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In addition to statistical graph properties (diameter, degree, clustering, ...), Kleinberg [Kle00] showed that a small-
world can also be seen as a graph in which the routing task can be efficiently and easily done in spite of a lack of global
knowledge. More precisely, in a lattice network augmented by extra random edges (but not chosen uniformly), a short
path of polylogarithmic expected length can be found using a greedy algorithm with a local knowledge of the nodes.
We call such a graph a navigable small-world since short paths exist and can be followed with partial knowledge of
the network. In this paper, we show that a wide class of graphs can be augmented with one extra edge per node into
navigable small-worlds.

Keywords: small-world, random graph model, routing algorithm

1 Introduction
In the last decade, effective measurements of real interaction networks have revealed specific unexpected

properties. Among these, most of these networks present a very small diameter and a high clustering. Fur-
thermore, very short paths can be efficiently found between any pair of nodes without global knowledge of
the network, which is known as the small-world phenomenon [Mil67]. Several models have been proposed
to explain this phenomenon ( [WS98], [NW99]). However, Kleinberg showed in 2000 [Kle00] that these
models lack the essential navigability property : in spite of a polylogarithmic diameter, none of the short
paths can be computed efficiently without global knowledge of the network ; i.e., routing requires the visit
of a polynomial number of nodes (in the size of the network). He introduced an augmented graph model
consisting of a grid where each node is given a constant number of random additional directed long range
links distributed according to the harmonic distribution, i.e., the probability that a node v is the i-th long
range contact of a node u is proportional to 1/|u−v|s, where |u−v| denotes their distance in the grid and
s > 0 is a parameter of the model. In this model, the local knowledge at each node is the underlying metric
of the grid and the positions on the grid of its long range neighbors. Kleinberg considered the greedy routing
(decentralized) where each node forwards the message to its neighbor that is the closest to the destination.
He proved that this algorithm computes between any pair of nodes a path of polylogarithmic length in the
size of the network after visiting a polylogarithmic number of nodes, if and only if the exponent s is equal to
the dimension of the grid. Later on, Barrière et al. [BFKK01] generalized this result to a regular n×·· ·×n
torus. Moreover, they showed that the expected number of steps of the greedy algorithm is Θ(log2 n), and
that, noticeably, the number of steps is independent of the dimension. This reveals a strong correlation bet-
ween the underlying grid metric and the additional long range links distribution that turns the grid into a
small-world. This statement raises an essential question to capture the small-world phenomenon : are there
only specific graph metrics that can be turned into small-worlds by the addition of shortcuts ?

This question on the metric structure can be reinforced by the fact that whenever the exponent s is
different from the dimension of the grid, the greedy algorithm follows a path of polynomial length even
when the diameter is polylogarithmic (which is the case for d < s < 2d [MN04, NM05]). The reader might
believe that the navigability property is very specific to the grid topology, but we will show that a wide
family of graphs can be turned into navigable small-worlds. In [Kle02], Kleinberg generalized his lattice-
based model and showed how to turn into smallworlds tree-based or group-based structures by adding
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a polylogarithmic number of long range links per node. [NM05, Fra05] are other recent articles which
tackle these questions. In this paper, we attempt to find a class of graph metrics as wide as possible for
which the addition of a constant number of random long range links per node gives rise to the small-world
phenomenon. Roughly speaking, as soon as the original graph H is homogeneous in terms of ball expansion
and as soon as balls centered on each node grow up to slightly more than polynomialy with their radius, H
can be augmented to become a navigable small-world. It follows that a wide class of graphs can be turned
into navigable small-worlds, including in particular any Cayley graphs known up to now. In a second step,
we try to catch the dimensional phenomenon by studying cartesian products of our graphs. We show that
if two independent graphs can be augmented into two navigable small-worlds then their cartesian product
can also be augmented into a navigable small-world. For instance, as a consequence, any unbalanced torus
Cn1 ×Cn2 × . . .×Cnl can be turned into a small-world in which the greedy algorithm computes paths of
length O(log2+ε(maxi ni)), for any ε > 0.
In all the following, we will consider infinite graphs, but our definitions and results apply as well to infinite
families of finite graphs (see [DHLS05]).

