The hidden hyperbolic structure of the Internet

Marián Boguñá
 Departament de Física Fonamental Universitat de Barcelona

B:KC
Barcelona Knowledge Campus

Campus of International Excellence

Funding

$.1|1.1| 1$, CISCO.

Knowledge of the full topology of the graph DDynamical updates after single events

Knowledge of the full topology of the graph DDynamical updates after single events

Knowledge of the full topology of the graph DDynamical updates after single events

K Knowledge of the full topology of the graph DDynamical updates after single events

- BGP updates

(1) per second on average
(V) 7000 per second peak rate
(]) Convergence after a single event can take up to tens of minutes

『BGP updates

V 2 per second on average
V 7000 per second peak rate
(]) Convergence after a single event can take up to tens of minutes
according to the Internet Architecture Board, this is one of the most (if not the most) fundamental scalability limitation of our primary communication technologies, including the Internet.
D. Meyer, L. Zhang, and K. Fall, Report from the IAB workshop on routing and addressing, IETF, RFC 4984, 2007

『BGP updates

V 2 per second on average
(V) 7000 per second peak rate
(]) Convergence after a single event can take up to tens of Trillion-dollar question!!!
according to the Internet Architecture Board, this is one of the most (if not the most) fundamental scalability limitation of our primary communication technologies, including the Internet.
D. Meyer, L. Zhang, and K. Fall, Report from the IAB workshop on routing and addressing, IETF, RFC 4984, 2007

why is clustering so important?

why is clustering so important?
it can be a consequence of a hidden metric property

why is clustering so important? it can be a consequence of a hidden metric property

why is clustering so important? it can be a consequence of a hidden metric property

Observable network topology

why is clustering so important? it can be a consequence of a hidden metric property

why is clustering so important? it can be a consequence of a hidden metric property

why is clustering so important? it can be a consequence of a hidden metric property

Observable network topology

We can use distances to route information packets Greedy Routing

Is greedy routing a feasible mechanism in large networks?

What are the topological requirements for that to happen?

Can we really map real networks into metric spaces?

Is greedy routing a feasible mechanism in large networks?

What are the topological requirements for that to happen?

Can we really map real networks into metric spaces?

WE NEED MODELS

Distribute points in a plane using a Poisson process or whatever you like

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance
problems

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Graphs are homogeneous

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Graphs are homogeneous
Not a good model for real systems!!

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Graphs are homogeneous
Not a good model for real systems!!

Distribute points in a plane using a Poisson process or whatever you like

Connect points that are below a critical distance

problems

The generated graphs are not small-worlds

Graphs are homogeneous
Not a good model for real systems!!

Long range connections depend on the importance of the two cities involved

Cities' importance is an intrinsic property

Connection probability

$$
r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right]
$$

$$
\begin{aligned}
& r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right] \\
& d_{c}=d_{c}\left(\kappa, \kappa^{\prime}\right) \quad \text { Nodes are heterogeneous }
\end{aligned}
$$

$$
\begin{aligned}
& r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right] \\
& d_{c}=d_{c}\left(\kappa, \kappa^{\prime}\right) \quad \text { Nodes are heterogeneous }
\end{aligned}
$$

High $\kappa \longrightarrow$ Important/Popular
Low $\kappa \longrightarrow$ Unimportant/Unpopular

$$
\begin{aligned}
& r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right] \\
& d_{c}=d_{c}\left(\kappa, \kappa^{\prime}\right) \quad \text { Nodes are heterogeneous }
\end{aligned}
$$

High $\kappa \longrightarrow$ Important/Popular

$$
\text { Low } \kappa \longmapsto \text { Unimportant/Unpopular }
$$

$$
d_{c}\left(\kappa, \kappa^{\prime}\right)=\propto\left(\kappa \kappa^{\prime}\right)^{1 / D} \quad \begin{gathered}
\text { Friendly people make } \\
\text { connections more easily }
\end{gathered}
$$

$$
\begin{aligned}
& r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right] \\
& d_{c}=d_{c}\left(\kappa, \kappa^{\prime}\right) \quad \text { Nodes are heterogeneous }
\end{aligned}
$$

High $\kappa \longrightarrow$ Important/Popular

connection probability: arbitrary integrable function of the form

$$
\begin{aligned}
& r\left(\mathbf{x} ; \mathbf{x}^{\prime}\right)=r\left[d\left(\mathbf{x}, \mathbf{x}^{\prime}\right) / d_{c}\right] \\
& d_{c}=d_{c}\left(\kappa, \kappa^{\prime}\right) \quad \text { Nodes are heterogeneous }
\end{aligned}
$$

