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Mapping the Internet generally consists in sampling the network from a limited set of sources by usingtraceroute -
like probes. This methodology, akin to the merging of different spanning trees to a set of destinations, has been
argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which
sharply differ from the original ones[1, 2, 3]. In this paper we study numerically how the fraction of vertices and edges
discovered in the sampled graph depends on the particular deployments of probing sources. The results might hint the
steps toward more efficient mapping strategies.
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1 Introduction
In the absence of accurate Internet maps, researchers rely on a general strategy that consists in acquiring
local views of the network from several vantage points and merging these views in order to get a presumably
accurate global map. By using this strategy, a number of research groups have generated maps of the
Internet [4, 5, 6, 7, 8], that have been used for the statistical characterization of the network properties.
Defining G = (V,E) as the sampled graph of the Internet withN = |V| vertices and|E| edges, it is quite
intuitive that the Internet is asparsegraph in which the number of edges is much lower than in a complete
graph; i.e. |E| � N(N− 1)/2. Equally important is the fact that the average distance, measured as the
shortest path, between vertices is very small. This is the so calledsmall-worldproperty, that is essential
for the efficient functioning of the network. Most surprising is the evidence of a skewed and heavy-tailed
behavior for the probability that any vertex in the graph has degreek defined as the number of edges
linking each vertex to its neighbors. In particular, in several instances, the degree distribution appears to
be approximated byP(k)∼ k−γ with 2≤ γ ≤ 2.5 [9]. Evidence for the heavy-tailed behavior of the degree
distribution has been collected in several other studies at the router and AS level [10, 11, 12, 13, 14] and
have generated a large activity in the field of network modeling and characterization [15, 16, 17, 18, 19].

While traceroute -driven strategies are very flexible and can be feasible for extensive use, the ob-
tained maps are undoubtedly incomplete. Along with technical problems such as the instability of paths
between routers and interface resolutions [20], typical mapping projects are run from relatively small sets
of sources whose combined views are missing a considerable number of edges and vertices [14, 21]. In par-
ticular, the various spanning trees are specially missing the lateral connectivity of targets and sample more
frequently vertices and links which are closer to each source, introducing spurious effects that might seri-
ously compromise the statistical accuracy of the sampled graph. Thesesampling biaseshave been explored
in numerical experiments of synthetic graphs generated by different algorithms[1, 2, 3, 24].
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It was shown in [22] that the map accuracy depends on the underlying networkbetweenness centrality†

distribution. We substantiate the analytical finding of [22] with a throughout exploration of maps obtained
varying the number of source-target pairs on networks models with different topological properties.

2 Optimization of mapping strategies
Let us consider sparse undirected graphs denoted byG = (V,E). In particular, we will consider two main
classes of graphs:i) Homogeneous graphsin which the degree distributionP(k) has small fluctuations and a
well defined average degree;ii) Heterogeneous graphsfor whichP(k) is a broad distribution with heavy-tail
and large fluctuations.

The most widely known model for homogeneous graphs is given by the classical Erdös-Ŕenyi (ER) model
[23]: in such random graphsGN,p of N vertices, each edge is present inE independently with probability
p. We generated ER graphs withp = 1/N, whereN = 104.

In opposition to the previous case, heterogeneous graphs are characterized by connectivity distributions
spanning various orders of magnitude, with a heavy-tail at largek. While we do not want to enter the
detailed definition of heavy-tailed distribution we have considered two classes of such distributions: (i)
scale-freeor Pareto distributions of the formP(k)∼ k−γ (RSF), and (ii) Weibull distributions (WEI)P(k) =
(a/c)(k/c)a−1exp(−(k/c)a). In both cases, we have generated the corresponding random graphs by using
the algorithm proposed by Molloy and Reed [25]. The parameters used area = 0.25 andc = 0.6 for the
Weibull distribution, andγ = 2.3 for the RSF case, and all graphs haveN = 104 nodes.

It was shown in [22] that it is possible to have a general qualitative understanding of the efficiency
of network exploration and the induced biases on the statistical properties. The quantitative analysis of
the sampling strategies, however, is a much harder task that calls for a detailed study of the discovered
proportion of the underlying graph and the precise deployment of sources and targets. In this perspective,
very important quantities are the fractionN∗/N andE∗/E of vertices‡ and edges discovered in the sampled
graph, respectively. In our study the parameters of interest are the densityρT = NT/N andρS = NS/N of
targets and sources. An appropriate quantity representing the level of sampling of the networks isε = NSNT

N ,
that measures the density of probes imposed to the system.

This finding hints toward a behavior that is determined by the number of sources and targets,NS andNT .
Any quantity is thus a function ofNS andNT , or equivalently ofNS andρT . This point is clearly illustrated
in Fig. 1, where we report the behavior ofE∗/E andN∗/N at fixedε and varyingNS andρT . The curves
exhibit a non-trivial behavior and since we will work at fixedε = ρTNS, any measured quantity can then be
written asf (ρT ,ε/ρT) = gε(ρT). Very interestingly, the curves show a structure allowing for local minima
and maxima in the discovered portion of the underlying graph.

