: The annotated problem

Given a bipartite graph G, two sets B, W C V(G), and an integer k, find a
set S of at most k vertices such that G \ S has a 2-coloring where B \ S is
black and W\ S is white.

Bo Wo

Find an arbitrary 2-coloring (Bo, Wo) of G.

C := (Bo N W) U (Wop N B) should change color, while

R := (Bo N B) U (Wo N W) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C' and
R, i.e., no component of G \ S contains vertices from both C \ Sand R\ S.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S’ of k + 1 vertices such that G \ S’
is bipartite, find a set S of k vertices such that G \ S is bipartite.

w B
AN |
/I
AT ]
Jedddefs dd) o

black white deleted

Branch into 311 cases: each vertex of S’ is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S’ should be white and the neighbors of the
white vertices in S’ should be black.
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Step 3: Iterative compression

How do we get a solution of size k + 1?
We get it for free!
Let V(G) = {v1,...,vn} and let G; be the graph induced by {v1,...,v:}.

For every 4, we find a set S; of size k such that G; \ S; is bipartite.

For G, the set Sx = {v1,...,vr} is a trivial solution.

If Si_1 is known, then S;_1 U {v;} is a set of size k 4+ 1 whose deletion
makes G; bipartite = We can use the compression algorithm to find a
suitable S; in time O(3* - k| E(G:)|).
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Color coding

EPT algorithmic techniques - p49197

Step 3: lterative Compression

Bipartite-Deletion(G, k)

1. Sk = {v1,..., v}

2. fori:=k+4+1ton

3. Invariant: G;_1 \ Si_1 is bipartite.

4. Call Compression(Gi, Si—1 U {v:})

5. If the answer is “NO” = return “NO”

6. If the answer is aset X = S; :=

7. Return the set S,

Running time: the compression algorithm is called n times and everything

else can be done in linear time
= 0(3* - k|V(G)| - |[E(G)|) time algorithm.
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Color coding

Works best when we need to ensure that a small number of “things” are
disjoint.
We demonstrate it on two problems:

Find an s-t path of length exactly k.

Find k vertex-disjoint triangles in a graph.
Randomized algorithm, but can be derandomized using a standard
technique.
Very robust technique, we can use it as an “opening step” when
investigating a new problem.
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k-PATH

Task: Given a graph G, an integer k, two vertices s, t, find a simple s-t path
with exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t HAMILTONIAN
PATH problem.

The k-PATH algorithm can be used to check if there is a cycle of length exactly
k in the graph.
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Error probability

If there is a k-path, the probability that the algorithm does not say “YES”
after e* repetitions is at most

k

(1-e™" < T&Lﬂvn —1/e~0.38

Repeating the whole algorithm a constant number of times can make the
error probability an arbitrary small constant.

For example, by trying 100 - e* random colorings, the probability of a
wrong answer is at most 1/e*°.

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.
Method 2: Dynamic programming.
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k-PATH

Assign colors from [k] to vertices V' (G) \ {s, t} uniformly and
independently at random.

Check if there is a colorful s-¢ path: a path where each color appears
exactly once on the internal vertices; output “YES” or “NO”.
If there is no s-t k-path: no such colorful path exists = “NO”.
If there is an s-t k-path: the probability that such a path is colorful is
LI ) L
Kk > k=€
thus the algorithm outputs “YES” with at least that probability.
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Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation = of
{1,2,...,k):
8 t

e o o o o o
(1) w(2) (k)

We try all possible k! permutations. For a fixed =, it is easy to check if there is
a path with this order of colors.
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Method 1: Trying all permutations

We try all possible k! permutations. For a fixed m, it is easy to check if there is
a path with this order of colors.

w(1) w(2) - w(k)
Edges connecting nonadjacent color classes are removed.
The remaining edges are directed.
All we need to check if there is a directed s-t path.

Running time is O (k! - |E(G)|).
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Derandomization

Using Method 2, we obtain a O* ((2e)*) time algorithm with constant error
probability. How to make it deterministic?

Definition: A family H of functions [n] — [k] is a k-perfect family of hash
functions if for every S C [n] with |S| = k, there is a h € H such that

h(xz) # h(y)foranyz,y € S,z # y.

Instead of trying O (e*) random colorings, we go through a k-perfect family +
of functions V (G) — [k]. If there is a solution = The internal vertices S are
colorful for at least one h € H = Algorithm outputs “YES".

Theorem: There is a k-perfect family of functions [n] — [k] having size
20) logn.

= There is a deterministic 2°®) . n® time algorithm for the k-PATH prob-
lem.

EPT aigor
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Method 2: Dyanamic Programming

We introduce 2* - |V (G)| Boolean variables:

z(v,C) = TRUE forsome v € V(G) and C C [k]
h
There is an s-v path where each color in C appears exactly
once and no other color appears.

Clearly, z(s, ) = TRUE. Recurrence for vertex v with color r:

2(©,0)= \/ a(u,C\{r})

wv€E(G)

If we know every z (v, C) with |C| = 4, then we can determine every z(v, C)
with |C| = i + 1 = All the values can be determined in time O(2* - |E(G)|).

There is a colorful s-t path < x(v, [k]) = TRUE for some neighbor of ¢.

EPT alg
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k-DISJOINT TRIANGLES

Task: Given a graph G and an integer k, find k vertex disjoint triangles.
Step 1: Choose a random coloring V (G) — [3k].

Step 2: Check if there is a colorful solution, where the 3k vertices of the k
triangles use distinct colors.

Method 1: try every permutation = of [3k] and check if there are triangles
with colors (7 (1), w(2), 7(3)), (7(4),w(5), 7(6)), ...

Method 2: dynamic programming. For C C [3k] and |C| = 31, let
«(C) = TRUE if and only if there are |C|/3 disjoint triangles using exactly
the colors in C.

z(C) = \Y (z(C\ {c1, c2,¢ca}) A A with colors ci, ca, cs)
{e1,e2,e3}CC
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k-DISJOINT TRIANGLES

Step 3: Colorful solution exists with probability at least e ~3*

bound on the probability of a correct answer.

, Which is a lower

Running time: constant error probability after e3* repetitions = running time
is 0" ((2€)**) (using Method 2).

Derandomization: 3k-perfect family of functions instead of random coloring.
o(1)

Running time is 2°®) . n/
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Matroid Theory
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Color coding

We have seen that color coding can be used to find paths, cycles of length k,
or a set of k disjoint triangles.

What other structures can be found efficiently with this technique?
The key is treewidth:

Theorem: Given two graph H, G, it can be decided if H is a subgraph of G in
time 20 (VUDD .|y (G)|°™), where w is the treewidth of G.

Thus if H belongs to a class of graphs with bounded treewidth, then the
subgraph problem is FPT.
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Matroid Theory

Matroids: a classical subject of combinatorial optimization.

Matroids lurk behind matching, flow, spanning tree, and some linear
algebra problems.

A general FPT result that can be used to show that some concrete
problems are FPT.

EPT algorithmic techniques - p.62197



Matroids

Definition: A set system M over E is a matroid if

1 0eMmM.

