
A fully distributed peer to peer structure based
on 3D Delaunay Triangulation

Moritz Steiner and Ernst Biersack

Institut Eurecom, 2229, route des Crêtes, 06904 Sophia-Antipolis, France
{moritz.steiner,ernst.biersack}@eurecom.fr

This paper proposes the 3D Delaunay Triangulation (DT) as a promising solution for constructing scalable p2p net-
works. The key idea is to maintain for each node a DT of the neighbour nodes. While demonstrating scalability in a
real system is not practical for the current work, we demonstrate the scalability of the 3D DT using simulation. The
results obtained indicate that there are upper bounds on the time needed to join and on the average number of neigh-
bours maintained by a peer. Therefore, the amount of bandwidth and processing requirement for each node is bound,
independent of the total number of nodes in the system.

Keywords: p2p, overlay network, graph, triangulation, delaunay

1 Introduction
A peer to peer (p2p) system is one in which autonomous peers have symmetric roles. P2p systems are
constructed by connecting various computers (nodes) in a mesh-like fashion, thus forming a virtual network
on top of the physical Internet. The term overlay network is thus often used to describe p2p systems. The
whole system is only operable, and the peers can only benefit, if the peers that depend on each other
in forwarding information and sharing computer resources. This is why issues of scale and redundancy
become much more important than in traditional systems.
This paper proposes a fully-distributed p2p architecture, which attempts to solve the scalability problem
based on the mathematical construct of the Delaunay Triangulation in 3D. The main contribution of the
paper is to propose a resource efficient solution, which requires no server at all, not even for joining.
Section 2 deals with the partitioning of the virtual world; the geometrical construct Delaunay Triangulation
is discussed. Section 3 describes the data structure and some of the algorithms we developed, as well as the
main problems of the communication protocol.

2 Partitioning the 3D virtual world with the Delaunay Triangulation
2.1 The definition
The Delaunay Triangulation — introduced by Boris Delaunay in 1934 [Del34] — decomposes the convex
hull of a point set S into unique cells (triangles in R2 and tetrahedra in R3). There are only two conditions
building the DT :

Definition 2.1.1 Let S be a point set of n points in R2. A DT (S) in 2D is a triangulation of S where no
point d lies inside the circumcircle Cabc of any triangle Tabc.
Let S be a point set of n points in R3. A DT (S) in 3D is a triangulation of S where no point e lies inside the
circumsphere Cabcd of any tetrahedra Tabcd .

The circumsphere is the sphere defined by the four vertices abcd of a tetrahedron Tabcd . This definition
implies that the tetrahedra are not flat, otherwise their circumscribing sphere is not defined.

Moritz Steiner and Ernst Biersack

a

bc

d

e

a

b

e

d

c

(a) (b)

Fig. 1: A hexahedra can be separated into two or three tetra-
hedra [AK00].

Fig. 2: Four new tetrahedra resulting from the split of Tabcd
with e.

2.2 The Delaunay Triangulation construction
The basic component of most algorithms for the construction of the DT is the Delaunay diagonal flip.
After a finite number of Delaunay diagonal flips out of any triangulation, the most compact one can be con-
structed: the DT . For building a p2p infrastructure using DT , a dynamic algorithm is needed. Therefore,
in this section, we will focus on an incremental algorithm. In the first step the description is only done for
the 2D case, then the main problem of switching to 3D is presented.
The addition of a point to the DT is equal to the problem of computing DT i = DT ({p1, . . . , pi}) from
DT i−1 by inserting pi. Let Tabc be one of the triangles of DT i−1 whose circumcircle Cabc contains the new
point pi and therefore are in conflict with pi. It is not longer a Delaunay triangle, according to definition
2.1.1. Let bc be the edge that lies inside the quadrilateral abcpi. A Delaunay diagonal flip has to be done to
replace Tabc and Tbcpi by Tabpi and Tacpi . The newly created triangles must be tested as well, with the same
process until there are no more triangles in conflict with any points [AK00].
In case no triangle is in conflict with pi, the convex hull of all points from S = {p1, . . . , pi−1} needs to be
enlarged. First pi is connected to all points from S which it can see, that means to which straight lines can
be drawn without crossing any edge from DT i−1. All created edges are Delaunay edges to S∪ pi. The
opposite edges to pi must be checked and flipped if necessary.
Liebeherr has used the 2D DT as structure for a p2p network called Hypercast [LN02]. Hypercast has been
tested with up to 10,000 nodes running on up to 100 computers.
In 2D a quadrilateral can only be divided into two triangles, whereas the hexahedra in figure 1 can be sepa-
rated into two tetrahedra Tabce and Tbcde (Figure 1 a) or into three tetrahedra Tacde, Tabde and Tabcd (Figure
1 b). The principal problem in 3D is that there are some sets of points that allow different triangulations,
depending on the insertion order of the nodes, therefore the 3D DT is not unique.
The limited space of this paper does not allow to describe the removal of a point from the DT .

