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Mapping the Internet generally consists in sampling the network from a limited set of sources biraséngute -

like probes. This methodology, akin to the merging of different spanning trees to a set of destinations, has been
argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which
sharply differ from the original ones[d} 2, 3]. In this paper we study numerically how the fraction of vertices and edges
discovered in the sampled graph depends on the particular deployments of probing sources. The results might hint the
steps toward more efficient mapping strategies.
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1 Introduction

In the absence of accurate Internet maps, researchers rely on a general strategy that consists in acquiring
local views of the network from several vantage points and merging these views in order to get a presumably
accurate global map. By using this strategy, a number of research groups have generated maps of the
Internet [4,[ 5/ 6| 7, 18], that have been used for the statistical characterization of the network properties.
Defining G = (V,E) as the sampled graph of the Internet with= |V| vertices andE| edges, it is quite
intuitive that the Internet is sparsegraph in which the number of edges is much lower than in a complete
graph; i.e. [E| < N(N —1)/2. Equally important is the fact that the average distance, measured as the
shortest path, between vertices is very small. This is the so cathedl-world property, that is essential
for the efficient functioning of the network. Most surprising is the evidence of a skewed and heavy-tailed
behavior for the probability that any vertex in the graph has degrdefined as the number of edges
linking each vertex to its neighbors. In particular, in several instances, the degree distribution appears to
be approximated bP(k) ~ k=Y with 2 <y < 2.5 [9]. Evidence for the heavy-tailed behavior of the degree
distribution has been collected in several other studies at the router and AS levell[10,[11,[12, 13, 14] and
have generated a large activity in the field of network modeling and characterization|[15}[16,/17, 18, 19].
While traceroute  -driven strategies are very flexible and can be feasible for extensive use, the ob-
tained maps are undoubtedly incomplete. Along with technical problems such as the instability of paths
between routers and interface resolutions [20], typical mapping projects are run from relatively small sets
of sources whose combined views are missing a considerable number of edges andvertices [14, 21]. In par-
ticular, the various spanning trees are specially missing the lateral connectivity of targets and sample more
frequently vertices and links which are closer to each source, introducing spurious effects that might seri-
ously compromise the statistical accuracy of the sampled graph. $asgding biasebave been explored
in numerical experiments of synthetic graphs generated by different algorithms[1, 2, 3, 24].
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It was shown in[[22] that the map accuracy depends on the underlying nebetwieenness central[ﬂ/
distribution. We substantiate the analytical finding lof|[22] with a throughout exploration of maps obtained
varying the number of source-target pairs on networks models with different topological properties.

2 Optimization of mapping strategies

Let us consider sparse undirected graphs denoted 8y(V,E). In particular, we will consider two main

classes of graph$s Homogeneous graphis which the degree distributidh(k) has small fluctuations and a
well defined average degréd;Heterogeneous graphsr which P(k) is a broad distribution with heavy-tail

and large fluctuations.

The most widely known model for homogeneous graphs is given by the classiéalBedyi (ER) model
[23]: in such random graphSy p of N vertices, each edge is presenrindependently with probability
p. We generated ER graphs wigh= 1/N, whereN = 10%,

In opposition to the previous case, heterogeneous graphs are characterized by connectivity distributions
spanning various orders of magnitude, with a heavy-tail at l&rg&hile we do not want to enter the
detailed definition of heavy-tailed distribution we have considered two classes of such distributions: (i)
scale-freeor Pareto distributions of the forf(k) ~ k=Y (RSF), and (ii) Weibull distributions (WER(k) =
(a/c)(k/c)® texp(—(k/c)?). In both cases, we have generated the corresponding random graphs by using
the algorithm proposed by Molloy and Reédl[25]. The parameters used-a@25 andc = 0.6 for the
Weibull distribution, andy = 2.3 for the RSF case, and all graphs hae- 10* nodes.

It was shown in[[2R] that it is possible to have a general qualitative understanding of the efficiency
of network exploration and the induced biases on the statistical properties. The quantitative analysis of
the sampling strategies, however, is a much harder task that calls for a detailed study of the discovered
proportion of the underlying graph and the precise deployment of sources and targets. In this perspective,
very important quantities are the fractibri/N andE* /E of verticeﬂ and edges discovered in the sampled
graph, respectively. In our study the parameters of interest are the densityNr /N andps = Ns/N of
targets and sources. An appropriate quantity representing the level of sampling of the netweﬂ@%}%,
that measures the density of probes imposed to the system.

This finding hints toward a behavior that is determined by the number of sources and tdggatd Ny .