@ fXeMandY C X,thenY € M.

@) fX,Y € Mand|X| > |Y]| then3e € X suchthatY U {e} € M.

Example: M = {0,1, 2, 3,12, 13} is a matroid.
Example: M = {0, 1, 2,12, 3} is not a matroid.

If z € M, then we say that X is independent in matroid M.
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Linear matroids

Fact: Let A be matrix and let E be the set of column vectors in A. The
subsets E’ C E that are linearly independent form a matroid.

Proof:
(1) and (2) are clear.

(3) If | X| > |Y'| and both of them are linearly independent, then X spans a
subspace with larger dimension than Y. Thus X contains a vector v not
spanned by Y = Y U {v} is linearly independent.

Example:

o)

= M = {0,a,b,c,d,ab, ac, ad, be,bd}

o = 2
= o o
o w K
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Transversal matroid

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be
covered by a matching form a matroid.

by b2 bs ba bs
(1) The empty set can be clearly covered.
(2) If X can be covered, then every subset Y C X can be covered.
(3) Suppose | X| > |Y| and they are covered by matchings Mx and My,
respectively. There is a component of Mx U My containing more red edges

than blue edges. We can augment My along this path.
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Representation

If M is the matroid of the columns of a matrix A, then A is a
representation of M.

If A is a matrix over a field F, then M is representable over F.
If M is representable over some field F, then M is linear.

There are non-linear matroids (i.e., they cannot be represented over any
field).
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Transversal matroids are linear

Fact: Let G(A, B; E) be a bipartite graph. Those subsets of A that can be
covered by a matching form a linear matroid.

ax az as aa as

@ e o b ?

b2 ?
bs 0
ba d
by b2 bz ba b bs 0

Construct the bipartite adjacency matrix: if a; and b; are neighbors, then the
i-th element of row j is a random integer between 1 and V.

Elements can be matched = The determinant is nonzero with high probability
(Schwartz-Zippel)
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RELIABLE TERMINALS

Let D be a directed graph with a source vertex s and a subset T of vertices.

Task: Select k terminals t1,...,tx € T, and £ paths from s to each ¢; such
that these k - £ paths are pairwise internally vertex disjoint.

Theorem: The problem can be solved in randomized time f (k, £) - n®®,
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FPT result

Main result: Let M be a linear matroid over E, given by a representation A.
Let S be a collection of subsets of E, each of size at most £. It can be decided
in randomized time £ (k, £) - n®® whether M has an independent set that is
the union of k disjoint sets from S.

Immediate application: k-DISJOINT TRIANGLES is (randomized) FPT (let S
be the set of all triangles in the graph).

Two not so obvious applications:
RELIABLE TERMINALS

ASSIGNMENT WITH COUPLES
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RELIABLE TERMINALS

A technical trick: replace each t € T with £ copies, and replace s with a set S

of k - £ copies.

k=2,0=3
Now if a terminal ¢ is selected, then we should connect the £ copies of ¢ with £
different vertices of S.

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those
subsets X that can be reached from S by disjoint paths form a matroi
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RELIABLE TERMINALS

Fact: [Perfect] Let D be a directed graph and S a subset of vertices. Those
subsets X that can be reached from S by disjoint paths form a matroid.

The problem is equivalent to finding k blocks whose union is independent in
this matroid = We can solve it in randomized time f (k, £) - n®®.

The matroid is actually a transversal matroid of an appropriately defined bipar-

tite graph, hence it is linear and we can construct a representation for it.
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ASSIGNMENT WITH COUPLES

J: jobs, S: singles, C: couples
Let X C J be in M if and only if S has a matching with J \ X.
Lemma: M is matroid.

Let M’ be the matroid over J U C' suchthat X € M’ <& X NJ € M.

For each couple ¢ € C and suitable pair {j1, j2}, add triple {c, j1,j2} t0 S.

The k couples and all the singles can be a assigned a job

ki3
There are k disjoint triples in & whose union is independent in M’
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ASSIGNMENT WITH COUPLES

Task: Assign people to jobs (bipartite matching).

However, the set of people includes couples and the members of a couple
cannot be assigned independently (say, they want to be in the same town).

Task: Given

a set of singles and a list of suitable jobs for each single,

a set of couples and a list of suitable pairs of jobs for each couple,
assign a job to each single and a pair of jobs to each couple.

Theorem: ASSIGNMENT WITH COUPLES is randomized FPT parameterized by
the number k of couples.
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Cut problems
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MULTIWAY CUT

Task: Given a graph G, a set T of vertices, and an integer k, find a set S of at
most k edges that separates T (each component of G \ S contains at most
one vertex of T).

Polynomial for |T'| = 2, but NP-hard for |T'| = 3.

Theorem: MULTIWAY cuUT is FPT parameterized by k.

d(R): set of edges leaving R
A(X,Y): minimum number of edges in an (X, Y')-separator
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Submodularity

Consequence: There is a unique maximal Rmnax 2 X such that 6 (Rmax) is an
(X, Y )-separator of size A(X,Y).

Proof: Let Ry, R2 2 X be two sets such that 6(R1), 6(R2) are
(X, Y)-separators of size A := A(X,Y).

&)
,»

N

EC@H:JrEEN:WEQwﬂDwmv_+_2mﬂcmwv_
by A > A

= [6(R1UR2)| < A

Note: Analogous result holds for a unique minimal Ryin.
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Submodularity

Fact: The function § is submodular: for arbitrary sets A, B,

[6(A) + 16(B)] = [6(ANB)| + [6(AUB)|

Proof: Determine separately the contribution of the different types of edges.

2\
@
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MULTIWAY CUT

Intuition: Considerat € T'. A subset of the solution separates t and T\ {¢}.

There are many such separators.

But a separator farther from ¢ and closer to T\ {t} seems to be more useful.
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Important separators

Definition: An (X, Y)-separator §(R) (R 2 X) is important if there is no
(X,Y)-separator §(R’) with R C R’ and |6(R’)| < |6(R)|.

Important separators

Lemma: There are at most 4* important (X, Y')-separators of size at most k.

Example:

There are exactly 2%/ important (X, Y )-separators of size at most k in this
graph.
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Important separators

Lemma: Lett € T. The MULTIWAY CUT problem has a solution S such that S
contains an important (¢, T\ {t})-separator.

Proof: Let R be the vertices reachable fromtin G \ S.

If §(R) is not important, then there is an important separator §(R’) that
dominates it. Replace S with S’ := (S \ §(R)) US(R’) (|1S’] < |S)).

Awu-v pathin G \ S’ implies a u-t path, a contradiction.
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Important separators

Lemma: There are at most 4* important (X, Y')-separators of size at most k.
Proof: First we show that Rmax C R for every important separator § (R).

_253_4{_25_w_imazzmv_Jf_&mazcmv_
A > A
4
[6(Rmax U R)| < |6(R)|
4
If R # Rmax U R, then §(R) is not important.

Thus the important (X, Y')- and (Rmax, Y')-separators are the same.

techniques - p82197



Important separators

Lemma: There are at most 4* important (X, Y')-separators of size at most k.