High $\kappa \longrightarrow$ Important/Popular

connection probability: arbitrary integrable function of the form
 $\left[\frac{(x)}{\left(\frac{1}{c}\right)}\right.$

$$
\rho(\kappa) \propto \kappa^{-\gamma} \longmapsto P(k) \propto k^{-\gamma}
$$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

$r\left(\theta, \kappa ; \theta^{\prime}, \kappa^{\prime}\right)=\left(1+\frac{d\left(\theta, \theta^{\prime}\right)}{\mu \kappa \kappa^{\prime}}\right)^{-\alpha} \quad \begin{aligned} & \text { connection probability } \\ & \text { between a pair of nodes }\end{aligned}$

Degree distribution independent of clustering

Naoki Masuda, Hiroyoshi Miwa, and Norio Konno. Phys. Rev. E 71, 036108 (2005)
M. A. Serrano, D. Krioukov, and M. B. Phys. Rev. Lett. 100, 078701 (2008)

Degree distribution

independent of clustering

Naoki Masuda, Hiroyoshi Miwa, and Norio Konno. Phys. Rev. E 71, 036108 (2005)
M. A. Serrano, D. Krioukov, and M. B. Phys. Rev. Lett. 100, 078701 (2008)

Messages can get trapped in terminal vertices

Messages can get trapped in terminal vertices

- The more heterogeneous and clustered, the more efficient the navigability

M. B., D. Krioukov, and kc claffy. Nature Physics 5, 74 (2009)
M. B. and D. Krioukov. Phys. Rev. Lett. 102, 058701 (2009)
- The more heterogeneous and clustered, the more efficient the navigability

M. B., D. Krioukov, and kc claffy. Nature Physics 5, 74 (2009)
M. B. and D. Krioukov. Phys. Rev. Lett. 102, 058701 (2009)
- The more heterogeneous and clustered, the more efficient the navigability

M. B., D. Krioukov, and kc claffy. Nature Physics 5, 74 (2009)
M. B. and D. Krioukov. Phys. Rev. Lett. 102, 058701 (2009)
- The more heterogeneous and clustered, the more efficient the navigability

M. B., D. Krioukov, and kc claffy. Nature Physics 5, 74 (2009)
M. B. and D. Krioukov. Phys. Rev. Lett. 102, 058701 (2009)

Still, the model does not yield perfect navigability. Not all pairs of nodes are connected by greedy routing paths

The reason is that the model introduces a non-geometric ingredient

For purely geometric graphs, the main problem comes from the small-world effect

Still, the model does not yield perfect navigability. Not all pairs of nodes are connected by greedy routing paths

The reason is that the model introduces a non-geometric ingredient

For purely geometric graphs, the main problem comes from the small-world effect

small-world

exponential
expansion of space

Still, the model does not yield perfect navigability. Not all pairs of nodes are connected by greedy routing paths

The reason is that the model introduces a non-geometric ingredient

For purely geometric graphs, the main problem comes from the small-world effect
small-world

exponential
 expansion of space

$$
N(r) \sim b^{r}
$$

Still, the model does not yield perfect navigability. Not all pairs of nodes are connected by greedy routing paths

The reason is that the model introduces a non-geometric ingredient

For purely geometric graphs, the main problem comes from the small-world effect

small-world

exponential
expansion of space

Still, the model does not yield perfect navigability. Not all pairs of nodes are connected by greedy routing paths

The reason is that the model introduces a non-geometric ingredient

For purely geometric graphs, the main problem comes from the small-world effect

small-world

exponential
 expansion of space

$$
N_{1}(r) \sim b^{r}
$$

number of nodes within a ball of radius r
in Euclidean spaces it goes as

$$
N(r) \sim r^{D}
$$

The cosmological principle

THE COSMOLOGICAL PRINGIPLE

The internet is embedded in a homogeneous and isotropic manifold

The cosmological principle

THE COSMOLOGICAL PRINCIPLE
The Internet is embedded in a homogeneous and isotropic manifold

The cosmological principle

- THE COSMOLOGICAL PRINCIPLE

The internet is embedded in a homogeneous and isotropic manifold

There are three typês of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

粦 Euclidean spaces $\quad K=0$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

Euclidean spaces $\quad K=0 \quad V(r) \sim r^{2}$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

Euclidean spaces
$K=0$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

参 Euclidean spaces	$K=0$
spherical spaces	$K>0$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

为 Euclidean spaces	$K=0$	$V(r) \sim r^{2}$
为 spherical spaces	$K>0$	$V(r) \sim 1-\cos r$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