2 Small-worlds and graph metrics
For a given graph G = (V,E), we write BG,u(r) for the ball centered on a node u with radius r, and bG,u(r)

for its cardinality. Let bG(r) = maxu∈V bG,u(r). The G subscript will be omitted in case the concerned graph
is obvious. We only consider graphs with maximum degree ∆, a fixed constant.

In the following, an underlying metric δH of a graph G is the metric given by a spanning connected
subgraph H (i.e., δH(u,v) is the distance between u and v in H). Definitions 1 and 2 are inspired from the
work of Kleinberg [Kle00].

Definition 1 A decentralized algorithm using an underlying metric δH in a graph G is an algorithm that
computes a path between any pair of nodes by navigating through the network from the source to the target,
using only the knowledge 1) of δH 2) of the nodes it has previously visited as well as their neighbors. But,
crucially, 3) it can only visit nodes that are neighbors of previously visited nodes.

Our definition of a navigable small-world is essentially probabilistic. We consider random graph models
in which a fixed “base” graph H is randomly augmented by adding random links (called long range links
below), according to some probability distribution. Routing will then be performed by a decentralized al-
gorithm, using the base metric δH ; our goal is to identify such augmented graph models for which this
procedure results in uniformly “fast” routing. Since the augmented graph will have a finite degree, at least
some of the bH,u(r) nodes at distance at most r of u will remain at distance Ω(logbH,u(r)) in the augmented
graph This motivates the following definition.

Definition 2 An infinite randomly augmented graph G, on a (infinite) base graph H, is a navigable small-
world if there exists a decentralized algorithm using the underlying base metric δH that, for any two nodes
u and v, computes a path from u to v in G by visiting an expected number of nodes that is polylogarithmic
in bH,v(δH(u,v)).

3 Turning graphs into small-worlds
In this section, we describe a wide class of infinite graphs, or of infinite families of finite graphs, for

which we are able to define random augmentation models that result in navigable small-worlds. In all cases,
our routing algorithm will be the greedy algorithm, thus the set of visited nodes will coincide with the path
computed. Furthermore, even if some algorithms can compute significantly shorter paths [FGP04, MN04,
LS04], it has been shown in [MNW04] that no decentralized algorithm can compute a polylogarithmic path
between two nodes while visiting asymptotically fewer nodes than the greedy algorithm. All models we
will consider add exactly one directed edge† leaving each node u. For each node u, there is a function
fu such that each other node v has probability proportional to fu(δ(u,v)) of being the destination Lu ; the
normalizing factor is Zu = ∑v∈V fu(δ(u,v)).

† Adding a constant number k of edges instead of one would not significantly alter the results, as will be made clear by the proofs.



Definition 3 We say that an infinite graph is smallworldizable if there exists, for each u, a distribution
fu(r) such that we obtain a navigable small-world randomly augmented graph by adding one random long
range link to each node u according to fu(r) (each node u is the origin of one long range link whose
destination is v with probability proportional to fu(δ(u,v)).

The following class of graph is defined for the sake of readability. As shown below, it characterizes a class
of smallworldizable graphs.

Definition 4 A bounded degree infinite graph H is an α-moderate growth graph if there exists a constant
α > 0, such that the ball size of each node u of H can be written as bu(r) = rdu(r), where du(r) : [2,∞)→R
is C 1 and satisfies ∀r ≥ 2,d′u(r)≤ α/(r lnr).

Lemma 1 Let G an α-moderate growth infinite graph. There exists a constant C > 0, s.t. for all u ∈ G,
r > 1, bu(r)−bu(r−1)≤

(
C ln ln(r)

r

)
bu(r).

Lemma 2 Let G a moderate growth infinite graph. Then, there exists a constant C′ such that bu(r) ≤
(lnr)−α lnβ/(βC+C′α) bu(βr), for any u ∈ G, 0 < β < 1 and r ≥ 2.

Theorem 3 Any moderate growth infinite graph is smallworldizable by the addition of one long range link
per node, distributed according to fu(r) = 1

bu(r) logq r , for any q > 1. Furthermore, the expected greedy path

length between any pair of nodes at distance ` from each other is O(ln1+q+α ln5 `).