Rmax
The edge uv leaving Rmax is either in the separator or not.

Branch 1: Edge ww is in the separator. Delete uv and set k := k — 1.
= k decreases by one, X decreases by at most 1.

Branch 2: Edge ww is not in the separator. Set X := Rmax U {v}.

= k remains the same, X increases by 1.

The measure 2k — X decreases in each step.
= Height of the search tree < 2k = < 22* important separators.

EPT algorithmic techniques - p&397

Other separation problems

Some other variants:
|T| as a parameter
MULTITERMINAL CUT: pairs (s1,t1), ..., (se,te) have to be separated.
Directed graphs
Planar graphs

Useful for deletion-type problems such as DIRECTED FEEDBACK VERTEX
SET (via iterative compression).

Important separators: is it relevant for a given problem?

EPT algorithmic techniques — p.85/97

w NP

[N

.SetG:=G\Sandk:=k —

Algorithm for MULTIWAY CUT

. If every vertex of T is in a different component, then we are done.
. Lett € T be a vertex with that is not separated from every T \ {t}.

. Branch on a choice of an important ({t}, T \ {t}) separator S of size at

most k.

. Go to step 1.

Size of the search tree:

When searching for the important separator, 2k — A decreases at each
branching.

When choosing the next ¢, A changes from 0 to positive, thus 2k — A does
not increase.

Size of the search tree is at most 22*.
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Integer Linear Programming
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Integer Linear Programming

Linear Programming (LP): important tool in (continuous) combinatorial
optimization. Sometimes very useful for discrete problems as well.

max c1Ti + c2x2 + c3x3

s.t.
1+ 5xz —x3 < 8
2z, —x3 <0

3z5 + 10@3 < 10

T1, T2, T3 € R

Fact: It can be decided if there is a solution (feasibility) and an optimum solution
can be found in polynomial time.
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CLOSEST STRING

Task: Given strings s, ..., sk of length L over alphabet 3, and an integer d,
find a string s (of length L) such that d(s, s;) < dforevery1 < i < k.

Note: d(s, s;) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by k is FPT.
Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.
Theorem: CLOSEST STRING is NP-hard for & = {0, 1}.
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Integer Linear Programming

Integer Linear Programming (ILP): Same as LP, but we require that every x;
is integer.

Very powerful, able to model many NP-hard problems. (Of course, no
polynomial-time algorithm is known.)

Theorem: ILP with p variables can be solved in time p®®) . n©@)

EPT alg
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CLOSEST STRING

An instance with k = 5 and a solution for d = 4:

s3 CBDCCACBB

s2 ABDBCABDB

s3 CDDBACCBD

s4 DDABACCBD

ss ACDBDDCBC

ADDBCACBD

Each column can be described by a partition P of [k].
The instance can be described by an integer cp for each parti
ber of columns with this type.

n P: the num-
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CLOSEST STRING

Each column can be described by a partition P of [k].
The instance can be described by an integer cp for each partition P: the
number of columns with this type.

Describing a solution: If C is a class of P, let zp,c be the number of type P
columns where the solution agrees with class C.

There is a solution iff the following ILP has a feasible solution:

MU zp,c < cp Vpartition P
CeP
> apoc<d Vi<i<k
igC,CEP
zp,c >0 vP,C

Number of variables is < B(k) - k, where B(k) is the no. of partitions of [k]
= The ILP algorithm solves the problem in time f (k) - n®®).
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STEINER TREE

Task: Given a graph G with weighted edges and a set S of k vertices, find a
tree T' of minimum weight that contains S.

Known to be NP-hard. For fixed k, we can solve it in polynomial time: we can
guess the Steiner points and the way they are connected.

Theorem: STEINER TREE is FPT parameterized by k = |S]|.
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STEINER TREE
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STEINER TREE

Solution by dynamic programming. Forv € V(G) and X C S,
¢(v, X) := minimum cost of a Steiner tree of X that contains v
d(u,v) := distance of w and v

Recurrence relation:

e(0,X) = min  e(u, X'\ W)+ c(u, (X \ X') \ w) + d(u,v)
ocx’'cx
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STEINER TREE

Recurrence relation:

(v, X) = min e(u, X'\ w) + c(u, (X \ X') \ u) + d(u,v)
oCcx’cx

NS
<: Atree Ty realizing c(u, X’ \ u), a o
tree T; realizing c¢(u, (X \ X’) \ u), and .' »ﬂ\
the path uwv gives a (superset of a) Steiner “\V«‘N

S

tree of X containing v. v
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STEINER TREE

Recurrence relation:

c(v,X) = min c(u, X"\ u) +e(u, (X \ u) \ X) + d(u,v)
uEV(G)
oCxX’'cx
Running time:
2*|V (G)| variables c(v, X ), determine them in increasing order of | X |.
Variable ¢(v, X) can be determined by considering 2!X! cases. Total number
of cases to consider:

LI ;
32 H.MUA@AVN < (1+2)F =3k

Running time is O* (3*).

Note: Running time can be reduced to O* (2*) with clever techniques.
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STEINER TREE

Recurrence relation:

(v, X) = min " c(u, X'\ ) + e(u, (X \ X') \ w) + d(u, v)
Pcx’‘cx

>: Suppose T realizes c(v, X), let T’ be
the minimum subtree containing X . Let u
be a vertex of T’ closest to v. If | X| > 1,
then there is a component C of T' \ u that
contains a subset ® C X’ C X of termi-
nals. Thus T is the disjoint union of a tree
containing X’ \ w and u, a tree containing
(X \ X’)\ uand u, and the path uv.
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Conclusions

Many nice techniques invented so far — and probably many more to come.
A single technique might provide the key for several problems.
How to find new techniques? By attacking the open problems!
Needed: flexible, highly expressive problems. Solve other problems by
reduction to these problems.
Courcelle’s Theorem
The matroid result
2SAT DELETION: given a 2SAT formula and an integer k, delete k
clauses to make it satisfiable
Constraint Satisfaction Problems
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Abstract

Through this lecture note we try to provide a portal into the emerging filed of ker-
nelization. We exhibit through examples various tools to prove both lower and upper
bounds on the kernel sizes.

1 Introduction

Preprocessing (data reduction or kernelization) as a strategy of coping with hard problems is
universally used in almost every implementation. The history of preprocessing, like applying
reduction rules to simplify truth functions, can be traced back to the 1950’s [16]. A natural
question in this regard is how to measure the quality of preprocessing rules proposed for a
specific problem. For a long time the mathematical analysis of polynomial time preprocess-
ing algorithms was neglected. The basic reason for this anomaly was that if we start with
an instance I of an NP-hard problem and can show that in polynomial time we can replace
this with an equivalent instance I’ with |I'| < |I| then that would imply P=NP in classi-
cal complexity. The situation changed drastically with advent of parameterized complexity.
Combining tools from parameterized complexity and classical complexity it has become pos-
sible to derive upper and lower bounds on the sizes of reduced instances, or so called kernels.
Importance of preprocessing and the mathematical challenges it poses is beautifully expressed
in the following quote by Fellows.

