
A Taxonomic Introduction to Exact Algorithms

Thore Husfeldt

Lecture notes for AGAPE 2009 Spring School on Fixed Parameter and
Exact Algorithms, May 25-29 2009, Lozari, Corsica (France).1

This document attempts to survey techniques that appear in exact,
exponential-time algorithmics using the taxonomy developed by Lev-
itin. The purpose is to force the exposition to adopt an alternative per-
spective over previous surveys, and to form an opinion of the flexibility
of Levitin’s framework. I have made no attempt to be comprehensive.

1Alpha release from 19 maj 2009. Errors are to be expected, and there are no references. Proceed
with caution.

1

1

Brute force

A brute force algorithm simply evaluates the definition, typically lead-
ing to exponential running times.

TSP. For a first example, given a weighted graph like

G =
1 2

3

4

5

6 7

8

9

4

5

2

with n vertices V = {v1, . . . , vn} (sometimes called “cities”) the traveling salesman
problem is to find a shortest Hamiltonian path from the first to the last city, i.e., a
path that starts at s = v1, ends at t = vn, includes every other vertex exactly once,
and travels along edges whose total weight is minimal. Formally, we want to find

min
π

n−1

∑
i=1

w(π(i), π(i + 1)) ,

where the sum is over all permutations π of {1, 2, . . . , n} that fix 1 and n. When the
weights are uniformly 1, the problem reduces to deciding if a Hamiltonian path at
all.

This above expression can be evaluated within a polynomial factor of n! op-
erations. In fact, because of certain symmetries it suffices to examine (n− 2)! per-
mutations, and each of these requires take O(n) products and sums. On the other
hand, it’s not trivial to iterate over precise these permutations in time O((n− 2)!).
We will normally want to avoid these considerations, since they only contribute
a polynomial factor, and write somewhat imprecisely O∗(n!), where O∗(f (n))
means O(nc f (n)) for some constant c.

Independent set. A subset of vertices U ⊆ V in an n-vertex graph G = (V, E)
is independent if no edge from E has both its enpoints in U. Such a set can be found
by considering all subsets (and checking independence of each), in time O∗(2n).

3-Satisfiability. A Boolean formula φ on variables x1, . . . , xn is on 3-conjunctive
normal form if it conists of a conjunction of m clauses, each of the form (a ∨ b ∨ c),
where each of the literals a, b, c is a single variable or the negation of a single vari-
able. The satisfiability problem for this class of formulas is to decide if φ admits a
satisfying assignment. This can be decided by considering all assignments, in time
O∗(2n). (Note that m can be assumed to be polynomial in n, otherwise φ would
include duplicate clauses.)

2

1. BRUTE FORCE 3

FIGURE 1. A bipartite
graph and 2 of its 3
perfect matchings.

Perfect matchings. A perfect matching in a graph G = (V, E) is an edge subset
M ⊆ E that includes every vertex as an endpoint exactly once; in other words

|M| = 1
2 |V|

⋃
M = V.

In fact, famously, a matching can be found in polynomial time, so we are inter-
ested in the counting version of this problem: how many perfect matchings does
G admit? From the definition, this still takes O∗(2m) time.

We will look at this problem for bipartite graphs as well as for general graphs.

These are all difficult problems, typically hard for NP or # P, so we cannot
expect to devise algorithms that run in polynomial time. Instead, we will improve
the exponential running time. For example, for some problems we will find vertex-
exponential time algorithms, i.e., algorithms with running time exp(O(n)) instead
of exp(O(m)) or O∗(n!) O∗(nn). Other algorithms will improve the base of the
exponent, for example from O∗(2n) to O(1.732n).

2

Greedy

A greedy algorithm does “the obvious thing” for a given ordering, the
hard part is figuring out which ordering. A canonical example is
interval scheduling.

In exponential time, we can consider all orderings. This leads to
running times around n! and is seldom better than brute force, so this
class of algorithms does not seem to play a role in exponential time
algorithmics. An important exception is given as an exercise.

4

3

Recursion

Recurrences express the solution to the problem in terms of solutions of
subproblems. Recursive algorithms compute the solution by applying
the recurrence until the problem instance is trivial.

1. Decrease and conquer

Decrease and conquer reduces the instance size by a constant, or a
constant factor. Canonical examples include binary search in a sorted
list, graph traversal, or Euclid’s algorithm.

In exponential time, we produce several smaller instances (instead
of just one), which we can use this to exhaust the search space. Maybe
“exhaustive decrease and conquer” is a good name for this variant—
this way, the technique becomes an umbrella of exhaustive search tech-
niques such as branch-and-bound.

