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Trillion-dollar question!!!
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why is clustering so important?
it can be a consequence of a 
hidden metric property

triangle inequality

We can use distances to route information packets 
Greedy Routing
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Can we really map real networks into metric spaces?

WE NEED MODELS
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Long range connections depend on the 
importance of the two cities involved

Cities’ importance is an intrinsic 
property

M. A. Serrano, M. B., and A. Vespignani. PNAS 106, 6483 (2009)
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Degree distribution 
independent of clustering

(Ultra)small-world
Scale-free
Highly clustered
Metric properties

Naoki Masuda, Hiroyoshi Miwa, and Norio Konno. Phys. Rev. E 71, 036108 (2005) 
M. A. Serrano, D. Krioukov, and M. B. Phys. Rev. Lett. 100, 078701 (2008)
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Figure 2 |Average length of greedy-routing paths. a, The average hop length of successful paths, τ , as a function of the network size N for different values

of γ and α. Results for values of γ > 2.5 look similar but with longer paths and are omitted for clarity. In all cases, the path length grows polylogarithmically

with the network size: the observed values of τ are fitted well by τ (N)=A[logN]ν (solid lines), where A and ν are some constants. b, τ as a function of γ

and α for networks of fixed size N≈ 10
5
. The effect of the two parameters on average path length is straightforward: paths are shorter for smaller

exponents γ and stronger clustering (larger α values).
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Figure 3 | Success probability of greedy routing. a,b, Success probability ps as a function of network size N for different values of γ with weak (a) and

strong (b) clustering. c, ps as a function of γ and α for networks of fixed size N≈ 10
5
. d, Parameter α mapped to clustering coefficient C (ref. 15) by

computing C for each network with given γ and α. For each value of C, there is a critical value of γ = γc(C) such that the success ratio in networks with this
C and γ > γc(C) decreases with the network size (ps(N)−→0 as N→ ∞), whereas ps(N) reaches a constant value for large N in networks with γ < γc(C).
The solid line in the plot shows these critical values γc(C), separating the low-γ , high-C navigable region, in which greedy routing remains efficient in the

large-graph limit, from the high-γ , low-C non-navigable region, where the efficiency of greedy routing degrades for large networks. The plot labels

measured values of γ and C for several real complex networks. Internet is the global Internet topology of autonomous systems as seen by the Border

Gateway Protocol
39
; Web of trust is the Pretty Good Privacy social network of mutual trust relationships

40
; Metabolic is the network of metabolic

reactions of E. coli41; and Airports is the network of the public air transportation system
42
.

number of successful paths once clustering is above a threshold,
α ≥ 1.5. These observations mean that for a fixed clustering
strength, there is a critical value of the exponent γ (Fig. 3d) below
which networks remain navigable as their size increases, but above
which their navigability deteriorates with their size.

In summary, strong clustering improves both navigability
metrics. We also find a delicate trade-off between values of
γ close to 2 minimizing path lengths, and higher values—not

exceeding γ ≈ 2.6—maximizing the percentage of successful paths.
We explain these findings in the next section, but we note
here that qualitatively, this navigable parameter region contains
most complex networks observed in reality1–3, as confirmed in
Fig. 3d, where we juxtapose a few paradigmatic examples of
communication, social, biological and transportation networks
versus the identified navigable region of clustering and degree
distribution exponent. Interestingly, power grids, which propagate

76 NATURE PHYSICS | VOL 5 | JANUARY 2009 | www.nature.com/naturephysics
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measured values of γ and C for several real complex networks. Internet is the global Internet topology of autonomous systems as seen by the Border

Gateway Protocol
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; Web of trust is the Pretty Good Privacy social network of mutual trust relationships
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number of successful paths once clustering is above a threshold,
α ≥ 1.5. These observations mean that for a fixed clustering
strength, there is a critical value of the exponent γ (Fig. 3d) below
which networks remain navigable as their size increases, but above
which their navigability deteriorates with their size.

In summary, strong clustering improves both navigability
metrics. We also find a delicate trade-off between values of
γ close to 2 minimizing path lengths, and higher values—not

exceeding γ ≈ 2.6—maximizing the percentage of successful paths.
We explain these findings in the next section, but we note
here that qualitatively, this navigable parameter region contains
most complex networks observed in reality1–3, as confirmed in
Fig. 3d, where we juxtapose a few paradigmatic examples of
communication, social, biological and transportation networks
versus the identified navigable region of clustering and degree
distribution exponent. Interestingly, power grids, which propagate
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FIG. 1: Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect to form triangle

ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many lines (examples are

P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. Panel (b) shows a {7, 3}-tessellation of

the hyperbolic plane by equilateral triangles, and the dual {3, 7}-tessellation by regular heptagons. All triangles and heptagons

are of the same hyperbolic size but the size of their Euclidean representations exponentially decreases as a function of the

distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of

the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

bolic geodesic lines in the Poincaré model, i.e., shortest
paths between two points at the boundary, are disk di-
ameters and Euclidean arcs orthogonal to its boundary
[dk: Not clear. aren’t them arks of circles

intersecting the boundary perpendicularly? -mb-
]. The model is conformal, meaning that Euclidean an-
gles between hyperbolic lines in the model are equal to
their hyperbolic values, which is not true with respect to
distances or areas. Euclidean and hyperbolic distances,
re and rh, from the disk center, or the origin of the hy-
perbolic plane, are related by

re = tanh
rh

2
. (1)

The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
∂H

d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where H

d is represented by a “half” of R
d span

by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂H

d in this case is the hyperplane xd = 0
instead of S

d−1. Essentially any d-dimensional space X

with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.