Any quantity is thus a function dfls andNr, or equivalently ofNs andpt. This point is clearly illustrated

in Fig.[1, where we report the behavior Bf /E andN* /N at fixede and varyingNs andpr. The curves
exhibit a non-trivial behavior and since we will work at fixee: prNs, any measured quantity can then be
written asf (pr,€/pr1) = ge(pr). Very interestingly, the curves show a structure allowing for local minima
and maxima in the discovered portion of the underlying graph.

This feature can be explained by a simple symmetry argument. The mod@deroute  is symmet-
ric by the exchange of sources and targets, which are the endpoints of shortest paths: an exploration with
(N7,Ns) = (N1,N) is equivalent to one witliNt,Ns) = (N2,Nz). In other words, at fixed = N1Nz/N,

a density of targetpr = N1 /N is equivalent to a densitg; = N»/N. SinceN, = €/pr we obtain that at
constant, experiments witlpr andp; = €/(Npr) are equivalent obtaining by symmetry that any mea-

sured quantity obeys the equaldy(pt) = ¢ (ﬁ) This relation implies a symmetry point signaling the

presence of a maximum or a minimunpat=¢/(Npt). We therefore expect the occurrence of a symmetry

in the graphs of F@l gt ~ /€/N. Indeed, the symmetry point is clearly visible and in quantitative good
agreement with the previous estimate in the case of heterogeneous graphs. On the contrary, homogeneous
underlying topology have a smooth behavior that makes difficult the clear identification of the symmetry
point. Moreover, unigue shortest path probes create a certain level of correlations in the exploration that
tends to hide the complete symmetry of the curves.

The previous results imply that at fixed levels of probingdifferent proportions of sources and targets
may achieve different levels of sampling. This hints to the search for optimal strategies in the relative

T The betweenness represents the all-to-all traffic situation.
+ The measured quantities have the symbab distinguish from the original ones.
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Fig. 2: Behavior as a function obr of the fraction of discovered

edges and vertices in explorations with fixetheree = 2). The circles
correspond to a random deployment of sources and targets while the

Fig. 1: Behavior as a function gfr of the fraction of discovered edges and ver-Crosses are obtained when sources and targets are vertices with lowest
tices in explorations with fixed (heree = 2). Sincee = prNs, the increase opr ~ Petweenness vertices.

corresponds to a lowering of the number of soufdesThe plots on the right show

the fraction of the normalized average degkeék.

deployment of sources and targets. The picture, however, is more complicate if we look at other quantities
in the sampled graph. In F@.l we show the behavior at fixed the average degrde measured in
sampled graphs normalized by the actual average dégoée¢he underlying graph as a function pf.

The plot shows also in this case a symmetric structure. By comparing the datd ¢f Fig.1 we notice that the
symmetry point is of a different nature for different quantities: the minimum in the fraction of discovered
edges corresponds to the best estimate of the average degree. In other words, the best level of sampling is
achieved at particular values ®andNs that are conflicting with the best sampling of other quantities.

The evidence purported in this section hints to a possible optimization of the sampling strategy. The
optimal solution, however, appears as a trade-off strategy between the different level of efficiency achieved
in competing ranges of the experimental setup. In this respect, a detailed and quantitative investigation of the
various quantities of interest in different experimental setups is needed in order to pinpoint the most efficient
deployment of source-target pairs depending on the underlying graph topology. While such a detailed analy-
sis lies beyond the scope of the present study, an interesting hint comes from the analytical results of [22]:
since vertices with large betweenness have typically a very large probability of being discovered, placing
the sources and targets preferentially on low-betweenness vertices (the most difficult to discover) may have
an impact on the whole process. This is what we investigate in[Fig. 2 in which we report the fraction
of vertices and edges discovered by either a random deployment of sources and targets or a deployment
on the lowest-betweenness vertices. It is apparent that such a deployment allows to discover larger parts
of the network. Of course the procedure used is unrealistic since identifying low-betweenness vertices is
not an easy task. The usual correlation between connectivity and betweenness however indicates that the
exploration of a real network could be improved by a massive deployment of sources using low-connectivity
vertices.

3 Conclusions and outlook

The rationalization of the exploration biases at the statistical level provides a general interpretative frame-
work for the results obtained from the numerical experiments on graph models. In general, exploration
strategies provide sampled distributions with enough signatures to distinguish at the statistical level be-
tween graphs with different topologies. It is of major importance to define strategies that optimize the
estimate of the various parameters and quantities of the underlying graph. In this paper we have shown
that the proportion of sources and targets may have an impact on the accuracy of the measurements even
if the number of total probes imposed to the system is the same. For instance, the deployment of a highly
distributed infrastructure of sources probing a limited number of targets may result as efficient as few very
powerful sources probing a large fraction of the addressable space [26]. The optimization of large network
sampling is therefore an open problem that calls for further work aimed at a more quantitative assessment
of the mapping strategies both on the analytic and numerical side.
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