3 A distributed algorithm for the Delaunay Triangulation in 3D
Currently no algorithm exists to compute the DT in a distributed way. By distributed we mean that each
point of the triangulation corresponds to one computer, which is aware of its direct neighbours only. The
main problem is the consistency: All nodes are aware of their direct neighbours only and not of all the
nodes of the triangulation. Thus, it is very difficult to keep the views of all the nodes consistent.
This section describes the data structure, followed by a short presentation of the main method, which adds
a point (join from a peer point of view). Finally, some test and validation methods are presented and the
main problems of the communication protocol are discussed.

3.1 The data structure and the basic methods
We do not use the Quad-Edge structure developed by Guibas and Stolfi [GS85] or the simpler struc-
ture based on a double connected edge list (DCEL) [BKOS00], but one that allows for easier naviga-
tion, even though some information is redundant. There are two main objects in this structure: Node and
Tetrahedron. A Tetrahedron is the main object for storing the triangulation. It is composed of its
four vertices, stored as Nodes and its circumsphere stored as Sphere that consists of a Point for its cen-

ter and its radius. Furthermore it stores its four facets as Planes and its four neighbour Tetrahedron. A
Node stores its position in a Point and maintains a list of its neighbour Nodes and a list of the tetrahedra
(Tetrahedron) where it belongs to. These references allow to navigate in the triangulation. All the other
objects have only a supporting function, e.g. the Vectors and Lines, which are basically needed for the
calculation of the center of the circumsphere of a Tetrahedron and to calculate the representation of a
Plane by its normal vector starting from three Points or Nodes.

3.2 Join the Delaunay Triangulation
The node n j wishing to join needs to know one node belonging to the DT that executes the join procedure
for n j. The nearest node nn to the desired location of n j is searched by recursively traveling through the
DT . For the following pseudo code we assume that the DT has at least four nodes and the node nn has
been found.
tetra← neighbours(nn,2) /* all tetrahedra of nn and their respective neighbour tetrahedra */
liesInside← false /* true if n j lies at least inside one sphere */
for i← 0 to tetra.length do

if n j lies inside sphere of tetra[i] then
newtetras← null /* variable for the min. 2 and max. 4 tetrahedra resulting from the split */
for j ← 0 to 3 do

newtetras[j]← new
Tetrahedron(tetra[i](j%4),tetra[i]((j +1)%4),tetra[i](j +2)%4),nn)
/* tetra[i](j) returns the j.th point of tetra[i] */
if not nn lies inside tetra[i] then

if tetra[i]((j +3)%4) lies inside sphere of tetra[i] then newtetras[j]← null
end

end
Update the neighbour relationship between the 5 nodes (the four nodes of tetra[i] and nn)
Update the list of tetrahedra of the 5 nodes
Update the tetrahedra neighbourship relations between the newtetras
Update the convex hull (in case one facet of tetra[i] was on it)
liesInside← true

end
end
if not liesInside then enlarge the convex hull of DT with n j

If the joining node lies inside one tetrahedron (not only inside its sphere) the split creates four new tetrahedra
(Figure 2). If the new node lies outside the tetrahedra (but inside its sphere) only two or three new tetrahedra
are created (see section 2.2 and figure 1).