It has become clear, however, that far from being trivial and uninteresting, that
pre-processing has unexpected practical power for real world input distributions,
and is mathematically a much deeper subject than has generally been understood.

Working View Point on Kernel: In parameterized complexity each problem instance
comes with a parameter k and the parameterized problem is said to admit a polynomial
kernel if there is a polynomial time algorithm (the degree of polynomial is independent of
k), called a kernelization algorithm, that reduces the input instance down to an instance
with size bounded by a polynomial p(k) in k, while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a linear
kernel. Kernelization has been extensively studied in the realm of parameterized complexity,
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resulting in polynomial kernels for a variety of problems. Notable examples include a 2k-
sized vertex kernel for VERTEX COVER [6], a 355k kernel for DOMINATING SET on planar
graphs [1], which later was improved to a 67k kernel [5], and an O(k?) kernel for FEEDBACK
VERTEX SET [18] parameterized by the solution size.

2 Basic Definitions

A parameterized problem L is a subset of ¥* x N for some finite alphabet ¥. An instance of
a parameterized problem consists of (z, k), where k is called the parameter. A central notion
in parameterized complexity is fized parameter tractability (FPT) which means for a given
instance (z, k) solvability in time f(k) - p(|z|), where f is an arbitrary function of k and p
is a polynomial in the input size. The notions of kernelization and composition are formally
defined as follows.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameterized problem
Q C ¥* x N is an algorithm that, given (z,k) € X* x N, outputs in time polynomial in
|z| + &k a pair (@', k") € £* x N such that (a) (z,k) € Q if and only if (z'. k') € Q and (b)
|2'|+ &' < g(k), where g is an arbitrary computable function. The function g is referred to as
the size of the kernel. If g is a polynomial function then we say that @ admits a polynomial
kernel.

We close with some definitions from graph theory. Let G = (V, E) be a graph. For a
vertex v in G, we write Ng(v) to denote the set of v’s neighbors in G, and we write degg(v)
to denote the degree of v, that is, the number of v’s neighbors in G. If it is clear from
the context which graph is meant, we write N(v) and deg(v), respectively, for short. A
graph G' = (V' E') is a subgraph of G if V/ C V and E' C E. The subgraph G’ is called
an induced subgraph of G if E' = {{u,v} € E | u,v € V'}, in this case, G’ is also called the
subgraph induced by V' and denoted with G[V']. A vertex v dominates a vertex u if u € N (v).

3 Upper Bound Machinery

‘We illustrate the method of kernelization using the parameterized version of MAX3SAT where
given a boolean 3-CNF formula and an integer parameter k, we would like to know whether
there is an assignment to the variables that satisfies at least k of the clauses. Our other
examples in this Section include a kernel for d-HITTING SET using the Sunflower Lemma, a
4k sized kernel for VERTEX COVER using crown decomposition and a 2* kernel for (EDGE)
CLIQUE COVER.

3.1 Max3Sat

Let F be a given boolean CNF 3-SAT formula with n variables and m clauses. t is well known
that in any boolean CNF formula, there is an assignment that satisfies at least half of the
clauses (given any assignment that doesn’t satisfy half the clauses, its bitwise complement
will). So if the parameter k is less than m/2, then there is an assignment to the variables
that satisfies at least k of the clauses. Otherwise, m < 2k, and so n < 6k.



3.2 d-Hitting Set

In this Section we give a kernelization algorithm for the d-HITTING SET problem which is
defined as follows:

d-HITTING SET (d-HS) : Given a collection C of d element subsets of an universe
U and a positive integer k, the problem is to determine whether there exists a
subset U’ C U of size at most k such that U’ contains at least one element from
each set in C.

Our kernelization algorithm is based on the following widely used Sunflower Lemma. We
first define the terminology used in the statement of the lemma. A sunflower with k petals
and a core Y is a collection of sets Sy, 55 ---S;, such that S; N S; =Y for all i # j; the sets
S; —Y are petals and we require that none of them be empty. Note that a family of pairwise

disjoint sets is a sunflower (with an empty core).

Lemma 1 ([10]). [Sunflower Lemma] Let . be a family of sets over an universe % each
of cardinality s. If | F| > sl(k — 1)° then .F contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in the size of F and % .

Now we are ready to prove the following theorem about kernelization for d-HS.

Theorem 1. d-HS has a kernel of size O(k%d\d?). That is, given an instance (U,C,k) of d-
HS, we can replace it with an equivalent instance (U,C', k') with |C'] < O(k%d\d) in polynomial
time.

Proof. The crucial observation is that if C contains a sunflower S = {5y, , Sg41} of car-
dinality k£ + 1 then every hitting set of C of size at most k must intersect with the core Y of
the sunflower S, otherwise we will need hitting set of size more than k. Therefore if we let
C'=(CUY)\ S then the instance (U,C, k) and (U,C’, k) are equivalent.

Now we apply the Sunflower Lemma for all &' € {1,--- ,d}, repeatedly replacing sunflow-
ers of size at least k+ 1 with their cores until the number of sets for any fixed d’ € {1, ,d}
is at most O(k¥d"!). Summing over all d we obtain the desired kernel of size O(kd!d). [

3.3 Crown Decomposition : Vertex Cover

In this Section we introduce a crown decomposition based kernelization for VERTEX COVER.
It is based on a connection between matchings and vertex cover which is that the maximum
size of a matching is a lower bound for the minimum cardinality vertex cover. We first define
VERTEX COVER precisely as follows.

VERTEX COVER (VC): Given a graph G = (V, F)) and a positive integer k, does there
exist a subset V' C V of size at most k such that for every edge (u,v) € E either u € V'
orveV.

VERTEX COVER can be modelled as 2-HS with universe U = V and C = {{u,v} | (wv) €
E} and hence using Theorem 1 we get a kernel with at most 4k? edges and 8k2 vertices.
Here we give a kernel with at most 4k vertices.

Now we define crown decomposition.



Definition 2. A crown decomposition of a graph G = (V. E) is a partitioning of V as C, H
and R, where C' and H are nonempty and the partition satisfies the following properties.

1. C is an independent set.
2. There are no edges between vertices of C and R, that is N[C]N R = 0.

3. Let E' be the set of edges between vertices of C and H. Then E' contains a matching
of size |H|, that is the bipartite subgraph G' = (C'U H, E') has a matching saturating
all the vertices of H.

We need the following lemma by Chor et. al. [7] which makes it possible to find a crown
decomposition efficiently.
Lemma 2. If a graph G = (V, E) has an independent set I CV such that |N(I)| < |I|, then
a crown decomposition (C,H, R) of G such that C C I can be found in time O(m+n), given
G and I.

The crown-decomposition gives us a global method to reduce the instance size. Its im-

portance is evident from the following simple lemma.

Lemma 3. Let (C,H,R) be a crown decomposition of a graph G = (V,E). Then G has a
vertex cover of size k if and only if G' = G[R] has a vertex cover of size k' =k — |H|.

