
Exploration par un automate fini de réseaux
anonymes étiquetés†

R. Cohen1, P. Fraigniaud2, D. Ilcinkas2, A. Korman1, et D. Peleg1

1 Dept. of Computer Science, Weizmann Institute, Israel
2 CNRS, LRI, Université Paris-Sud, France.

Résumé. Cet article traite de l’exploration d’un réseau par un agent mobile, ou robot, modélisé par un automate fini.
Le robot ne dispose pas de connaissances préalables sur la topologie du réseau, ni même sur sa taille. Sa tâche consiste
à explorer chacun des nœuds du réseau. Il a été montré que, pour tout robot R à K états, et pour tout d

� 3, il existe
un réseau de degré maximum d et d’au plus K � 1 nœuds que R ne réussit pas à explorer. Ce papier s’intéresse à
la possibilité d’aider le robot en ajoutant des étiquettes de petite taille aux nœuds grâce à un calcul préalable. Nous
décrivons un algorithme d’exploration qui, étant donné des étiquettes appropriées sur 2 bits (en fait des étiquettes de
trois valeurs différentes), permet à un robot d’explorer tous les réseaux. De plus, nous décrivons un algorithme linéaire
calculant un tel étiquetage. Nous montrons également comment modifier notre méthode d’étiquetage afin qu’un robot
puisse explorer tous les réseaux de degré constant, avec des étiquettes de seulement 1 bit (donc des étiquettes de deux
valeurs différentes seulement). Autrement dit, alors qu’il n’existe pas de robot capable d’explorer tous les réseaux (non
étiquetés) de degré maximum 3, il existe un robot R � et un moyen de colorier les nœuds en noir et blanc tel que R �
réussit à explorer tous les réseaux coloriés de degré maximum 3.
Une version étendue de cet article sera publiée dans ICALP 2005 [3].

Keywords: exploration, labyrinthe, automate fini, agent mobile, robot, étiquetage.

1 Background and model
Let R be a finite automaton, simply referred to in this context as a robot, moving in an unknown graph

G ��� V � E � . The robot has no a priori information about the topology of G and its size. To allow the robot
R , visiting a node u, to distinguish between its edges, the d � deg � u � edges incident to u are associated
to d distinct port numbers in � 0 �
	�	
	
� d � 1 , in a one-to-one manner. The port numbering is given as part
of the input graph, and the robot has no a priori information about it. For convenience of terminology, we
henceforth refer to “the edge incident to port number l at node u” simply as “edge l of u”. (Clearly, if this
edge connects u to v, then it may also be referred to as “edge l � of v” for the appropriate l � .) The robot has a
transition function f , and a finite number of states. If R enters a node of degree d through port i in state s,
then it switches to state s � and exits the node through port i � , where

� s � � i � ��� f � s � i � d ��	
The objective of the robot is to explore the graph, i.e., to visit all its nodes. The task of visiting all nodes
of a network is fundamental in searching for data stored at unknown nodes or when looking for defective
components.

The first known algorithm designed for graph exploration was introduced by Shannon [9]. Since then,
several papers have been dedicated to the feasibility of graph exploration by a finite automaton. Rabin [7]
conjectured that no finite automaton with a finite number of pebbles can explore all graphs (a pebble is a
marker that can be dropped at and removed from nodes). The first step towards a formal proof of Rabin’s

†Les deuxièmes et troisièmes auteurs ont reçu le support des projets Fragile de de l’ACI Sécurité Informatique, PairAPair de l’ACI
Masse de Données, et Grand Large de l’INRIA.

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, et D. Peleg

conjecture is generally attributed to Budach [2], for a robot without pebbles. Blum and Kozen [1] improved
Budach’s result by proving that a robot with three pebbles cannot perform exploration of all graphs. Ko-
zen [6] proved that a robot with four pebbles cannot explore all graphs. Finally, Rollik [8] gave a complete
proof of Rabin’s conjecture, showing that no robot with a finite number of pebbles can explore all graphs.
The result holds even when restricted to planar 3-regular graphs. Without pebbles, it was proved [5] that a
robot needs Θ � D log∆ � bits of memory for exploring all graphs of diameter D and maximum degree ∆. On
the other hand, if the class of input graphs is restricted to trees, then exploration is possible even by a robot
with no memory (i.e., zero states), simply by DFS using the transition function f � i � d ��� i � 1 mod d (see,
e.g., [4]).