[dk: OK, up to here we have discussed the

different representations of the hyperbolic

plane. At this point we should clearly

state that from this point on we use a

representation where H
2
is mapped to R

2
so

that distances are measured using Eq. (4)

TABLE I: Characteristic properties of Euclidean, spherical,

and hyperbolic geometries. Parallel lines is the number of

lines that are parallel to a line and that go through a point

not belonging to this line.

Property Euclid. Spherical Hyperbolic

Curvature 0 1 −1

Parallel lines 1 0 ∞
Triangles are normal thick thin

Shape of tri-

angles

Sum of angles

in triangles

π > π < π

Circle length 2πr 2π sin r 2π sinh r

Disk area 2πr2/2 2π(1− cos r) 2π(cosh r − 1)

below. Otherwise, it is confusing -mb-] A key
property of hyperbolic spaces is that they expand
faster than Euclidean spaces. Specifically, while Eu-
clidean spaces expand polynomially, hyperbolic spaces
expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H

2
ζ of constant curvature

K = −ζ2
< 0, for example, the length of the circle and

the area of the disk of hyperbolic radius r are

L(r) = 2π sinh ζr, (2)
A(r) = 2π(cosh ζr − 1), (3)

both growing as e
ζr with r. The distance x between two
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that distances are measured using Eq. (4)

TABLE I: Characteristic properties of Euclidean, spherical,

and hyperbolic geometries. Parallel lines is the number of

lines that are parallel to a line and that go through a point

not belonging to this line.

Property Euclid. Spherical Hyperbolic

Curvature 0 1 −1

Parallel lines 1 0 ∞
Triangles are normal thick thin

Shape of tri-

angles

Sum of angles

in triangles

π > π < π

Circle length 2πr 2π sin r 2π sinh r

Disk area 2πr2/2 2π(1− cos r) 2π(cosh r − 1)
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expand exponentially, as illustrated in Fig. 1. In the
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A(r) = 2π(cosh ζr − 1), (3)

both growing as e
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FIG. 1: Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect to form triangle

ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many lines (examples are

P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. Panel (b) shows a {7, 3}-tessellation of

the hyperbolic plane by equilateral triangles, and the dual {3, 7}-tessellation by regular heptagons. All triangles and heptagons

are of the same hyperbolic size but the size of their Euclidean representations exponentially decreases as a function of the

distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of

the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.
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gles between hyperbolic lines in the model are equal to
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distances or areas. Euclidean and hyperbolic distances,
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rh
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The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
∂H

d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where H

d is represented by a “half” of R
d span

by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂H

d in this case is the hyperplane xd = 0
instead of S

d−1. Essentially any d-dimensional space X

with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.
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faster than Euclidean spaces. Specifically, while Eu-
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expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H
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< 0, for example, the length of the circle and
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L(r) = 2π sinh ζr, (2)
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both growing as e
ζr with r. The distance x between two

THE COSMOLOGICAL PRINCIPLE
The Internet is embedded in a homogeneous and 

isotropic manifold



D(N) ∼ log N

P (L) ∼ δ(L − l(N))

ci =
2Ti

ki(ki − 1)

ci =
10

10
= 1

ci =
3

10
= 0.3

ci = 0

N(r) ∼ r
D

V (r) ∼ r
2

1

D(N) ∼ log N

P (L) ∼ δ(L − l(N))

ci =
2Ti

ki(ki − 1)

ci =
10

10
= 1

ci =
3

10
= 0.3

ci = 0

N(r) ∼ r
D

V (r) ∼ 1 − cos r

1

TERANET 2011 The cosmological principle

There are three types of homogeneous and isotropic spaces 
with constant curvature. For instance, in 2D

Euclidean spaces         K=0

spherical spaces          K>0

hyperbolic spaces        K<0

3

L1

L2

L2

L1

L3

L3

A B

C
P1
P2
P3 P1

P2
P3

a b

c

(a) (b) (c)
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distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of

the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.
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ameters and Euclidean arcs orthogonal to its boundary
[dk: Not clear. aren’t them arks of circles

intersecting the boundary perpendicularly? -mb-
]. The model is conformal, meaning that Euclidean an-
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their hyperbolic values, which is not true with respect to
distances or areas. Euclidean and hyperbolic distances,
re and rh, from the disk center, or the origin of the hy-
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The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
∂H

d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where H

d is represented by a “half” of R
d span

by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂H

d in this case is the hyperplane xd = 0
instead of S

d−1. Essentially any d-dimensional space X

with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.
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state that from this point on we use a
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is mapped to R
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so
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below. Otherwise, it is confusing -mb-] A key
property of hyperbolic spaces is that they expand
faster than Euclidean spaces. Specifically, while Eu-
clidean spaces expand polynomially, hyperbolic spaces
expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H