Euclidean spaces

$K=0$

spherical spaces
$K>0$

$$
V(r) \sim 1-\cos r
$$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

Euclidean spaces

$$
K=0
$$

spherical spaces
$K>0$
$V(r) \sim 1-\cos r$

hyperbolic spaces $K<0$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D

* Euclidean spaces $\quad K=0$

鐐 spherical spaces
$K>0$
$V(r) \sim 1-\cos r$

綅 hyperbolic spaces
$K<0 \quad V(r) \sim \cosh r-1$

There are three types of homogeneous and isotropic spaces. with constant curvature. For instance, in 2D
*

5 sherical spaces
$K>0$
$V(r) \sim 1-\cos r$

瞹 hyperbolic spaces $\quad K<0$

$$
\begin{aligned}
& \rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r} \\
& \text { homogeneous distribution of } \\
& \text { points in the hyperbolic plane }
\end{aligned}
$$

$$
\begin{aligned}
& \rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r} \\
& \text { homogeneous distribution of } \\
& \text { points in the hyperbolic plane }
\end{aligned}
$$

$$
\begin{aligned}
& \rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r} \\
& \text { homogeneous distribution of } \\
& \text { points in the hyperbolic plane }
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=\Theta(R-x) \\
& \text { nodes at hyperbolic distances } \\
& \text { smaller than } R \text { become connected }
\end{aligned}
$$

$$
\begin{aligned}
& \rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r} \\
& \text { homogeneous distribution of } \\
& \text { points in the hyperbolic plane }
\end{aligned}
$$

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
\rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r}
$$

homogeneous distribution of points in the hyperbolic plane

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
\rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r}
$$

homogeneous distribution of points in the hyperbolic plane

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
P(k) \sim k^{-3} \quad N=c e^{\dot{R} / 2}
$$

You get a nice power law degree distribution

$$
\rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r}
$$

homogeneous distribution of points in the hyperbolic plane

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
P(k) \sim k^{-3} \quad N=c e^{\dot{R} / 2}
$$

You get a nice power law degree distribution

$$
\rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r}
$$

homogeneous distribution of points in the hyperbolic plane

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
P(k) \sim k^{-3} \quad N=c \overline{e^{\dot{R} / 2}}
$$

You get a nice power law degree distribution

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}, \alpha>0
$$

$$
\rho(r)=\frac{\sinh r}{\cosh R-1} \approx e^{r-R} \sim e^{r}
$$

homogeneous distribution of points in the hyperbolic plane

$$
p(x)=\Theta(R-x)
$$

nodes at hyperbolic distances smaller than R become connected

$$
P(k) \sim k^{-3} \quad N=\bar{c} e^{\dot{R} / 2}
$$

You get a nice power law degree distribution

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}, \alpha>0
$$

$$
P(k) \sim k^{-\gamma}, \quad \text { with } \gamma= \begin{cases}2 \alpha+1 & \text { if } \alpha \geqslant \frac{1}{2} \\ 2 & \text { if } \alpha \leqslant \frac{1}{2}\end{cases}
$$

Which transformation goes from

$$
\rho(\kappa)=(\gamma-1) \frac{\kappa_{0}^{\gamma-1}}{\kappa^{\gamma}}
$$

to this?

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}
$$

Which transformation goes from

$$
\rho(\kappa)=(\gamma-1) \frac{\kappa_{0}^{\gamma-1}}{\kappa^{\gamma}}
$$

to this?

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}
$$

$$
r\left(\frac{d}{\mu \kappa \kappa^{\prime}}\right)
$$

Which transformation goes from

$$
\rho(\kappa)=(\gamma-1) \frac{\kappa_{0}^{\gamma-1}}{\kappa^{\gamma}}
$$

to this?

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}
$$

$$
r\left(\frac{d}{\mu \kappa \kappa^{\prime}}\right)=r\left(\frac{\Delta \theta N}{2 \pi \mu \kappa \kappa^{\prime}}\right)
$$

Which transformation goes from

$$
\rho(\kappa)=(\gamma-1) \frac{\kappa_{0}^{\gamma-1}}{\kappa_{0}^{\gamma}}
$$

to this?

$$
\rho(r)=\frac{\alpha \sinh \alpha r}{\cosh \alpha R-1}
$$

$$
r=R-\frac{2}{\zeta} \ln \left[\frac{\kappa}{\kappa_{0}}\right]
$$

$$
r\left(\frac{d}{\mu \kappa \kappa^{\prime}}\right)=r\left(\frac{\Delta \theta N}{2 \pi \mu \kappa \kappa^{\prime}}\right)=\hat{r}\left(e^{\frac{\zeta}{2}\left(r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}-R\right)}\right)
$$

Newtonian-S ${ }^{1}$ Einsteinian-H ${ }^{2}$

Newtonian-S ${ }^{1}$

$$
\hat{r}\left(e^{\frac{\zeta}{2}\left(r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}-R\right)}\right)
$$