Proof sketch. The normalization constants Zu = ∑v∈V fu(δH(u,v)) = ∑r≥1 (bu(r)−bu(r−1)) fu(r) are
uniformly bounded by Lemma 1. The distribution defining the randomly augmented graph is thus properly
defined. Assume that s and t are respectively the source and target, we analyze the expected path length
computed by the greedy algorithm. Consider some integer r ≥ 2 and a node u such that r/2 < δH(u, t)≤ r,
and denote by Lu the long range contact of u. We give a lower bound on Pr[δH(Lu, t)≤ r/2], the probability
that the destination node Lu belongs to Bt(r/2). Since fu is a decreasing function and Bt(r/2)⊆ Bu(3r/2),
each node of Bt(r/2) has probability at least fu(3r/2)/Z of being Lu. Since, in turn, Bu(3r/2)⊆ Bt(5r/2),
we can give a lower bound on fu(3r/2) in terms of bt : fu(3r/2) ≥ 1

bt(5r/2) lnq(3r/2) . Thus, we get a lower
bound, depending only on t and r, on the wanted probability :

Pr[δH(Lu, t)≤ r/2]≥ 1
Z lnq(3r/2)

bt(r/2)
bt(5r/2)

≥
(

Z5C+C′α lnq(3r/2) lnα ln5(5r/2)
)−1

≥
(

Z2q+α ln55C+C′α lnq+α ln5(r)
)−1

We partition the whole graph into concentric shells centered on t, where the k-th shell consists of all nodes
whose δH distance to t is between 2k−1 and 2k. The previous discussion proves that each node in the
k-th shell has probability Ω(k−γ) of having its long range contact in some i-th shell with i < k, where
γ = q + α ln5. As a result, the expected length of the greedy path from s to t is O(ln1+q+α ln5 `), which is
polylogarithmic in ` = δH(s, t), and a fortiori in bt(δH(s, t)). The argument used here is similar to that of
Kleinberg’s analysis of its original model ; our changes allow the upper bound to be expressed only in terms
of the original metric (and not the total size of the graph). 2

The theorem above covers graphs with ball sizes b(r) growing like rα log logr, α > 0, or slower. Note that
we get a similar upper bound O(ln2+ε r), for any ε > 0, on the expected length of the greedy path between
any pair of nodes at distance r from each other. In particular, all known Cayley graphs‡ are smallwordizable
since groups of intermediate ball size, between polynomial and exponential, are still unknown, and it is an
open question whether there exists a group with ball size b(r) superpolynomial but less than e

√
r, see for

instance [Bar02] for a state of the art.

‡ A Cayley graph is a graph defined by a group G generated by g1, . . . ,gk , whose vertices are the elements of G and such that there is
an edge between x and y iff there is a generator gi ∈ G such that x = giy.
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4 Products of small-worldizable graphs
A remarkable fact on the small-world property is its relative independence of the metric dimension in

Kleinberg’s model. This motivates the study of product of smallworldizable graphs.
Definition 5 The cartesian product H = F ×G of two undirected graphs F and G is the graph (VH ,EH)
where VH = VF ×VG and EH = {(( f ,g),( f ,g′)) : gg′ ∈ EG, f ∈VF}∪{(( f ,g),( f ′,g)) : g ∈VG, f f ′ ∈ EF}.

Theorem 4 Let F and G be α1− and α2-moderate growth infinite graphs respectively. The cartesian
product H = F ×G is smallworldizable by the addition of one long range link per node u according to the
distribution hu(r) = 1/(bH,u(r) lnq′ r), for all q′ > q0, for some constant q0 > 0. Furthermore, the expected
greedy path length between any pair of nodes at distance ` from each other is O(ln1+q′+(α1+α2) ln10 `).

Note that this theorem yields another simple method to obtain a generalization of Kleinberg’s graph to tori
of dimension d ≥ 1 with arbitrary side sizes, seen as cartesian products of one dimensional Kleinberg graphs
of various sizes. It also gives an expected path length O(ln2+ε `) for cartesian product of uniform growth
graphs (i.e. α = 0), close to Kleinberg model’s path length.
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