2
ζ of constant curvature

K = −ζ2
< 0, for example, the length of the circle and

the area of the disk of hyperbolic radius r are
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both growing as e
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ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many lines (examples are
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distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of
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]. The model is conformal, meaning that Euclidean an-
gles between hyperbolic lines in the model are equal to
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which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
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d. The model is related via the stereographic pro-
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d is represented by a “half” of R
d span

by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂H

d in this case is the hyperplane xd = 0
instead of S

d−1. Essentially any d-dimensional space X

with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.

[dk: OK, up to here we have discussed the

different representations of the hyperbolic

plane. At this point we should clearly

state that from this point on we use a
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so
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below. Otherwise, it is confusing -mb-] A key
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faster than Euclidean spaces. Specifically, while Eu-
clidean spaces expand polynomially, hyperbolic spaces
expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H

2
ζ of constant curvature
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< 0, for example, the length of the circle and

the area of the disk of hyperbolic radius r are
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both growing as e
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FIG. 1: Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect to form triangle

ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many lines (examples are

P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. Panel (b) shows a {7, 3}-tessellation of
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are of the same hyperbolic size but the size of their Euclidean representations exponentially decreases as a function of the

distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of

the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

bolic geodesic lines in the Poincaré model, i.e., shortest
paths between two points at the boundary, are disk di-
ameters and Euclidean arcs orthogonal to its boundary
[dk: Not clear. aren’t them arks of circles

intersecting the boundary perpendicularly? -mb-
]. The model is conformal, meaning that Euclidean an-
gles between hyperbolic lines in the model are equal to
their hyperbolic values, which is not true with respect to
distances or areas. Euclidean and hyperbolic distances,
re and rh, from the disk center, or the origin of the hy-
perbolic plane, are related by

re = tanh
rh

2
. (1)

The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
∂H

d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where H

d is represented by a “half” of R
d span

by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂H

d in this case is the hyperplane xd = 0
instead of S

d−1. Essentially any d-dimensional space X

with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.

[dk: OK, up to here we have discussed the

different representations of the hyperbolic

plane. At this point we should clearly

state that from this point on we use a

representation where H
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is mapped to R
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so

that distances are measured using Eq. (4)
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lines that are parallel to a line and that go through a point

not belonging to this line.
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Shape of tri-
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π > π < π
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Disk area 2πr2/2 2π(1− cos r) 2π(cosh r − 1)

below. Otherwise, it is confusing -mb-] A key
property of hyperbolic spaces is that they expand
faster than Euclidean spaces. Specifically, while Eu-
clidean spaces expand polynomially, hyperbolic spaces
expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H

2
ζ of constant curvature

K = −ζ2
< 0, for example, the length of the circle and

the area of the disk of hyperbolic radius r are
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A(r) = 2π(cosh ζr − 1), (3)
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P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. Panel (b) shows a {7, 3}-tessellation of
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are of the same hyperbolic size but the size of their Euclidean representations exponentially decreases as a function of the
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]. The model is conformal, meaning that Euclidean an-
gles between hyperbolic lines in the model are equal to
their hyperbolic values, which is not true with respect to
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which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
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ary at infinity ∂H
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instead of S
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FIG. 1: Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect to form triangle

ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many lines (examples are

P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. Panel (b) shows a {7, 3}-tessellation of
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distance from the center, while their number exponentially increases. In (c), the exponentially increasing number of men

illustrates the exponential expansion of hyperbolic space. The Poincaré tool [12] is used to construct a {7, 7}-tessellation of

the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.
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paths between two points at the boundary, are disk di-
ameters and Euclidean arcs orthogonal to its boundary
[dk: Not clear. aren’t them arks of circles

intersecting the boundary perpendicularly? -mb-
]. The model is conformal, meaning that Euclidean an-
gles between hyperbolic lines in the model are equal to
their hyperbolic values, which is not true with respect to
distances or areas. Euclidean and hyperbolic distances,
re and rh, from the disk center, or the origin of the hy-
perbolic plane, are related by
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The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
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d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where H

d is represented by a “half” of R
d span
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instead of S
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with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, the X’s boundary
playing the role of the boundary at infinity ∂X.
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so
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lines that are parallel to a line and that go through a point

not belonging to this line.
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Parallel lines 1 0 ∞
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property of hyperbolic spaces is that they expand
faster than Euclidean spaces. Specifically, while Eu-
clidean spaces expand polynomially, hyperbolic spaces
expand exponentially, as illustrated in Fig. 1. In the
2-dimensional hyperbolic space H
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< 0, for example, the length of the circle and
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The model is generalizable for any dimension d � 2, in
which case H

d is represented by the interior of the unit
ball whose boundary S

d−1 is the boundary at infinity
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d. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
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d is represented by a “half” of R
d span
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instead of S
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
�

ξe−
1
2 r + (1− ξ) e−αr

�
, ξ =

2
π

α

α− 1
2

. (5)

The limit α → 1/2 is well defined, k(r) →
N

�
1 + r

π

�
e−

1
2 r, and we see that k(r) ∼ e−

1
2 r if α � 1/2,

homogeneous distribution of 
points in the hyperbolic plane
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hyperbolic metric spaces. Specifically, let us form a net-
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the number of nodes is finite, the area that nodes occupy
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same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
�

ξe−
1
2 r + (1− ξ) e−αr

�
, ξ =

2
π

α

α− 1
2

. (5)

The limit α → 1/2 is well defined, k(r) →
N

�
1 + r

π

�
e−

1
2 r, and we see that k(r) ∼ e−

1
2 r if α � 1/2,

homogeneous distribution of 
points in the hyperbolic plane

2

R
2

H
3

FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point
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and justify this choice later. This p(x) connects each pair
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
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2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=
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1 +
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
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ξe−
1
2 r + (1− ξ) e−αr

�
, ξ =

2
π
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. (5)

The limit α → 1/2 is well defined, k(r) →
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2 r, and we see that k(r) ∼ e−
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2 r if α � 1/2,
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a solid link if one of the corresponding discs is the minimum-
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is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
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3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.
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i.e., abstract sets of nodes, are represented by the Eu-
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in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R
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their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
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1 + e
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=
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1 +
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads
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is not perfect, and the tree structure is approximate. The
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3 are
connected by a dashed link if the corresponding discs partially
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Fig. 2 illustrates a very general mechanism explaining
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ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
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the shown mapping has the property that if two discs in
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2 are similar, then the two points representing them in
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3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
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(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have
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where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
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. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H
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of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by
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2
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. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
�

ξe−
1
2 r + (1− ξ) e−αr

�
, ξ =

2
π

α

α− 1
2

. (5)

The limit α → 1/2 is well defined, k(r) →
N

�
1 + r

π

�
e−

1
2 r, and we see that k(r) ∼ e−

1
2 r if α � 1/2,
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plest node distribution within the disc is uniform, mean-
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distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
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and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
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At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
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nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
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for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=

1

1 +
�

d
µκκ�

� 1
T

, (10)
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The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=

1

1 +
�

d
µκκ�

� 1
T

, (10)

D(N) ∼ log N

P (L) ∼ δ(L − l(N))

ci =
2Ti

ki(ki − 1)

ci =
10

10
= 1

ci =
3

10
= 0.3

ci = 0

N(r) ∼ r
D

V (r) ∼ cosh r − 1

P (k) ∼ k
−3

1

You get a nice power law degree 
distribution

2

R
2

H
3

FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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�
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1
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�
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2
π

α

α− 1
2

. (5)

The limit α → 1/2 is well defined, k(r) →
N

�
1 + r

π

�
e−

1
2 r, and we see that k(r) ∼ e−

1
2 r if α � 1/2,

nodes at hyperbolic distances 
smaller than R become connected

R

ρ(r) =
α sinh αr

coshαR− 1
, α > 0
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

ρ(κ) = (γ − 1)
κγ−1

0

κγ
, κ ∈ [κ0,∞)

P (L) ∼ δ(L − l(N))

dc(κ, κ′) =∝ (κκ′)1/D

ρ(κ) ∝ κ−γ

P (k) ∝ k−γ

1

ρ(r) =
α sinh αr

coshαR− 1
, α > 0

1

Which transformation 
goes from

to this?

r = R− 2
ζ

ln
�

κ

κ0

�

1



TERANET 2011 Newtonian-S1 vs Einsteinian-H2

4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

ρ(κ) = (γ − 1)
κγ−1

0

κγ
, κ ∈ [κ0,∞)

P (L) ∼ δ(L − l(N))

dc(κ, κ′) =∝ (κκ′)1/D

ρ(κ) ∝ κ−γ

P (k) ∝ k−γ

1

ρ(r) =
α sinh αr

coshαR− 1
, α > 0

1

Which transformation 
goes from

to this?

r = R− 2
ζ

ln
�

κ

κ0

�

1



TERANET 2011 Newtonian-S1 vs Einsteinian-H2

4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

ρ(κ) = (γ − 1)
κγ−1

0

κγ
, κ ∈ [κ0,∞)

P (L) ∼ δ(L − l(N))

dc(κ, κ′) =∝ (κκ′)1/D

ρ(κ) ∝ κ−γ

P (k) ∝ k−γ

1

ρ(r) =
α sinh αr

coshαR− 1
, α > 0

1

Which transformation 
goes from

to this?

r = R− 2
ζ

ln
�

κ

κ0

�

1



TERANET 2011 Newtonian-S1 vs Einsteinian-H2

Newtonian-S1 Einsteinian-H2



4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

TERANET 2011 Newtonian-S1 vs Einsteinian-H2

Newtonian-S1 Einsteinian-H2



4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

TERANET 2011 Newtonian-S1 vs Einsteinian-H2

3

FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1
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where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
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coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
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1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
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and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
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1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
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x−R in Eq. (2).
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We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
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between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)
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here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is

κ = κ0e
ζ
2 (R

H2−r) (120)

with ζ
2 = α

γ−1 , or after inversion

r = RH2 − 2

ζ
ln

�
κ

κ0

�
(121)

We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).