This feature can be explained by a simple symmetry argument. The model fortraceroute is symmet-
ric by the exchange of sources and targets, which are the endpoints of shortest paths: an exploration with
(NT ,NS) = (N1,N2) is equivalent to one with(NT ,NS) = (N2,N1). In other words, at fixedε = N1N2/N,
a density of targetsρT = N1/N is equivalent to a densityρ′T = N2/N. SinceN2 = ε/ρT we obtain that at
constantε, experiments withρT andρ′T = ε/(NρT) are equivalent obtaining by symmetry that any mea-

sured quantity obeys the equalitygε(ρT) = gε

(
ε

NρT

)
. This relation implies a symmetry point signaling the

presence of a maximum or a minimum atρT = ε/(NρT). We therefore expect the occurrence of a symmetry
in the graphs of Fig.1 atρT '

√
ε/N. Indeed, the symmetry point is clearly visible and in quantitative good

agreement with the previous estimate in the case of heterogeneous graphs. On the contrary, homogeneous
underlying topology have a smooth behavior that makes difficult the clear identification of the symmetry
point. Moreover, unique shortest path probes create a certain level of correlations in the exploration that
tends to hide the complete symmetry of the curves.

The previous results imply that at fixed levels of probingε different proportions of sources and targets
may achieve different levels of sampling. This hints to the search for optimal strategies in the relative

† The betweenness represents the all-to-all traffic situation.
‡ The measured quantities have the symbol∗, to distinguish from the original ones.
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Fig. 1: Behavior as a function ofρT of the fraction of discovered edges and ver-
tices in explorations with fixedε (hereε = 2). Sinceε = ρT NS, the increase ofρT

corresponds to a lowering of the number of sourcesNS. The plots on the right show
the fraction of the normalized average degreek

∗
/k.
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Fig. 2: Behavior as a function ofρT of the fraction of discovered
edges and vertices in explorations with fixedε (hereε = 2). The circles
correspond to a random deployment of sources and targets while the
crosses are obtained when sources and targets are vertices with lowest
betweenness vertices.

deployment of sources and targets. The picture, however, is more complicate if we look at other quantities
in the sampled graph. In Fig.1 we show the behavior at fixedε of the average degreek

∗
measured in

sampled graphs normalized by the actual average degreek of the underlying graph as a function ofρT .
The plot shows also in this case a symmetric structure. By comparing the data of Fig.1 we notice that the
symmetry point is of a different nature for different quantities: the minimum in the fraction of discovered
edges corresponds to the best estimate of the average degree. In other words, the best level of sampling is
achieved at particular values ofε andNS that are conflicting with the best sampling of other quantities.

The evidence purported in this section hints to a possible optimization of the sampling strategy. The
optimal solution, however, appears as a trade-off strategy between the different level of efficiency achieved
in competing ranges of the experimental setup. In this respect, a detailed and quantitative investigation of the
various quantities of interest in different experimental setups is needed in order to pinpoint the most efficient
deployment of source-target pairs depending on the underlying graph topology. While such a detailed analy-
sis lies beyond the scope of the present study, an interesting hint comes from the analytical results of [22]:
since vertices with large betweenness have typically a very large probability of being discovered, placing
the sources and targets preferentially on low-betweenness vertices (the most difficult to discover) may have
an impact on the whole process. This is what we investigate in Fig. 2 in which we report the fraction
of vertices and edges discovered by either a random deployment of sources and targets or a deployment
on the lowest-betweenness vertices. It is apparent that such a deployment allows to discover larger parts
of the network. Of course the procedure used is unrealistic since identifying low-betweenness vertices is
not an easy task. The usual correlation between connectivity and betweenness however indicates that the
exploration of a real network could be improved by a massive deployment of sources using low-connectivity
vertices.

3 Conclusions and outlook
The rationalization of the exploration biases at the statistical level provides a general interpretative frame-
work for the results obtained from the numerical experiments on graph models. In general, exploration
strategies provide sampled distributions with enough signatures to distinguish at the statistical level be-
tween graphs with different topologies. It is of major importance to define strategies that optimize the
estimate of the various parameters and quantities of the underlying graph. In this paper we have shown
that the proportion of sources and targets may have an impact on the accuracy of the measurements even
if the number of total probes imposed to the system is the same. For instance, the deployment of a highly
distributed infrastructure of sources probing a limited number of targets may result as efficient as few very
powerful sources probing a large fraction of the addressable space [26]. The optimization of large network
sampling is therefore an open problem that calls for further work aimed at a more quantitative assessment
of the mapping strategies both on the analytic and numerical side.
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