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The smallworld phenomenon. Milgram revealed in his
famous experiment [12] that individuals are not only a
few handshakes away from each other, but they are also
able to find such short paths between them, in spite of
their extremely local view of the worldwide social network.
In 2000, Kleinberg [6] proposed a simple random network
model that captures this surprising property of social net-
works. Beyond this natural sociological motivation, his
model had an important impact on the design on several
peer-to-peer protocols (e.g., [13]), because it addresses the
general question of how decentralized algorithms can find
short paths in a partially unknown network.

Figure 1: Kleinberg’s network and a greedy path from red
to blue.

Kleinberg’s model. Kleinberg’s small world model con-
sists of a d-dimensional grid {—n, ... ,n}d (representing
local acquaintance between individuals, such as geographic
or professional) augmented with one “long-range” directed
link per node pointing to a random node at distance  chosen
with probability proportional to 1/ where « is a parame-
ter of the model (each long-range link represents a random
acquaintance met in the past for instance). Kleinberg de-
fined a decentralized routing algorithm as an algorithm that
tries to route locally a message from a node (the source) to
another (the target), that is to say, by visiting only neigh-
bors (local or long-range) of already visited nodes (starting
from the source). Kleinberg’s most striking result is that
no decentralized algorithm can find short paths if o # d
(i.e., path of length polylog(n) where n is the size of the

grid), even when the diameter of the augmented graph is
O(logn) as it was shown later on by [10, 11]. Only when
«a = d, decentralized algorithms may find short paths be-
tween random pairs. Indeed, the simple greedy algorithm
that simply routes the message to the closest neighbor (lo-
cal or long-range) of the current message holder computes
paths of expected length O (log? n) [6] (see Fig. 1).

Two main types of questions. Kleinberg’s model raises
two main type of questions. First, from the algorithmic and
peer-to-peer network design point of view: Can we beat
greedy algorithm? Second, from the sociological point of
view: What does this model tell us about real social net-
works?

Algorithmic and network design questions. This
point is now almost fully understood. Several decentral-
ized algorithms [7, 3, 8, 5] have been proposed that com-
putes much shorter paths to the target than the greedy for
the smallworld case when o = d. [3] proposes a local ex-
ploration based algorithm that explores the O(logn) clos-
est local neighbors before routing the message: this leads
to a path of expected length O(log1+1/d n). [7, 8, 5] pro-
pose a non-local exploration based algorithm which ex-
plores the O(logH'E n) closest (in hops) local and non-local
contacts before routing the message, which lead to an ex-
pected path length of ©(log n log log n) hops when d = 1,
and ©(log n) hops for all d > 2. These two bounds turned
out to be optimal: indeed, [5] proves that no efficient decen-
tralized can beat these bounds (even when d = 1 where the
diameter is © (log n)). Note that even if the path computed
by these algorithms are much shorter, these algorithms will
almost surely visit at least as many nodes as the greedy,
Q(log? 1) nodes, to compute them as proved by [9].

Sociological questions. The astonishing algorithm-
based result by Kleinberg implies that the so-called small-
world phenomenon requires a tight relationship between the
long-range contacts randomly collected during life and the
underlying topology: o = d, a relationship that no statisti-
cal studies could have spotted! Indeed, this phenomenon is
clearly unrelated with diameter (which is polylogarithmic
for a much wider range of values: all « € [0, 2d) [10, 11]),



(a) Greedy search algorithm

(b) Local exploration search algorithm

(c) Non-local exploration search algorithm (the last link of
each exploration phase is blue)

Figure 2: Pictures of the three types of paths: local links are
red; long-range links are white; unused links are thin.

clustering coefficient (which is close to O here), or degree
distribution (out-degree is uniform, and in-degree follows
some Poisson distribution here). This algorithmic approach
allows to get a much better understanding of the situation
by telling precisely which distribution for the long-range
contact is necessary for the smallworld phenomenon to take
place.

One important issue is now to explain how this distribu-
tion araises in real social networks. Several simple dynam-
ical models have been proposed [2, 1]. Both of them give
raise to the desired long-range link distribution (only ex-
perimentally for [2]), but none of them answers completely
to the question since they both make some unsatisfying ar-
bitrary choices: the distribution of the ”time to forget” for
instance in [1]. Another important question is: what kind of
algorithm do people use in social network, if any? How can
we tell from the experiment?

The three main types of search algorithms. To try to an-
swer these questions, one may want to study the characteris-
tics of the paths constructed by the various algorithms pro-
posed in the literature. These algorithms are essentially of
three types: greedy [6], local exploration based [3] and non-
local exploration based [7, 8, 5]. Typical paths of each type
of algorithm are given in Fig. 2. One can observed some
important differences: the greedy path contains long-range
links of all lengths while the two others tend to follow longer
long-range links; the local exploration based algorithm tend
to follow fewer long-range links than the non-local one and
these are much longer. We can observed also some similar-
ities between them: significant progresses toward the target
are made by some very long long-range link that happend
every so often. This last similarity was indeed proved to
be true for every efficient decentralized algorithm: it is a
corollary of the proof of the lower bound by [5].

Measuring the sociological meaningfulness. In order to
find the algorithmic model(s) that best suit the experimental
datas on the recorded human behaviors in ”Milgram-like”
experiments, we need to exhibit characteristics of the fol-
lowed paths that: first, take clearly different values for each
type of algorithm; and second, that can easily be computed
in the recorded paths from the experiments. With E. Lebhar,
we have studied various parameters that could match these
two criteria. For instance, Fig. 3 displays for the greedy
and local exploration based algorithms, the exact “load” of
the long-range as a function of their length, i.e., the ex-
pected number of paths that go through links of that length
given some random source and target. One can observed
that the behavior of this parameter differs a lot between the
greedy and the local-search algorithms and can also be eas-
ily recorded from real-life experiment. At the present time,
there is no mathematical of these parameters, but we have
some hope that the geometric framework that was designed
in [5] (see Fig. 4 for an illustration of the key useful facts)



should help in that matter.
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Figure 4: Key geometrical fact for the analysis in [5]

Some open questions. Regarding the algorithmic theme,
some questions remain open such as determining the
shorstest expected length attainable by an algorithm
bounded to visit at most O(log? n) as the greedy (the al-
gorithm by [5] visits ©(log? ™ n) nodes). We conjecture
that it has to be Q(logn(loglogn)?) when d = 1 and
Q(log nloglogn) ford > 2 —thatis to say log log n times
longer than the algorithm in [5] (note furthermore that these
bounds are attained by the algorithm in [7, 8]). Obtaining
such a result would required a much finer analysis of the
geometry of Kleinberg’s network.

Concerning the sociological implications, besides the
analysis of pertinent parameters (see above), designing con-
vincing dynamical models to explain the rise of ”Kleinberg-

like structures” in real networks is still an important direc-
tion for research in the area. One can also try to use met-
ric theory to isolate what could be candidate for long-range
links in real-life networks. An interesting article in that di-
rection is [4].
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