Proof. Suppose G has a vertex cover V' of size k in G. Now, we have a matching of size |H|
between C' and H that saturates every vertex of H. Thus [V/N(HUC)| > |H|, as any vertex
cover must pick one vertex form each of the matching edge. Hence the number of vertices in
V' covering the edges not incident to H U C' is at most k — |H|, proving one direction of the
result.

For the other direction, it is enough to observe that if V" is a vertex cover of size k — |H|
for G’ then V" U H is a vertex cover of size k for G. O

Theorem 2. Vertex Cover has a kernel of size 4k.

Proof. Given an input graph G = (V,E) and a positive integer k, we do as follows. We
first find a maximal matching M of G. Let V(M) be the set of endpoints of edges in M.
Now if |V/(M)| > 2k, we answer NO and stop as any vertex cover must contain at least one
vertex from each of the matching edges and hence has size more than k. Now we distinguish
two cases based on the size of |V — V(M)|. If |V — V(M)| < 2k, then we stop as we have
obtained a kernel of size at most 4k. Else [V — V(M)| > 2k. In this case we have found an
independent set I = V' — V(M) such that |[N(I)| < |V(M)| < |I| and hence we can apply
Lemma 2 to obtain a crown decomposition (C, H, R) of G. Given a crown decomposition
(C,H, R), we apply Lemma 3 and obtain a smaller instance for a vertex cover with G’ = G[R)]
and parameter k' = k — |H|. Now we repeat the above procedure with this reduced instance
until either we get a NO answer or we have |V — V(M)| < 2k resulting in a kernel of size
4k. O

The bound obtained on the kernel for VERTEX COVER in Theorem 2 can be further
improved to 2k with much more sophisticated use of crown decomposition. An alternate
method to obtain a 2k size kernel for VERTEX COVER is through a Linear Programming
formulation of VERTEX COVER. See [10] and [15] for further details on Linear Programming
based kernelization of VERTEX COVER.



3.4 Clique Cover

Unfortunately, not all known problem kernels are shown to have polynomial size. Here, we
present some data reduction results with exponential-size kernels. Clearly, it is a pressing
challenge to find out whether these bounds can be improved to polynomial ones.

In this section, we study the (EDGE) CLIQUE COVER problem, where the input consists
of an undirected graph G = (V, E) and a nonnegative integer k and the question is whether
there is a set of at most k cliques in G such that each edge in E has both its endpoints in at
least one of the selected cliques.

Given an n-vertex and m-edge graph G, we use N(v) to denote the neighborhood of
vertex v in G, namely, N(v) := {u | {u,v} € E}. The closed neighborhood of vertex v,
denoted by N|[v], is equal to N(v) U{v}.

We formulate data reduction rules for a generalized version of (EDGE) CLIQUE COVER
in which already some edges may be marked as “covered”. Then, the question is to find a
clique cover of size k that covers all uncovered edges. We apply the following data reduction
rules [14]:

1. Remove isolated vertices and vertices that are only adjacent to covered edges.

2. If an uncovered edge {u,v} is contained in exactly one maximal clique C, that is, if the
common neighbors of u and v induce a clique, then add C' to the solution, mark its edges
as covered, and decrease k by one.

w

. If there is an edge {u, v} whose endpoints have exactly the same closed neighborhood, that
is, N[u] = N[v], then mark all edges incident to u as covered. To reconstruct a solution
for the non-reduced instance, add u to every clique containing v.

The correctness of the rules is easy to prove. To show the following problem kernel, only
the first and third rule are needed.

Theorem 3 ([14]). (EpGE) CLIQUE COVER admits a problem kernel with at most 28 ver-
tices.

Proof. Consider any graph G = (V, E) with more than 2¥ vertices that has a clique cover C, ...

of size k. We assign to each vertex v € V' a binary vector b, of length k where bit ¢, 1 <1i <k,
is set to 1 iff v is contained in clique Cy. Since there are only 2¥ possible vectors, there must
be u # v € V with b, = b,. If b, and b, are zero, the first rule applies; otherwise, u and v
are contained in the same cliques. This means that u and v are connected and share the
same neighborhood, and thus the third rule applies. O

4 Lower Bound Machinery

It is easy to see that if a decidable problem admits an f(k) kernel for some function f, then
the problem is FPT. Interestingly, the converse also holds, that is, if a problem is FPT then
it admits an f(k) kernel for some function f [15]. The proof of this fact is quite simple, and
we present it here.

Fact 1 (Folklore, [15]). If a parameterized problem 11 is FPT then II admits an f(k) kernel
for some function f.



Proof. Suppose there is a decision algorithm for IT running in f(k)n® time for some function
f and constant ¢. Given an instance (I, k) with |I| = n, if n > f(k) then we run the decision
algorithm on the instance in time f(k)n® < n°t!. If the decision algorithm outputs yes, the
kernelization algorithm outputs a constant size yes instance, and if the decision algorithm
outputs no, the kernelization algorithm outputs a constant size no instance. On the other
hand, if n < f(k) the kernelization algorithm just outputs (I, k). This yields an f(k) kernel
for the problem. O

Fact 1 implies that a problem has a kernel if and only if it is fixed parameter tractable.
However, we are interested in kernels that are as small as possible, and a kernel obtained
using Fact 1 has size that equals the dependence on k in the running time of the best known
FPT algorithm for the problem. The question is - can we do better? The answer is that
quite often we can as we saw in the previous section but many times we can not. It is only
very recently that a methodology to rule out polynomial kernels has been developed [3, 12].
In this chapter we survey the tecniques that have been developed to show kernelization lower
bounds. In this section we suvey some of the recently developed techniques for showing that
problems do not admit polynomial kernels.

Consider the LONGEST PATH problem. It is well known that the LONGEST PATH problem
can be solved in time O(c*n®M) using the well known method of COLOR-CODING. Is it
feasible that it also admits a polynomial kernel? We argue that intuitively this should not
be possible. Consider a large set (Gi,k), (G2, k),..., (G, k) of instances to the LONGEST
PATH problem. If we make a new graph G by just taking the disjoint union of the graphs
Gy ...Gy we see that G contains a path of length k if and only if G; contains a path of
length k for some ¢ < t. Suppose the LONGEST PATH problem had a polynomial kernel,
and we ran the kernelization algorithm on G. Then this algorithm would in polynomial time
return a new instance (G', k') such that |V(G)| = kM, a number potentially much smaller
than t. This means that in some sense, the kernelization algorithm considers the instances
(G1,k), (G2, k) ... (G, k) and in polynomial time figures out which of the instances are the
most likely to contain a path of length k. However, at least intuitively, this seems almost
as difficult as solving the instances themselves and since the LONGEST PATH problem is
NP-complete, this seems unlikely. We now formalize this intuition.

Definition 3. [Distillation [3]]

o An OR-distillation algorithm for a language L C ¥* is an algorithm that receives as
input a sequence T1,...,xs, with x; € ¥* for each 1 < i < 't, uses time polynomial in
22:1 |zi|, and outputs y € ¥* with (a) y € L <= x; € L for some 1 < i <t
and (b) |y| is polynomial in max;<;|x;|. A language L is OR-distillable if there is a
OR-distillation algorithm for it.

e An AND-distillation algorithm for a language L C ¥* is an algorithm that receives as
input a sequence Ti,...,T, with x; € X* for each 1 < i < t, uses time polynomial
n 22:1 |zi], and outputs y € ¥* with (a) y € L <= x; € L foralll <i<t
and (b) |y| is polynomial in max;<; |z;|. A language L is AND-distillable if there is an
AND-distillation algorithm for it.