Remember that it must be a function of

r

�
d

µκκ�

�
= r

�
∆θN

2πµκκ�

�
= r

�
c2∆θN

2πµκ2
0N

2e−ζ(r+r�)/2

�
= r

�
c∆θ

2πµκ2
0e

−ζ(r+r�−R)/2

�
(122)

which is just a function of the form

r̂

�
∆θ

2
eζ(r+r

�−R)/2

�
= r̂

�
eζ(r+r

�−R)/2+ln ∆θ
2

�
= r̂

�
e

ζ
2 (r+r

�+ 2
ζ ln ∆θ

2 −R)
�

(123)

25

TERANET 2011 Newtonian-S1 vs Einsteinian-H2

3

FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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2 if α � 1
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to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].
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our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
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1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
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and κ� is proportional to the difference of their angular
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2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
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x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =
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2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),
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=
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2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
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ln
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The hyperbolic distance between two points with polar
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of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by
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Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
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where β allows us to tune the clustering. In the limit β →∞ we have
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µ =
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That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R

H2 ) (119)

here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is
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We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=

1

1 +
�

d
µκκ�

� 1
T

, (10)

the hyperbolic distance is very 
well approximated by
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ
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1 +
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the hyperbolic distance is very 
well approximated by

3

FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
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curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr

1− eαR
H2
∼ αeα(r−R
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here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is
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γ−1 , or after inversion
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We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=

1

1 +
�

d
µκκ�

� 1
T

, (10)

the hyperbolic distance is very 
well approximated by
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then
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mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
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r-variables to yield that the connection probability can
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sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
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Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
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4. a connection probability of the form r(d/µκκ�) where d is the distance over the circle

between two nodes with hidden variables κ and κ� and µ is a constant that depends

on the specific function r(x) and on the average degree. Function r(x) can be ANY

INTEGRABLE DECREASING function of x. In the PRL paper we use

r(x) = (1 + x)−β, (115)

µ =
β − 1

2k̄
(116)

where β allows us to tune the clustering. In the limit β →∞ we have

r(x) = e−x, (117)

µ =
1

2k̄
. (118)

Now let’s go for the mapping. The idea is to chose a change of variables between κ and

the new variable r such that the density of this new variable is exponentially increasing.

That is

ρ̂(r) =
αeαr
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here, RH2 is the radius of our hyperbolic disk and α is a parameter.

As Dima pointed out yesterday, the change of variables that achieves this goal is
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We will see later that ζ =
√
−K where K is the space curvature. The relationships between

N and R that allows us to control the average degree is N = ceζR
H2/2.

Now let’s go for the connection probability (we use now the notation R instead of RH2).
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FIG. 2: Mapping between discs in the Euclidean space R
2 and

points in the hyperbolic space H
3. The x, y-coordinates of the

disc centers in R
2 are the x, y-coordinates of the corresponding

points in H
3. The z-coordinates of these points are the radii of

the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H

3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H

3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R

2. Each disc in R
2 is mapped to a point

in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H

3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R

2. But
the shown mapping has the property that if two discs in
R

2 are similar, then the two points representing them in
H

3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r� is bounded by a constant
C, 1/C � r/r� � C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H

3 is bounded by some constant C �, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

cosh R− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:
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Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r�(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
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P (k) ∼ k−γ , with γ =
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2α + 1 if α � 1
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2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ
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=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ
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. (8)

The hyperbolic distance between two points with polar
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sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
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Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
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=
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =
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2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
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2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H
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of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then
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mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
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1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
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curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
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The result of this redefinition is an effective hyperbolic
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.
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Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
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connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
∆θ

2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
∆θ

2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=
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1 +
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µκκ�
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

�
2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have
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γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
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Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =
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2α + 1 if α � 1

2 ,

2 if α � 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2 R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S

1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ� is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ�), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r� +
2
ζ

ln
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2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r�, θ�) in the hyperbolic space H

2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr� −
sinh ζr sinh ζr� cos ∆θ, which for sufficiently large r, r�,
and ∆θ is closely approximated by

x = r + r� +
2
ζ

ln sin
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2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H

2 with
K = −ζ2 in Eq. (9), and the effective distance in S

1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability
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pij = −
! ln Z

!!ij
=

1
e!ij + 1

. !44"

The connection probability !41" thus interprets the auxiliary
fields !ij in this ensemble as a linear function of hyperbolic
distances xij between nodes in the ensemble of graphs gen-
erated by our model,

!ij = "
#

2
!xij − R" , !45"

which makes the two ensembles identical.
The connection probability !41" is nothing but the Fermi-