The ability of dropping and removing pebbles at nodes can be viewed alternatively as the ability of the
robot to dynamically label the nodes. If the robot is given k pebbles, then, at any time of the exploration,
∑u � V

�
lu
���

k where lu is the label of node u and
�
lu
�

denotes the size of the label in unary. This paper
considers the effects of allowing the system designer to assign labels to the nodes in a preprocessing stage,
and using these labels to guide the exploration by the robot. The transition function f is augmented to utilize
labels as follows. If R in state s enters a node of degree d, labeled by l, through port i, then it switches to
state s � and exits the node through port i � , where

� s � � i � ��� f � s � i � d � l ��	

This model can be considered stronger than Rabin’s pebble model since labels are given in a preprocessing
stage whereas in Rabin’s model the automaton starts with all its pebbles. But it can also be considered
weaker since, once assigned to nodes, the labels cannot be modified.

In this paper, we consider settings where it is expected that the graph will be visited by many exploring
robots, and consequently, the system designer would like to preprocess the graph by leaving (preferably
small) road-signs, or labels, that will aid the robots in their exploration task. As possible scenarios one
may consider a network system where finite automata are used for traversing the system and distributing
information in a sequential manner.

More formally, we address the design of exploration labeling schemes. Such schemes consist of a pair
� L � R � such that, given any graph G with any port numbering, the algorithm L labels the nodes of G, and
the robot R explores G with the help of the labeling produced by L . In particular, we are interested in ex-
ploration labeling schemes for which : (1) the preprocessing time required to label the nodes is polynomial,
(2) the labels are short, and (3) the exploration is completed after a small number of edge-traversals. Note
that we are only interested in the preprocessing time. The algorithm L may require a global knowledge of
the graph or a large amount of memory.

2 Our results

As a consequence of Budach’s result, any exploration labeling scheme must use at least two different
labels. Our main result states that just three labels (e.g., three colors) are sufficient for enabling a robot to
explore all graphs. Moreover, we show that our labeling scheme gives to the robot the power to stop once
exploration is completed, although, in the general setting of graph exploration, the robot is not required to
stop once the exploration has been completed, i.e., once all nodes have been visited. In fact, we show that
exploration is completed in time O � m � , i.e., after O � m � edge traversals, in any m-edge graph.

For the class of bounded degree graphs, we design an exploration scheme using even smaller labels. More
precisely, we show that just two labels (i.e., 1-bit labels) are sufficient for enabling a robot to explore all
bounded degree graphs. The robot is however required to have a memory of size O � log∆ � to explore all
graphs of maximum degree ∆. The completion time O � ∆O � 1 � m � of the exploration is larger than the one of
our previous 2-bit labeling scheme, nevertheless it remains polynomial.

All these results are summarized in Table 1. The two mentioned labeling schemes require polynomial
preprocessing time.

Exploration par un automate fini de réseaux anonymes étiquetés

Label size Robot’s memory Time
(#bits) (#bits) (#edge-traversals)

2 O � 1 � O � m �
1 O � log∆ � O � ∆O � 1 � m �

TAB. 1: Summary of main results.

3 A 2-bit exploration-labeling scheme
Our first result is to describe a 3-valued exploration labeled scheme for a robot with constant memory.

Theorem 1 There exists a robot with the property that for any graph G, it is possible to color the nodes of
G with three colors (or alternatively, assign each node a 2-bit label) so that using the labeling, the robot can
explore the entire graph G, starting from any given node and terminating after identifying that the entire
graph has been traversed. Moreover, the total number of edge-traversals by the robot is

�
20m.

We first describe the labeling scheme L and then the exploration algorithm. The node labeling is in fact
very simple ; it uses three labels, called colors, and denoted WHITE, BLACK, and RED. Let D be the diameter
of the graph.

Pick an arbitrary node r. Node r is called the root of the labeling L . Nodes at distance d from r, 0
�

d
�

D,
are labeled WHITE if d mod 3 � 0, BLACK if d mod 3 � 1, and RED if d mod 3 � 2.

The neighbor set N � u � of each node u can be partitioned into three disjoint sets : (1) the set ������� � u � of
neighbors closer to r than u ; (2) the set �	��
�
 � u � of neighbors farther from r than u ; (3) the set ������ ���� � u � of
neighbors at the same distance from r as u. We also identify the following two special subsets of neighbors :

– ����������� � u � is the node v ��������� � u � such that the edge � u � v has the smallest port number at u among
all edges leading to a node in ������� � u � .

–
����� � � u � is the set of nodes v ������
�
 � u � such that ����������� � v � � u.
For the root, set ����������� � r � � /0.
Note that for every node u with label L � u � , and for every neighbor v � N � u � , the label L � v � uniquely

determines whether v belongs to ������� � u � , �	��
�
 � u � or ���� � ���� � u � .
Furthermore one can design a procedure called Check Edge that allows a robot with constant memory

to identify precisely whether an edge incident to a node u leads to ����������� � u � or to a node in
����� � � u � .
The functions ����������� and
����� � induce a spanning tree of the graph. One can then design a quite simple

robot that can perform a depth-first search of the tree, using a constant number of memory bits.