Observe that the notion of distillation is defined for unparameterized problems. Bod-
laender et al. [3] conjectured that no NP-complete language can have an OR-distillation or
an AND-distillation algorithm.

Conjecture 1 (OR-Distillation Conjecture [3]). No NP-complete language L is OR-distillable.

Conjecture 2 (AND-Distillation Conjecture [3]). No NP-complete language L is AND-
distillable.

One should notice that if any NP-complete language is distillable, then so are all of
them. Fortnow and Santhanam [12] were able to connect the OR-Distillation Conjecture
to a well-known conjecture in classical complexity. In particular they proved that if the
OR-Distillation Conjecture fails, the polynomial time hierarchy [17] collapses to the third
level, a collapse that is deemed unlikely. No such connection is currently known for the
AND-Distillation Conjecture, and for reasons soon to become apparent, a proof of such a
connection would have significant impact in Parameterized Complexity. By PH=Z% we will
denote the complexity-theoretic event that the polynomial time hierarchy collapses to the
third level.

Theorem 4 ([12]). If the OR-Distillation Conjecture fails, then PH:Eg.

We are now ready to define the parameterized analogue of distillation algorithms and
connect this notion to the Conjectures 1 and 2

Definition 4. [Composition [3]]

e A composition algorithm (also called OR-composition algorithm) for a parameterized
problem II C ¥*xN is an algorithm that receives as input a sequence ((z1,k), ..., (x4, k)),
with (;,k) € £* x NT for each 1 < i <, uses time polynomial in 22:1 |@i| + k, and
outputs (y,k') € X* x N* with (a) (y,k') € 1 <= (x;,k) € II for some 1 <i <t
and (b) k' is polynomial in k. A parameterized problem is compositional (or OR-
compositional) if there is a composition algorithm for it.

e An AND-composition algorithm for a parameterized problem I C ¥* XN is an algorithm
that receives as input a sequence ((x1,k), ..., (ze,k)), with (v;,k) € S* x NT for each
1 < i < t, uses time polynomial in 3i_, |z;| + k, and outputs (y, k') € £* x N* with
(a) (y, k') el < (z;,k) €1l for all 1 <1i <t and (b) k' is polynomial in k. A
parameterized problem is AND-compositional if there is an AND-composition algorithm
for it.

Composition and distillation algorithms are very similar. The main difference between
the two notions is that the restriction on output size for distillation algorithms is replaced
by a restriction on the parameter size for the instance the composition algorithm outputs.
We define the notion of the unparameterized version of a parameterized problem L. The
mapping of parameterized problems to unparameterized problems is done by mapping (z, k)
to the string z#1F, where # ¢ 3 denotes the blank letter and 1 is an arbitrary letter in
3. In this way, the unparameterized version of a parameterized problem II is the language
1 = {a#1* | (z,k) € I1}. The following theorem yields the desired connection between the
two notions.



Theorem 5 ([3, 12]). Let I be a compositional parameterized problem whose unparameterized
version 11 is NP-complete. Then, if II has a polynomial kernel then PH:Eg. Sim@arlg/, let
II be an AND-compositional parameterized problem whose unparameterized version II is NP-
complete. Then, if II has a polynomial kernel the AND-Distillation Conjecture fails.

We can now formalize the discussion from the beginning of this section.
Theorem 6 ([3]). LONGEST PATH does not admit a polynomial kernel unless PH=X3.

Proof. The unparameterized version of LONGEST PATH is known to be NP-complete [13].
We now give a composition algorithm for the problem. Given a sequence (G1,k) ... (G, k)
of instances we output (G, k) where G is the disjoint union of Gy ...G;. Clearly G contains
a path of length k if and only if G; contains a path of length & for some i < t. By Theorem 5
LONGEST PATH does not have a polynomial kernel unless PH:Z‘g. O

An identical proof can be used to show that the LONGEST CYCLE problem does not admit
a polynomial kernel unless PH:E%. For many problems, it is easy to give AND-composition
algorithms. For instance, the “disjoint union” trick yields AND-composition algorithms
for the TREEWIDTH, CUTWIDTH and PATHWIDTH problems, among many others. Coupled
with Theorem 5 this implies that these problems do not admit polynomial kernels unless
the AND-Distillation Conjecture fails. However, to this date, there is no strong complexity
theoretic evidence known to support the AND-Distillation Conjecture. Therefore it would
be interesting to see if such evidence could be provided.

For some problems, obtaining a composition algorithm directly is a difficult task. Instead,
we can give a reduction from a problem that provably has no polynomial kernel unless PH:Ef7
to the problem in question such that a polynomial kernel for the problem considered would
give a kernel for the problem we reduced from. We now define the notion of polynomial
parameter transformations.

Definition 5 ([4]). Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P <py, Q, if there exists a polynomial time computable
function f : ¥* x N — ¥* x N and a polynomial p, such that for all (z,k) € ¥* x N (a)
(x,k) € P if and only (2/,K') = f(z,k) € Q and (b) k' < p(k). The function f is called
polynomial parameter transformation.

Proposition 1 ([4]). Let P and Q be the parameterized problems and P and Q be the
unparameterized versions of P and Q respectively. Suppose that P is NP-complete and Q is
in NP. Furthermore if there is a polynomial parameter transformation from P to Q, then if
Q@ has a polynomial kernel then P also has a polynomial kernel.

Proposition 1 shows how to use polynomial parameter transformations to show kernel-
ization lower bounds. A notion similar to polynomial parameter transformation was inde-
pendently used by Fernau et al. [9] albeit without being explicitly defined. We now give an
example of how Proposition 1 can be useful for showing that a problem does not admit a
polynomial kernel. In particular, we show that the PATH PACKING problem does not admit
a polynomial kernel unless PH:Eg. In this problem you are given a graph G together with
an integer k and asked whether there exists a collection of k mutually vertex-disjoint paths
of length k in G. This problem is known to be fixed parameter tractable [2] and is easy to
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see that for this problem the “disjoint union” trick discussed earlier does not directly apply.
Thus we resort to polynomial parameter transformations.

Theorem 7. PATH PACKING does not admit a polynomial kernel unless PH=ES‘

Proof. We give a polynomial parameter transformation from the LONGEST PATH problem.
Given an instance (G, k) to LONGEST PATH we construct a graph G’ from G by adding k — 1
vertex disjoint paths of length k. Now G contains a path of length k if and only if G’ contains
k paths of length k. This concludes the proof. O

Now we give several non-trivial applications of this framework developed by Bodlaender et
al. [3] and Fortnow and Santhanam [12]. In particular we describe a “cookbook” for showing
kernelization lower bounds using explicit identification. We then apply this cookbook to show
that a wide variety of problems do not admit polynomial kernels. To show that a problem
does not admit a polynomial size kernel we go through the following steps.