Dirac distribution. It appears because we allow only one link
between a pair of nodes. If we allowed multiple links, or if
we considered weighted networks, the resulting link statistics
would be Bose-Einstein #13,14$. Hyperbolic distances x in
Eq. !41" can now be interpreted as energies of fermionic
links, whereas hyperbolic disk radius R is the chemical po-
tential, 2 /# is the Boltzmann constant, and "=1 /T is the
inverse temperature. The ensemble is grand canonical with
the number of particles or links M fixed on average. The
standard definition of the chemical potential is then

M = %N

2
&'

0

2R

g!x"p!x"dx , !46"

where g!x" is the degeneracy of energy level x. In our case,
g!x" is the probability that two nodes are located at distance
x from each other. We can compute this probability to yield

g!x" =
#

$
%% − 1

% − 2
&2

e#!x−2R"/2 + !a + bx"e&!x−2R", !47"

where a ,b are some constants and %=2& /#+1. Substituting
this g!x" in definition !46", using M = k̄N /2 there, and keep-
ing the leading terms, we get

k̄ = N(I
2
$
%% − 1

% − 2
&2

e−#R/2 +
e−"#R/2

!1 − ""c) , !48"

where c is another constant which we determine in the next
section. If "'1, we neglect the second term above, and
observe that the standard definition of the chemical potential
in statistical mechanics #Eq. !46"$ yields the same result as
Eq. !25", obtained using purely geometric arguments. The
same observation applies for the parameter (=Ne−#R/2 that
we get from Eq. !48": it is the same as in Eq. !36" with )
=( / !$*0

2" and *̄ in Eq. !34", or as in Eq. !31" if temperature
T=0, so that I=1.

At T=0 the system is in the ground most degenerate state,
and all M links occupy the lowest energy levels until all of
them are filled. In this ground state, Fermi distribution !41"
converges to the step function !8", which a posteriori justi-
fies our choice there. At higher temperatures the fermionic
particles start populating higher energy states, and at T=1 we
have a phase transition caused by the divergence of p̃!+"
leading to a discontinuity of the partition function !43". This
discontinuity is due to the discontinuity of the chemical po-
tential R. We see from Eqs. !48" and !42" that R diverges as
*−ln!"−1" at "→1+. If ",1, then the second term in Eq.

!48" is the leading term, and instead of Eq. !25" we have

N = k̄!1 − ""ce"#R/2, !49"

so that at "→1−, the chemical potential R diverges as *
−ln!1−"". We investigate what effect this phase transition
has on network topology in the next two sections.

VII. DEGREE DISTRIBUTION AT NONZERO
TEMPERATURE

A. !'1

Since the connection probability p̃!+" in Eq. !41" is inte-
grable in this cold regime, we immediately conclude that the
degree distribution is the same power law as at the zero
temperature, while the average degree is k̄=2)I*̄2 !36" with
I in Eq. !42". In view of the equivalence between the S1 and
H2 models established in Sec. V, the power-law exponent %
'2 is related to the H2 model parameters #'0 and &
'# /2 via %=2& /#+1, as at T=0. The chemical potential is
R= !2 /#"ln!N /(" with (=$)*0

2 #Eqs. !25" and !38"$.

B. !,1

In this hot regime, the connection probability p̃!+" di-
verges, and we have to renormalize its integral I=+p̃!+"d+.
Specifically, instead of integrating to infinity as in Eq. !35",
we have to explicitly cut off the integration at the maximum
value of +max=N / !2)**!". The exact value of +0

+maxp̃!+"d+
with p̃!+" in Eq. !41" is 2H1!1,"−1 ;1+"−1 ;−+max

" "+max,
where 2H1 is the Gauss hypergeometric function. The leading
term of this product for large +max and "! #0,1" is
+max

1−" / !1−""; substituting which into the expression for the
average degree in the S1 model !35" we get

k̄!*"
,k-

=
*"

,*"-
, !50"

,k- . k̄ = !2)"",*"-2 N1−"

1 − "
, !51"

,*"- = '
*0

-

*".!*"d* = *0
" %̃ − 1

%̃ − " − 1
, !52"

where %̃ is the input value of the % parameter in the S1

model, i.e., the distribution of the hidden variable * is .!*"
=*0

%̃−1!%̃−1"*−%̃. We introduce a new notation for this param-
eter to differentiate it from the value of power-law exponent
% in generated networks, which is different from %̃ in this hot
regime. Indeed, since the average degree k̄!*" of nodes with
hidden variable * is no longer proportional to * but to *"

!50", the degree distribution in the modeled networks is

P!k" * k−%, with % = !%̃ − 1"T + 1. !53"

The mapping to the H2 model is achieved via the same
change of variables !37" and by requiring that +=e#!x−R"/2.
Performing this change of variables, and noticing that !%̃

HYPERBOLIC GEOMETRY OF COMPLEX NETWORKS PHYSICAL REVIEW E 82, 036106 !2010"

036106-9

Degeneracy of the energy level x 
(distance pairs probability density )