4 A 1-bit exploration-labeling scheme for bounded degree graphs
We now describe an exploration labeling scheme using only 1-bit labels. This scheme requires a robot

with O � log∆ � bits of memory for the exploration of graphs of maximum degree ∆. More precisely, we prove
the following.
Theorem 2 There exists a robot with the property that for any graph G of degree bounded by a constant ∆,
it is possible to color the nodes of G with two colors (or alternatively, assign each node a 1-bit label) so that
using the labeling, the robot can explore the entire graph G, starting from any given node and terminating
after identifying that the entire graph has been traversed. The robot has O � log∆ � bits of memory, and the
total number of edge-traversals by the robot is O � ∆ � O � 1 � m � .

As for L , pick an arbitrary node r � V , called the root. Nodes at distance d from r are labeled as a function
of d mod 8. Partition the nodes into eight classes by letting

Ci � � u � V
�
distG � r� u � mod 8 � i

for 0
�

i
�

7. Node u is colored white if u � C0 ! C2 ! C3 ! C4, and black otherwise. Let

C̃1 � � u �
distG � r� u � � 1

"
C � � r ! � u � C2

�
distG � r� u � � 2 and N � u � � C̃1 	

R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, et D. Peleg

Lemma 1 There is a local search procedure enabling a robot of O � log∆ � bits of memory to decide whether
a node u belongs to

"
C and to C̃1, and to identify the class Ci of every node u ��

"
C.

Proof. Let B (resp., W) be the set of black (resp., white) nodes which have all their neighbors black (resp.,
white). The class C1 and the classes C3 �
	
	�	�� C7 can be described using the colors of the node and of the other
nodes at distance at most 4. For example, we provide the caracterization of the class C1 : u � C1 � u is
black, u has no neighbor in B, and u has a white neighbor v that has no neighbor in W.

Based on those characterizations, the classes C1 and C3 ��	
	�	�� C7 can be easily identified by a robot of
O � log∆ � bits, via performing a local search. Moreover, the sets C̃1 and

"
C can also be characterized as

follows :
– u � C̃1 � u � C1 and u has no node in C7 at distance

�
2 ;

– u �
"
C � N � u ��� C̃1 and every node v at distance

�
2 from u satisfies

�
N � v ��� C̃1

� � �
N � u � � .

Using this we can deduce :
– u � C0 �

"
C � u �� � ! 7

i � 3Ci � ! C1 and u has a neighbor in C7 ;
– u � C2 �

"
C � u ��

"
C, has a neighbor in C1, but has no neighbor in C7.

It follows that a robot of O � log∆ � bits can identify the class of every node except for nodes in
"
C. �

Proof of Theorem 2. Due to Lemma 1, all instructions of the exploration algorithm using labeling L can
be executed using labeling L � , but for the cases not captured in Lemma 1, i.e.,

"
C.

To solve the problem of identifying the root, we notice that each of the nodes in
"
C can be used as a root,

and all the others can be considered as leaves in C2. Thus, when leaving the root, the robot should memorize
the port P by which it should return to the root. When the robot arrives at a node u � C̃1 through a tree edge
and has to explore the root, it leaves immediately through port P and deletes the contents of P, then it goes
down through the next unexplored port if one is left. When the robot is in a node u � C̃1 and has to explore
some child, it will skip the port P. �

5 Concluding Remarks
Our results let open a very nice problem : are single bit labels sufficient for ensuring the traversal of all

graphs by a finite (O � 1 � memory) robot ?

Références
[1] M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs).

In 19th Symposium on Foundations of Computer Science (FOCS), pages 132-142, 1978.
[2] L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.
[3] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman and D. Peleg. Label-guided Graph Exploration by

a Finite Automaton. In 32nd International Colloquium on Automata, Languages and Programming
(ICALP), 2005, to appear.

[4] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little Memory. J. Algorithms
51(1) :38-63, 2004.

[5] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a Finite Automaton.
In 29th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS
3153, 451-462, 2004.

[6] D. Kozen. Automata and planar graphs. In Fund. Computat. Theory (FCT), 243-254, 1979.
[7] M.O. Rabin, Maze threading automata. Seminar talk presented at the University of California at

Berkeley, October 1967.
[8] H.A. Rollik. Automaten in planaren Graphen. Acta Informatica 13 :287-298, 1980 (also in LNCS 67,

266-275, 1979).
[9] C. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the Josiah Macy Jr. Found.

(Cybernetics), pages 173-180, 1951.