3-Satisfiability. An instance to 3-Satisfiability includes at least one clause with
3 literals. (Otherwise it’s an instance of 2-Satisfiability, which can be solved in
polynomial time.) Pick such a clause and construct three new instances:

T??: set the first literal to true,
FT?: set the first literal to false and the second to true,
FFT: set the first two literals to false and the third to true,

These three possibilites are disjoint and exhaust the satisfying assignments. (In
particular, FFF is not a satisfying assignment.)

Q, size < n

problem P, size n

Solution to Q

Solution to P

FIGURE 1. Decrease and conquer with one (left) and many (right) subproblems.

5

2. DIVIDE AND CONQUER 6

Each of these assignments resolves the clause under consideration, and maybe
more, so some cleanup is required. In any case, the number of free variables is
decreased by at least 1, 2, or 3, respectively. We can recurse on the three resulting
three instances, so the running time satisfies

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + O(n + m) .

The solution to this recurrence is O(1.8393n). (The analysis of this type of algo-
rithm is one of the most actively researched topics in exact exponential-time algo-
rithmics and very rich.)

Independent set. Let v be a vertex of with at least three neighbours. (If no
such vertex exists, the independent set problem is easy.) Construct two new in-
stances to independent set:

G[V − v]: the input graph with v removed. If I 63 v is an independent set in
G then it is also an independent set in G[V − v].

G[V − N(v)]: the input graph with v and its neighbours removed. If I 3 v
is an independent set in G, then none of v’s neighbours belong to I, so
that I − {v} is an independent set in G[V − N(v)].

These two possibilities are disjoint and exhaust the independent sets.
We recurse on the two resulting instances, so the running time is no worse

than
T(n) = T(n− 1) + T(n− 4) + O(n + m) .

The solution to this recurrence is O(1.3803n).

TSP. Galvanized by our successes we turn to TSP.
For each T ⊆ V and v ∈ T, denote by OPT(T, v) the minimum weight of a

path from s to v that consists of exactly the vertices in T. To construct OPT(T, v)
for all s ∈ T ⊆ V and all v ∈ T, the algorithm starts with OPT({s}, s) = 0, and
evaluates the recurrence

(1) OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) .

While this is correct, there is no improvement over brute force: the running time
is given by

T(n) = n · T(n− 1)
which solves to O(n!). However, we will revisit this recurrence later.

2. Divide and conquer

The divide and conquer idea partitions the instance into two smaller
instances of roughly half the original size and solves them recursively.
Mergesort is a canonical example.

An essential question is how to partition the instance into smaller
instances. In exponential time, we simply consider all such partitions.
This leads to running times of the form

T(n) = 2nnO(1)T
(1

2 n
)
,

which is O(cn), and the space is polynomial in n. Maybe “exponential
divide and conquer” is a good name for this idea.

2. DIVIDE AND CONQUER 7

problem P, size n

Q, size n/2 R, size n/2

Solution to Q Solution to R

Solution to P

problem P, size n

Solution to P

...

...

FIGURE 2. Divide and conquer with one (left) and an exponential number (right) of
divisions.

TSP. Let OPT(U, s, t) denote the shortest path from s to t that uses exactly the
vertives in U. Then we have the recurrence

(2) OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) ,

where the minimum is over all subsets S, T ⊆ U and vertices m ∈ U such that
s ∈ S, t ∈ T, S ∪ T = U, S ∩ T = {m}, and |S| = b 1

2 nc+ 1, |T| = n− |S|+ 1.
The divide and conquer solution continues using this recurrence until the sets

U become trivial. At each level of the recursion, the algorithm considers (n −
2)(n−2
d(n−2)/2e) partitions and recurses on two instances with fewer than 1

2 n + 1 cities.
Thus, the running time is

T(n) = (n− 2) ·
(

n− 2
d(n− 2)/2e

)
· 2 · T(n/2 + 1) ,

which solves to O(4nnlog n).
The space required on each recursion level to enumerate all partitionings is

polynomial. Since the recursion depth is polynomial (in fact, logarithmic) in n, so
the algorithm uses polynomial space.

4

Transformation

Transformations compute a problem by computing a different problem
in its stead.

1. Moebius inversion

For a function f on subsets define

g(X) = ∑
Y⊆X

f (Y) .

Then
f (X) = ∑

Y⊆X
(−1)|X\Y|g(Y) .

This result is called Moebius inversion, or, in a special case, the principle of inclusion–
exclusion. For a proof see Dr. Kaski’s presentation.