Number of fermions (edges)

By fixing M, we obtain the chemical potential R at any 
temperature T, even above the critical one
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a measurement of the clustering at the new tempera-
ture. We have to point out that every time we change
the temperature we also have to change the radius of
the plane R we embed the network using the equa-
tion 22. Once we change R some nodes may lay now
out of the plane. In order to fix this problem we just
change all the radial coordinate of every node in order
to keep the radial distribution constant. Every time
we increase the temperature we wait sufficient Mon-
tecarlo steps in order to get to the equilibrium before
taking measurements. In this way we are able to take
an big amount of measurements with just one network
generated and for different temperatures saving a lot
of computational time. We do simulations for different
sizes, values of γ and for a range of temperatures of
0.1 > T > 2.

6 Results

In Figure 3 we show the evolution of the cluster-
ing as we increase the temperature for a network of
10.000 nodes for different values of γ. Here we can
clearly see that the clustering is high below T = 1
and goes towards zero for higher temperatures. Hence
our simulations shows that there is a phase transition
for the clustering at a temperature around T = 1, as
we predicted analytically. This phase transition found
both analytically and in our simulations introduce the
concept of hot and cold networks. As we have said
before, the energy of the links are the hyperbolic dis-
tance between the connected nodes. In a cold network
the states of high energy (big distance) are not occu-
pied, so two nodes will be connected if they are close
in the hyperbolic plane. Besides, their neighbours will
be also close so they will be probably connected form-
ing a triangular subgraph, thus, the clustering is high.
In a hot network, high energy states are occupied in a
way that far nodes can be connected and the hyper-
bolic distance is not an important magnitude. Thus
the network is similar to a random network and the
clustering goes to zero.

We repeated the simulations for different sizes in
order to see how the phase transition scales with the
size of the network. The result is shown in Figure 4.
In this figure we can clearly see that as we increase the
size of the system the curve goes to the thermodynamic
limit curve.
Now we are interested to know if the Finite Size Scaling
holds in our case. If we apply the Finite Size Scaling
the clustering should scale with the size of the system
as

C = Nβ/νF [(T − Tc)N
1/ν ]. (23)

So the function F [x] is a function that do not de-
pends on the size of the system. From the curves of
Figure 4 we use the program Mathematica in order
rescale the all the data assuming the Finite Size Scal-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
lu

st
er

in
g

Temperature

 N=10000

γ = 2.5
γ = 2.6
γ = 2.7
γ = 2.9

Figure 3: The clustering coefficient as function of the
temperature for a network of 100.00 nodes and for dif-
ferent values if γ obtained in one simulation.

ing assumptions. Figure 5 show the collapse that we
obtained for a γ = 2.9 and confirms that the Finite
Size Scaling holds in our case. The exponents that
allows this collapse are

β = 1

ν = 0.17

If we compare the critical exponents that we have
obtained from our simulation with the ones obtained
from the theoretical analysis we can see that they do
not match even in the error margin. The β exponentias
equal to 1 and the ν exponent for γ = 2.9 is equal to
0.64. Looking to the other results and curves that
we obtained from the simulation we assume that the
error that we have done is in our theoretical analysis.
In future work we will revised the simplifications that
we apply in order to be able to integrate some parts
to find the correct critical exponents.

7 Conclusions

In this geometric approach that uses this model,
clustering and heterogeneous degree distribution ap-
pear as simple consequences of the metric and the neg-
ative curvature property of hyperbolic spaces. More-
over this model stands for the physical interpretation
that gives to all the elements of a network. Introducing
the Fermi-Dirac function as the connectivity function
we now understand the hidden distances as energies of
the corresponding link fermions. Besides, we have seen
that the temperature is a parameter that controls the
clustering and the radius of the plane where we embed
the network fixes the average degree. In this work we
wanted to focused on the clustering of networks gener-
ated this way. The first result we have obtained, both
analytically and from our simulations, is that there

Clustering undergoes a phase transition at Tc=1
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ing assumptions. Figure 5 show the collapse that we
obtained for a γ = 2.9 and confirms that the Finite
Size Scaling holds in our case. The exponents that
allows this collapse are
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If we compare the critical exponents that we have
obtained from our simulation with the ones obtained
from the theoretical analysis we can see that they do
not match even in the error margin. The β exponentias
equal to 1 and the ν exponent for γ = 2.9 is equal to
0.64. Looking to the other results and curves that
we obtained from the simulation we assume that the
error that we have done is in our theoretical analysis.
In future work we will revised the simplifications that
we apply in order to be able to integrate some parts
to find the correct critical exponents.