1. Find a suitable parameterization of the problem considered. Quite often parameteri-
zations that impose extra structure make it easier to give a composition algorithm.

2. Define a suitable colored version of the problem. This is in order to get more control
over how solutions to problem instances can look.

3. Show that the colored version of the problem is NP-complete.

4. Give a polynomial parameter transformation from the colored to the uncolored version.
This will imply that if the uncolored version has a polynomial kernel then so does
the colored version. Hence kernelization lower bounds for the colored version directly
transfer to the original problem.

wt

. Show that the colored version parameterized by k is solvable in time 25 - n®® for a
fixed constant c.

6. Finally, show that the colored version is compositional and thus has no polynomial
kernel. To do so, proceed as follows.

(a) If the number of instances in the input to the composition algorithm is at least 2
then running the parameterized algorithm on each instance takes time polynomial
in input size. This automatically yields a composition algorithm.

If the number of instances is less than 2, every instance receives an unique

=
=

identifier. Notice that in order to uniquely code the identifiers (ID) of all instances,
k¢ bits per instance is sufficient. The IDs are coded either as an integer, or as a
subset of a poly(k) sized set.

A
o
~

Use the coding power provided by colors and IDs to complete the composition
algorithm.

In the following sections we show how to apply this approach to show incompressibility and
kernelization lower bounds for a variety of problems.



4.1 Steiner Tree, Variants of Vertex Cover, and Bounded Rank Set Cover

The problems STEINER TREE, CONNECTED VERTEX COVER (CONVC), CAPACITATED
VERTEX COVER (CAPVC), and BOUNDED RANK SET COVER are defined as follows. In
STEINER TREE we are given a graph a graph G = (T'U N, E) and an integer k and asked for
a vertex set N/ C N of size at most k such that G[T'U N'] is connected. In CoNVC we are
given a graph G = (V, E)) and an integer k and asked for a vertex cover of size at most k that
induces a connected subgraph in G. A wvertex cover is a set C' C V such that each edge in F
has at least one endpoint in C. The problem CAPVC takes as input a graph G = (V, E), a
capacity function cap : V — NT and an integer k, and the task is to find a vertex cover C
and a mapping from E to C in such a way that at most cap(v) edges are mapped to every
vertex v € C. Finally, an instance of BOUNDED RANK SET COVER consists of a set family F
over a universe U where every set S € F has size at most d, and a positive integer k. The
task is to find a subfamily ' C F of size at most k such that Uge S = U. All four problems
are known to be NP-complete (e.g., see [13] and the proof of Theorem 8); in this section, we
show that the problems do not admit polynomial kernels for the parameter (|T],k) (in the
case of STEINER TREE), k (in the case of CONVC and CAPVC), and (d, k) (in the case of
BoUNDED RANK SET COVER), respectively. To this end, we first use the framework pre-
sented at the beginning of this chapter to prove that another problem, which is called RBDS,
does not have a polynomial kernel. Then, by giving polynomial parameter transformations
from RBDS to the above problems, we show the non-existence of polynomial kernels for
these problems.

In RED-BLUE DOMINATING SET (RBDS) we are given a bipartite graph G = (TUN, E)
and an integer k and asked whether there exists a vertex set N’ C N of size at most k such
that every vertex in T has at least one neighbor in N’. We show that RBDS parameterized
by (|T|,k) does not have a polynomial kernel. In the literature, the sets T' and N are
called “blue vertices” and “red vertices”, respectively. In this paper we will call the vertices
“terminals” and “nonterminals” in order to avoid confusion with the colored version of the
problem that we are going to introduce. RBDS is equivalent to SET COVER and HITTING
SET and is, therefore, NP-complete [13].

In the colored version of RBDS, denoted by COLORED RED-BLUE DOMINATING SET
(CoL-RBDS), the vertices of N are colored with colors chosen from {1,...,k}, that is, we
are additionally given a function col: N — {1,...,k}, and N’ is required to contain exactly
one vertex of each color. We will now follow the framework described at the beginning of
this chapter.

Lemma 4. (1) The unparameterized version of COL-RBDS is NP-complete. (2) There
is a polynomial parameter transformation from CoL-RBDS to RBDS. (3) CoL-RBDS is
solvable in 275 T U N[O time.

Proof. (1) It is easy to see that COL-RBDS is in NP. To prove its NP-hardness, we reduce
the NP-complete problem RBDS to CoL-RBDS: Given an instance (G = (T'U N, E), k) of
RBDS, we construct an instance (G' = (TUN', E'), k, col) of CoL-RBDS where the vertex
set N’ consists of k copies v?,...,v* of every vertex v € V, one copy of each color. That is,

N' = Uaeq,... .k {v® [ v € N}, and the color of every vertex v* € Nq is col(v®) = a. The edge
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set B’ is given by

E= |J {{uwv}lueTrae{l,. .. k}Af{uv} € B}
ae{l,...k}

Now, there is a set S C N of size k dominating all vertices in T" in G if and only if in G’,
there is a set S’ C N’ of size k containing one vertex of each color.

(2) Given an instance (G = (T'U N, E),k, col) of CoL-RBDS, we construct an in-
stance (G’ = (I" U N,E’), k) of RBDS. The set 17" consists of all vertices from 7" plus
k additional vertices 21, ...,2;. The edge set E’ consists of all edges from E plus the edges

{{za,v} lae{l,...,k} NveN A collv) =a}.

Now, there is a set S’ C N’ of size k dominating all vertices in 7" in G’ if and only if in G,
there is a set S C N of size k containing one vertex of each color.

(3) To solve CoL-RBDS in the claimed running time, we first use the reduction given
in (2) from CoL-RBDS to RBDS. The number |T”| of terminals in the constructed instance
of RBDS is |T'|+ k. Next, we transform the RBDS instance (G', k) into an instance (F, U, k)
of SET COVER where the elements in U one-to-one correspond to the vertices in 7" and the
sets in F one-to-one correspond to the vertices in N. Since SET COVER can be solved
in 0211 |U] - |F|) time [11, Lemma 2], statement (3) follows.

O
Lemma 5. CoL-RBDS parameterized by (|T|, k) is compositional.
Proof. Given a sequence
(G1 = (T1U N1, Ex), k, coly), ..., (Gy = (Tt U Ny, Ey), K, coly)
of CoL-RBDS instances with |T1| = |T3| = ... = |T;| = p, we show how to construct a

CoL-RBDS instance (G = (T'UN, E), k, col) as described in Definition 4.