TSP. We’ll do Hamiltonian path, because the idea stands cleaner.
For X ⊆ V with s, t ∈ X, let g(X) denote the number of walks of length n

from s to t using only vertices from X. (A walk can use the same vertex many
times, or once, or not at all.) Although it is not obvious, g(X) can be computed in
polynomial time for each X ⊆ V; the value is given in row s and column t of An,
where A is the adjacency matrix of G[X].

Now, let f (X) denote the number of walks of length n from s to t that use
exactly the vertices from X. In particular, f (V) is the number of Hamiltonian
paths from s to t. By Moebius inversion,

f (V) = ∑
Y⊆V

(−1)|V\Y|g(Y) .

so the number of Hamiltonian paths can be counted in time O∗(2n) and polyno-
mial space.

To make this work for TSP, we need to handle every total distance separately,
details omitted.

Perfect matchings. For Y ⊆ V Let f (Y) denote the number of ways of pick-
ing 1

2 n edges using exactly the vertices in Y (all of them); the number of perfect
matchings is then given by f (V). For a moment, let g(Y) denote the number of
ways of picking 1

2 n edges using only the vertices in Y (but not necessarily all of
them). Then, by Moebius inversion

f (V) = ∑
Y⊆V

(−1)|V\Y|g(Y) .

8

2. FINDING TRIANGLES 9

Since g(Y) is easy to compute for given Y, we can count the number of perfect
matchings in time O∗(2n).

For bipartite graphs, we can do slightly better. So, let V = L ∪ R with |L| =
|R| = 1

2 n and assume all edges have an endpoint in L and an enpoint in R. Now,
for Y ⊆ R (rather than Y ⊆ V), let g(Y) denote the number of ways of picking
1
2 n edges using all the vertices in L and some of the vertices in Y, and let f (Y)
denote the number of ways of picking 1

2 n edges using all the vertices in L and all
the vertices in Y. Then

f (V) = ∑
Y⊆R

(−1)|R\Y|g(Y) ,

in particular, the sum has only 2n/2 terms. For each Y ⊆ R, the value g(Y) is easy
enough to compute: if vertex vi ∈ L has di neighbours in R then

g(Y) = d1 · · · dn/2 .

Thus, the total running time is O∗(2n/2) = O(1.732n). See fig. 1 for an example.
In fact, this is a famous results in combinatorics, the Ryser formula for the per-

manent, often expressed in terms of a 01-matrix A of dimension k× k as

(3) per A = ∑
Y⊆{1,...,k}

(−1)k−|Y|
k

∏
i=1

∑
j∈Y

Aij.

The connection is that A is the upper right quarter of the adjacency matrix of G.

2. Finding triangles

The number of triangles of undirected d-vertex graph T is given by

1
6 tr A3 ,

where A denotes the adjacency matrix of T and tr, the trace, is the sum of the
diagonal entries. To see this, observe that the ith diagonal entry counts the number
of paths of length 3 from the ith vertex to itself, and each triangle contributes six-
fold to such entries (once for every corner, and once for every direction).

To compute A3 = A · A · A we need two matrix multiplications, which takes
time O(dω), ω < 3 (see Dr. Kaski’s presentation).

Independent set. We want to find an independent set of size k in G = (V, E),
and now we assume for simplicity that 3 divides k.

Construct G′ = (V′, E′), where each vertex v ∈ V′ corresponds to an inde-
pendent set in G of size 1

3 k. Two vertices are joined by an edge uv ∈ E′ if their
corresponding sets form an independent set of size 2

3 k. The crucial feature is that
a triangle in G′ corresponds to an independent set of size k in G. The graph G′ has
(n

k/3) ≤ nk/3 vertices, so the whole algorithm takes time O∗(nωk/3), rather than the
obvious (n

k).

2. FINDING TRIANGLES 10

sign + − − − +

X = ∅ {1} {2} {3} {1, 3}

1

2

3

4

5

6

7

8

9

10

11

12

FIGURE 1. The input graph has three
perfect matchings, in columns 1, 5, and 12.
The first row shows all 12 = 3 · 2 · 2 ways to
map the left vertices to the right. Every row
of the table shows the mappings that avoid
various vertex subsets X, drawn as ◦. We
omit the rows whose contribution is zero,
like X = {1, 2}, X = {2, 3} and
X = {1, 2, 3}. Of particular interest is
column 8, which is subtracted twice and
later added again. The entire calculation is
12− 4− 2− 4 + 1 + 0 + 0− 0, with is
indeed 3.

Perfect matchings. The next example is somewhat more intricate, and uses
both transformations from this section.