7 Conclusions

In this geometric approach that uses this model,
clustering and heterogeneous degree distribution ap-
pear as simple consequences of the metric and the neg-
ative curvature property of hyperbolic spaces. More-
over this model stands for the physical interpretation
that gives to all the elements of a network. Introducing
the Fermi-Dirac function as the connectivity function
we now understand the hidden distances as energies of
the corresponding link fermions. Besides, we have seen
that the temperature is a parameter that controls the
clustering and the radius of the plane where we embed
the network fixes the average degree. In this work we
wanted to focused on the clustering of networks gener-
ated this way. The first result we have obtained, both
analytically and from our simulations, is that there

Clustering undergoes a phase transition at Tc=1
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a measurement of the clustering at the new tempera-
ture. We have to point out that every time we change
the temperature we also have to change the radius of
the plane R we embed the network using the equa-
tion 22. Once we change R some nodes may lay now
out of the plane. In order to fix this problem we just
change all the radial coordinate of every node in order
to keep the radial distribution constant. Every time
we increase the temperature we wait sufficient Mon-
tecarlo steps in order to get to the equilibrium before
taking measurements. In this way we are able to take
an big amount of measurements with just one network
generated and for different temperatures saving a lot
of computational time. We do simulations for different
sizes, values of γ and for a range of temperatures of
0.1 > T > 2.

6 Results

In Figure 3 we show the evolution of the cluster-
ing as we increase the temperature for a network of
10.000 nodes for different values of γ. Here we can
clearly see that the clustering is high below T = 1
and goes towards zero for higher temperatures. Hence
our simulations shows that there is a phase transition
for the clustering at a temperature around T = 1, as
we predicted analytically. This phase transition found
both analytically and in our simulations introduce the
concept of hot and cold networks. As we have said
before, the energy of the links are the hyperbolic dis-
tance between the connected nodes. In a cold network
the states of high energy (big distance) are not occu-
pied, so two nodes will be connected if they are close
in the hyperbolic plane. Besides, their neighbours will
be also close so they will be probably connected form-
ing a triangular subgraph, thus, the clustering is high.
In a hot network, high energy states are occupied in a
way that far nodes can be connected and the hyper-
bolic distance is not an important magnitude. Thus
the network is similar to a random network and the
clustering goes to zero.

We repeated the simulations for different sizes in
order to see how the phase transition scales with the
size of the network. The result is shown in Figure 4.
In this figure we can clearly see that as we increase the
size of the system the curve goes to the thermodynamic
limit curve.
Now we are interested to know if the Finite Size Scaling
holds in our case. If we apply the Finite Size Scaling
the clustering should scale with the size of the system
as

C = Nβ/νF [(T − Tc)N
1/ν ]. (23)

So the function F [x] is a function that do not de-
pends on the size of the system. From the curves of
Figure 4 we use the program Mathematica in order
rescale the all the data assuming the Finite Size Scal-
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change all the radial coordinate of every node in order
to keep the radial distribution constant. Every time
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generated and for different temperatures saving a lot
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sizes, values of γ and for a range of temperatures of
0.1 > T > 2.

6 Results

In Figure 3 we show the evolution of the cluster-
ing as we increase the temperature for a network of
10.000 nodes for different values of γ. Here we can
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and goes towards zero for higher temperatures. Hence
our simulations shows that there is a phase transition
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we predicted analytically. This phase transition found
both analytically and in our simulations introduce the
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bolic distance is not an important magnitude. Thus
the network is similar to a random network and the
clustering goes to zero.

We repeated the simulations for different sizes in
order to see how the phase transition scales with the
size of the network. The result is shown in Figure 4.
In this figure we can clearly see that as we increase the
size of the system the curve goes to the thermodynamic
limit curve.
Now we are interested to know if the Finite Size Scaling
holds in our case. If we apply the Finite Size Scaling
the clustering should scale with the size of the system
as
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obtained from our simulation with the ones obtained
from the theoretical analysis we can see that they do
not match even in the error margin. The β exponentias
equal to 1 and the ν exponent for γ = 2.9 is equal to
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we obtained from the simulation we assume that the
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to find the correct critical exponents.
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over this model stands for the physical interpretation
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temperature for networks of different sizes for a γ = 2.9
obtained in one simulation.
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exist a phase transition of the clustering at a temper-

ature T = 1. This fact allowed us to introduce the
concept of hot and colds networks. Because the com-
plex networks are characterized for a high clustering,
complex networks are understood as cold networks.
We did further calculations in order to characterize
the phase transition finding the critical exponents. We
also get the critical exponents from the simulations us-
ing the Finite Size Scaling that we proved that it holds
in our case. The exponents that we get do not match
with the theoretical ones so future work will be focused
on revising and improving some of the simplifications
that are done in the theoretical analysis.
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Boguñá, M., Krioukov, D. & claffy, k. 2008
Navigability of complex networks. Nature Physics,
doi:10.1038/nphys1130 .
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Curvature and temperature of complex networks 
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Sustaining the Internet with hyperbolic mapping
M. Boguñá, F. Papadopoulos, and D. Krioukov. Nature Communications 1, 62 (2011) 
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TERANET 2011 summary

A new class of models with metric properties that can 
be used to model real systems like the Internet

Navigation is optimally efficient in the Einsteinian-H2 
model

Metric properties are also a connection with the 
community structure of the network

Embedding of the real Internet graph offers a readily 
available solution for inter-domain routing.
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