3.3 Tests and validation
During the execution of the code, whenever a change occurs, all nodes and tetrahedra affected are checked
for compliance with definition 2.1.1. Moreover all neighbour relations between the tetrahedra are checked:
Two tetrahedra having a common plane must cross-reference each another. Several different scenarios
have been tested to validate the algorithm: Randomly distributed nodes; Nodes randomly distributed on the
surface of a sphere; Points distributed in smaller and bigger clusters, computed with the Lévy Flight method
[Lév37].
As there is no general view of all nodes and all tetrahedra, all nodes write the tetrahedra they know in a
common file to gain a global view. This file is then compared with the output of the CGAL DT algorithm
[CGA].

3.4 The communication protocol
The protocol itself is not discussed in this paper, but two major problems are described: the consistence of
the triangulation during and after the concurrent execution of more than one task and the crash of a peer
and the involved reparation of the triangulation.
It is crucial for the coherence of the virtual world, to locally accept only one alteration a time. For example

Moritz Steiner and Ernst Biersack

two peers may join or leave the network at the same time only if they do not alter the same nodes or
tetrahedra. Otherwise the two (ore more) peers would create or destroy tetrahedra or peer relationships
without knowing about the actions of the other one, which would automatically lead to an inconsistent
triangulation. Therefore, all peers involved in a join or leave procedure are locked. Peers can still perform
actions, e.g. send messages, but they cannot alter the triangulation. This approach is comparable to the lock
mechanisms implemented in database systems to allow transactions conform with the ACID paradigm. A
peer that wants to join tries to lock all nodes involved. If it doesn’t succeed, it unlocks them and retries after
a certain time, to avoid deadlocks.
In the case of a crash of one of the peers, the other peers must detect the crash. Hence heartbeat messages
are sent to the neighbours. If one peer has not received the heartbeat message from one of its neighbours, it
takes the leadership and locks all the neighbours of the crashed peer and executes the leaving procedure for
the crashed peer.

3.5 Complexity
The task of building the DT in a static way (all the nodes are known at the beginning of the construction)
has a lower bound of Ω(n logn) in 2D and Ω(n2) in 3D, where n is the number of nodes [YB98].
In our case not the overall time complexity is important, but the complexity for joining one node to the DT .
As the simulation results have shown, the number of neighbours of a node is bound, as well as the number
of tetrahedra destroyed during the join. These two numbers do not grow with the total number of nodes in
the DT . If the nodes are randomly distributed, the average number of neighbour nodes is 15, the maximum
is 35. The average number of tetrahedra destroyed during the join of a node is 15, the maximum is 28.
The time complexity of the join procedure does not depend on the total number of nodes in the DT , but it
only depends on the number of neighbour nodes. This can be seen very clearly, because the main loop of
the pseudo code in section 3.2 is executed for all neighbour tetrahedra of degree two, this number directly
depends on the number of neighbour nodes. Since the number of neighbour nodes is nearly constant, and
does especially not grow with the number of nodes in the DT , the complexity of the join procedure is
constant as well.

4 Conclusion
This paper presents a solution to the scalability problem in p2p networks, by showing a way to partition
the 3D virtual space with the help of the Delaunay Triangulation. More work is needed to improve the
performance of the presented algorithm and to allow efficient movements of the nodes without using the
join and leave methods.

References
[AK00] F. Aurenhammer and R. Klein. Handbook of Computational Geometry, chapter 18, pages 201–

290. Elsevier Science Publishers, 2000.

[BKOS00] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[CGA] CGAL. The cgal website. http://www.cgal.org.

[Del34] B. Delaunay. Sur la sphère vide. A la mémoire de Georges Voronoi. Izv. Akad. Nauk SSSR,
Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793–800, 1934.

[GS85] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the compu-
tation of voronoi. ACM Transactions on Graphics, 4(2):74–123, April 1985.

[LN02] J. Liebeherr and M. Nahas. Application-layer multicasting with Delaunay triangulation over-
lays. IEEE Journal on Selected Areas in Communications, 20(8):1472–1488, October 2002.

[Lév37] P. Lévy. Théorie de l’Addition des Variables Aléatories. Gauthier-Villars, Paris, 1937.

[YB98] M. Yvinec and J.-D. Boissonnat. Algorithmic Geometry. Cambridge University Press, 1998.