We return to perfect matchings, but now in regular graphs. Let G[n = r; m =
k] denote the number of induced subgraphs of G with r vertices and k edges. For
such a graph, the number of ways to pick 1

2 n edges is kn/2, so we can rewrite

f (V) = ∑
Y⊆V

(−1)|V\Y|g(Y) =
m

∑
k=1

n

∑
r=2

(−1)rG[n = r; m = k]kn/2 .

Thus, we have reduced the problem to computing G[n = r; m = k] for given r and
k, and we’ll now do this faster than in the obvious 2n iterations.

2. FINDING TRIANGLES 11

We are tempted to do the following: Construct a graph T where every vertex
corresponds to a subgraph of G induced by a vertex subset U ⊆ V with 1

3 r vertices
and 1

6 k edges. Two vertices in T are joined by an edge if there are 1
6 k edges between

their corresponding vertex subsets. Then we would like to argue that every trian-
gle in T corresponds to an induced subgraph of G with r edges and k edges. This,
of course, doesn’t quite work because (1) the three vertex subsets might overlap
and (2) the edges do not necessarily partition into such six equal-sized families.
Once identified, these problems are easily adressed.

The construction is as follows. Partition the vertices of G into three sets V0, V1,
and V2 of equal size, assuming 3 divides n for readability. Our plan is to build a
large tripartite graph T whose vertices correspond to induced subgraphs of G that
are entirely contained in one the Vi.

Some notation: An induced subraph of G has r1 vertices in V1, k1 edges with
both endpoints in V1, and k12 edges between V1 and V2. Define r2, r3, k2 , k3,
k23, and k13 similarly. We will solve the problem of computing G[n = r; m =
k] separately for each choice of these parameters such that r1 + r2 + r3 = r and
k1 + k2 + k3 + k12 + k23 + k13 = k. We can crudely bound the number of such new
problems by n3 + m6, i.e., a polynomial in the input size.

The tripartite graph T is now defined as follows: There is a vertex for every
induced subgraph G[U], provided that U is entirely contained in one of the Vi, and
contains exactly ri vertices and ki edges. An edge joins the vertices corresponding
to Ui ⊆ Vi and Uj ⊆ Vj if i 6= j and there are exactly kij edges between Ui and Uj

in G. The graph T has at most 3 · 2n/3 vertices and 3 · 22n/3 edges. Every triangle
in T uniquely corresponds to an induced subgraph G[U1 ∪U2 ∪U3] in G with the
parameters described in the previous paragraph.

The total running time is O∗(nωk/3) = (1.732n).

5

Iterative improvement

Iterative improvement plays a vital role in efficient algorithms and in-
cludes important ideas such as the augmentating algorithms used to
solve maximum flow and bipartite matching algorithms, the Simplex
method, and local search heuristics. So far, very few of these ideas have
been explored in exponential time algorithmics.

1. Local search

3-Satisfiability. Start with a random assignment to the variables. If all clauses
are satisfied, we’re done. Otherwise, pick a falsified clause uniformly at random,
pick one of its literals unformly at random, and negate it. Repeat this local search
step 3n times. After that, start over with a fresh random assignment. This proces
finds a satisfying assignment (if there is one) in time O∗

(
(4

3)n)with high probabil-
ity.

The analysis considers the number d of differences between the current as-
signment A and a particular satisfying assignment A∗ (the Hamming distance).
In the local search steps, the probability that the distance is decreased by 1 is at
least 1

3 (namely, when we pick exactly the literal where A and A∗ differ), and the
probability that the distance is increased by 1 is at most 2

3 . So we can pessimisti-
cally estimate the probability p(d) of reducing the distance to 0 when we start at
distance d (0 ≤ d ≤ n) by standard methods from the analysis of random walks in
probability theory to

p(d) = 2−d.
(Under the rug one finds an argument that we can safely terminate this random
walk after 3n steps without messing up the analysis too much.)

The probability that a ‘fresh’ random assignment has distance d to A∗ is(
n
d

)
2−n,

so the total probabilty that the algorithm reaches A∗ from a random assignment is
at least

n

∑
d=0

(
n
d

)
2−n−d =

1
2n

n

∑
d=0

(
n
d

)
2−d =

1
2n (1 + 1

2)n = (3
4)n.

Especially, in expectation, we can repeat this proces and arrive at A∗ or some other
satisfying assignment after (4

3)n trails.

12

6

Time–Space tradeoffs

Time–space tradeoffs avoid redundant computation, typically “recom-
putation,” by storing values in large tables.

1. Dynamic programming over the subsets

Dynamic programming consists of describing the problem (or a more general form
of it) recursively in an expression that involves only few varying parameters, and
then compute the answer for each possible value of these parameters, using a table
to avoid redundant computation. A canonical example is Knapsack.