For i € {1,...,t}, let T; := {u’l,u;} and N; = {Ui",...,?};}. We start with
adding p vertices wuy,...,u, to the set T' of terminals to be constructed. (We will add
more vertices to T' later.) Next, we add to the set N of nonterminals all vertices from
the vertex sets Ni,..., Ny, preserving the colors of the vertices. That is, we set N =
Uicqu,..iy Vi and for every vertex vi € N we define col(v}) = coli(v}). Now, we add the
edge set Uie(l,.,.,t} {{ujl,v;Q} | {u;],v;-z} € EZ} to G (see Figure 1). The graph G and the
coloring col constructed so far have the following property: If at least one of the CoL-RBDS
instances (G1,k, coly), ..., (G, k, coly) is a yes-instance, then (G, k, col) is also a yes-instance
because if for any ¢ € {1,...,t} a size-k subset from N; dominates all vertices in T;, then the
same vertex set selected from N also dominates all vertices in 7. However, (G, k, col) may
even be a yes-instance in the case where all instances (G1,k, coly), ..., (Gy, k, coly) are no-
instances, because in G one can select vertices into the solution that originate from different
instances of the input sequence.

To ensure the correctness of the composition, we add more vertices and edges to G. We
define for every graph G; of the input sequence a unique identifier ID(G;), which consists
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Figure 1: Example for the composition algorithm for CoL-RBDS. The upper part of the
figure shows an input sequence consisting of two instances with k£ = 3 (there are three colors:
white, checkered, and black). The lower part of the figure shows the output of the composition
algorithm. For the sake of clarity, only the vertex set Wiynite black) is displayed, whereas five
other vertex sets Wq ) with a,b € {white, checkered, black} are omitted. Since k = 3 and p =
5, each ID should consist of eight numbers, and W (white,black) should contain 16 vertices. For
the sake of clarity, the displayed IDs consist of only four numbers each, and Wiynite black)
contains only eight vertices.

of a size-(p + k) subset of {1,...,2(p + k)} Since (zf_r,f)) > 2P and since we can assume
that the input sequence does not contain more than 2P** instances, it is always possible
to assign unique identifiers to all instances of the input sequence. (Note that if there are
more than 2PtF instances, then we can solve all these instances in 22:1 2tk (p+¢;)°M <
t- Z (p+a) 0(1) time, which yields a composition algorithm.) For each color pair (a,b) €
{1,... 7k} X {L,...,k} with a # b, we add a vertex set W,z = {wyl’b)7 e 7“’;;:21«)} to T,
and we add to E the edge set

{0 wlt™} [ a = collv) Ab e {1, k}\ {a} AJz € ID(G) } U
i€{l,....thj1€{l,....q:}
{{v;il,w“b)} 1b=col(v}) Aa€{l,....k}\{b} AJjs ¢ ID(Gz)}
ie{l,...,t}j1e{l,....q;}
(see Figure 1).

Note that the construction conforms to the definition of a composition algorithm; in
particular, k£ remains unchanged and the size of T is polynomial in p,k because |T| =
p+k(k—1)-2(p+k). To prove the correctness of the construction, we show that (G, k, col)
has a solution N’ C N if and only if at least one instance (G, k, col;) from the input sequence
has a solution N} C Nj.

In one direction, if N} C N; is a solution for (G;, k, col;), then the same vertex set chosen
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from N forms a solution for (G,k,col). To see this, first note that the vertices from T
are dominated by the chosen vertices. Moreover, for every color pair (a,b) € {1,...,k} X
{1,...,k} with a # b, each vertex from Wia,) is either connected to all vertices v from N;
with col(v) = a or to all vertices v from N; with col(v) = b. Since N/ contains one vertex of
each color class from N, each vertex in Wg) is dominated by a vertex from N chosen into
the solution.

In the other direction, to show that any solution N’ C N for (G,k, col) is a solution
for at least one instance (Gj, k, col;), we prove that N’ cannot contain vertices originating
from different instances of the input sequence. To this end, note that each two vertices
in N’ must have different colors. Assume, for the sake of a contradiction, that N’ contains
a vertex vﬁ with col(v;;) = a originating from the instance (Gj,, k, col;,) and a vertex v;;
with col(v}) = b originating from a different instance (Gi,, k, col;,). Due to the construction
of the IDs, we have ID(G;, ) \ID(G},) # 0 and ID(G;,) \ID(G;,) # 0. This implies that there
are vertices in W, (namely, all vertices wja’b with j € ID(Gj,) \ ID(G;,)) and vertices
in Wipq) (namely, all vertices w;vb’a) with j € ID(G;;) \ ID(G},)) that are neither adjacent
to vj“l nor to U;Z Therefore, N’ does not dominate all vertices from 7', which is a contradiction
to the fact that N’ is a solution for (G, k, col). O

Theorem 8. ([8]) RED-BLUE DOMINATING SET and STEINER TREE, both parameterized
by (|T'|, k), CONNECTED VERTEX COVER and CAPACITATED VERTEX COVER, both param-
eterized by k, and BOUNDED RANK SET COVER, parameterized by (k,d), do not admit
polynomial kernels unless PH = Ej

Proof. For RBDS the statement of the theorem follows directly by Theorem 5 together with
Lemmata 4 and 5.

To show that the statement is true for the other four problems, we give polynomial
parameter transformations from RBDS to each of them—due to Proposition 1, this suffices
to prove the statement. Let (G = (T'U N, E), k) be an instance of RBDS. To transform it
into an instance (G’ = (I" U N, E’), k) of STEINER TREE, define 7" = T U {a} where @ is
a new vertex and let £/ = EU{{a,v;} | v; € N}. It is easy to see that every solution for
STEINER TREE on (G, k) one-to-one corresponds to a solution for RBDS on (G, k).

To transform (G, k) into an instance (G” = (V”, E"), k") of COoNVC, first construct the
graph G' = (I" U N,E’) as described above. The graph G” is then obtained from G’ by
attaching a leaf to every vertex in T'. Now, G” has a connected vertex cover of size k” =
|T'| +k = |T|+ 1+ k iff G has a steiner tree containing k vertices from N iff all vertices
from T can be dominated in G by k vertices from N.

Next, we describe how to transform (G, k) into an instance (G” = (V" E"), cap, k")
of CAPVC. First, for each vertex u; € T, add a clique to G” that contains four ver-
tices ul,u}l,u?,ul. Second, for each vertex v; € N, add a vertex v/ to G”. Finally, for
each edge {u;,v;} € E with u; € T and vj € N, add the edge {u), v’} to G". The capacities
of the vertices are defined as follows: For each vertex u; € T, the vertices ull,uf, uf’ evm”
have capacity 1 and the vertex uf € V" has capacity deggm(u?) — 1. Each vertex v}” has
capacity deggm (v)”). Clearly, in order to cover the edges of the size-4 cliques inserted for the
vertices of T, every capacitated vertex cover for G’ must contain all vertices u?,u},u?,uf‘.
Moreover, since the capacity of each vertex u? is too small to cover all edges incident to u,
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at least one neighbor vf/" of uY must be selected into every capacitated vertex cover for G”.

Therefore, it is not hard to see that G’ has a capacitated vertex cover of size k"' = 4-|T|+k

iff all vertices from T can be dominated in G by k vertices from N.

Finally, to transform (G, k) into an instance (F,U, k) of BOUNDED RANK SET COVER,

add one element e; to U for every vertex u; € T. For every vertex vj € N, add one set {e; |

{ui,v;} € E} to F. The correctness of the construction is obvious, and since |U| = |T'|, every

set in F contains at most d = |T'| elements. O
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