In exponential time, the dynamic programme can consider all subsets (of ver-
tices, for example). This is, in fact, one of the earliest applications of dynamic
programming, dating back to Bellman’s original work in the early 1960s.

TSP. We’ll solve TSP in O(2nn2), a bound that is still the best known. We go
back to the decrease and conquer recurrence

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) .

The usual dynamic programming trick kicks in: The values OPT(T, v) are stored a
table when they are computed to avoid redundant recomputation, an idea some-
times called memoisation. The space and time requirements are within a polyno-
mial factor of 2n, the number of subsets T ⊆ V. Figure 2 shows the first few steps.

FIGURE 1. The dynamic programming algorithm for TSP mentioned in xkcd nr. 399.

13

2. DYNAMIC PROGRAMMING OVER A TREE DECOMPOSITION 14

0

4 9 4 2

9 5 7 12 11 17

9 10 9 9 10 7

10 14 7 11 12 9

FIGURE 2. The first few steps of filling out a table for OPT(T, v) for the example graph.
The starting vertex s is at the top, v is circled, and T consists of the black vertices. At this
stage, the values of OPT(T, v) have been computed for all |T| ≤ 3, and we just computed
the value 9 at the bottom right by inspecting the two underlined cases. The “new” black
vertex has been reached either via a weight 2 edge, for a total weight of 2 + 7, or via a
weight 1 edge for a total weight of 12 + 1. The optimum value for this subproblem is 9.

It is instructive to see what happens if we start with the divide and conquer
recurrence instead:

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) ;

recall that S and T are a balanced vertex partition of U. We build a large table
containing the value of OPT(X, u, v) for all vertex subsets X ⊆ V and all pairs of
vertives u, v. This table has size 2nn2, and the entry corresponding to a subset
X of size k can be computed by accessing 2k other table entries corresponding to
smaller sets. Thus, the total running time is within a polynomial factor of

n

∑
k=0

(
n
k

)
2k = (2 + 1)n = 3n.

We observe that the benefit from memoisation is smaller compared to the decrease
and conquer recurrence, which spent more time in the recursion (“dividing”) and
less time assembling solutions (“conquering”).

2. Dynamic programming over a tree decomposition

The second major application of dynamic programming is over the tree decompo-
sition of a graph. We don’t cover that here, for lack of time.

5. FAST MATRIX MULTIPLICATION 15

3. Meet in the middle

TSP. If the input graph is 4-regular (i.e., every vertex has exactly 4 neigh-
bours), it makes sense to enumerate the different Hamiltonian paths by making
one of three choices at every vertex, for a total of at most O∗(3n) paths, instead of
considering the O∗(n!) different permutations. Of course, the dynamic program-
ming solution is still faster, but we can do even better using a different time–space
trade-off.

We turn again to the “divide and conquer” recurrence,

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) .

This time we evaluate it by building a table for all choices of m and T 3 t with
|T| = n− b 1

2 nc. No recursion is involved, we brutally check all paths from m to
t of length |T|, in time O∗(3n/2). After this table is completed we iterate over all
choices of S 3 s with |S| = b 1

2 nc+ 1 the same way, using 3n/2 iterations. For each
S and m we check our dictionary for the entry corresponding to m and V − T.

It is instructive to compare this idea to the dynamic programming approach.
There, we used the recurrence relation at every level. Here, we use it only at the
top. In particular, the meet-in-the-middle idea is qualitatively different from the
concept of using memoisation to save some overlapping recursive invocations.

4. Fast Transforms

→ Dr. Kaski

5. Fast Matrix multiplication

→ Dr. Kaski

7

Exercises

An graph can be k-coloured if each vertex can be coloured with one of k differ-
ent colours such that no edge connects vertices of the same colour.

This set of exercises asks you do solve the k-colouring problem in various ways
for a graph with n vertices and m edges

Exercise 1. Using brute force, in time O∗(nk).

Exercise 2. Using a greedy algorithm, in time O∗(n!).

Exercise 3. Using decrease-and-conquer, in time in time O∗(((1 +
√

5)/2)n+m).
Hint: That’s the solution to the “Finonacci” recurrence T(s) = T(s− 1) + T(s− 2).

Exercise 4. Using divide-and-conquer, in time O∗(9n).

Exercise 5. Using Moebius inversion, in time O∗(3n). Hint: ∑n
i=0 (n

i)2i = (2 + 1)n.

Exercise 6. Using dynamic programming over the subsets, in time O∗(3n).

Exercise 7. Using Yates’s algorithm and Moebius inversion, in time O∗(2n).

16