Einsteinian-H ${ }^{2}$
\qquad -

Newtonian-S ${ }^{1}$
Einsteinian-H ${ }^{2}$

$$
\begin{aligned}
& \hat{r}(e^{\frac{\zeta}{2}}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\mu}-R) \\
& x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{aligned}
$$

Newtonian-S ${ }^{1}$

$$
\begin{gathered}
\hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\uparrow}-R)}) \\
x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{gathered}
$$

Einsteinian-H ${ }^{2}$

the hyperbolic distance is very well approximated by
$x=r+r^{\prime}+\frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}$

Newtonian-S ${ }^{1}$

$\hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\mu}-R)})$
$x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}$

Einsteinian-H ${ }^{2}$

the hyperbolic distance is very well approximated by

$$
x=r+r^{\prime}+\frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}
$$

Newtonian-S ${ }^{1}$

$$
\begin{aligned}
& \hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\mu}-R)}) \\
& x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{aligned}
$$

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right)
$$

$$
\hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

Einsteinian-H ${ }^{2}$

the hyperbolic distance is very well approximated by
$x=r+r^{\prime}+\frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}$

Newtonian-S ${ }^{1}$

$$
\begin{aligned}
& \hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\mu}-R)}) \\
& x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{aligned}
$$

$\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right)$
$\hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}$

Einsteinian-H ${ }^{2}$

the hyperbolic distance is very well approximated by
$x=r+r^{\prime}+\frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}$
$p(x)=\Theta(R-x)$

Newtonian-S ${ }^{1}$

$$
\begin{gathered}
\hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\uparrow}-R)}) \\
x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{gathered}
$$

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right)
$$

$$
\hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

Einsteinian-H ${ }^{2}$

the hyperbolic distance is very well approximated by

$$
x=r+r^{\prime}+\frac{2}{\zeta} \ln \sin \frac{\Delta \theta}{2}
$$

$$
p(x)=\Theta(R-x)
$$

Newtonian-S ${ }^{1}$

$$
\begin{gathered}
\hat{r}(e^{\frac{\zeta}{2}(\underbrace{r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}}_{\uparrow}-R)}) \\
x=r+r^{\prime}+\frac{2}{\zeta} \ln \frac{\Delta \theta}{2}
\end{gathered}
$$

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right)
$$

$$
\hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

Einteinian- H^{2} are isomorphic

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

Fermi distribution

$$
p(x)=\frac{1}{1+e^{\frac{c}{2 T}(x-R)}}
$$

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

Fermi distribution

$$
p(x)=\frac{1}{1+e^{\frac{\zeta}{2 T}(x-R)}}
$$

> edges are fermions that can occupy any of the $\mathrm{N}(\mathrm{N}-1) / 2$ possible states

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

Fermi distribution

$$
p(x)=\frac{1}{1+e^{\frac{\zeta}{2 T}(x-R)}}
$$

edges are fermions that can occupy any of the $\mathrm{N}(\mathrm{N}-1) / 2$ possible states
hyperbolic distance
is like the energy of
the state

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

Fermi distribution

$$
\begin{aligned}
p(x)= & \frac{1}{1+e^{\frac{\epsilon}{2 T}}(x-R)} \quad \begin{array}{l}
\text { occupy any of the } \mathrm{N}(\mathrm{~N}-1) / 2 \\
\text { possible states }
\end{array} \\
& \begin{array}{l}
\text { chemical potential } \\
\text { hyperbolic distance } \\
\text { ike the energy of } \\
\text { the state }
\end{array}
\end{aligned}
$$

The important conclusion is

$$
\hat{r}\left(e^{\frac{\zeta}{2}(x-R)}\right) \quad \hat{r}(z) \begin{cases}\text { cte } & z \ll 1 \\ 0 & z \gg 1\end{cases}
$$

a very natural candidate is

$$
\hat{r}(z)=\frac{1}{1+z^{1 / T}}
$$

Fermi distribution

$$
\begin{aligned}
& p(x)=\frac{1}{1+e^{\frac{c}{2 T}(x-R)}} \quad \begin{array}{l}
\text { occupy any of the } \mathrm{N}(\mathrm{~N}-1) / 2 \\
\text { possible states }
\end{array} \\
& \text { temperature } \\
& \begin{array}{l}
\text { hyperbolic distance } \\
\text { is like the energy of potential } \\
\text { the state }
\end{array}
\end{aligned}
$$

edges are fermions that can

By fixing M, we obtain the chemical potential R at any temperature T, even above the critical one

Clustering undergoes a phase transition at Tc=1

Clustering undergoes a phase transition at $\mathrm{Tc}=1$

Clustering undergoes a phase transition at $\mathrm{Tc}=1$

Clustering undergoes a phase transition at $\mathrm{Tc}=1$

Curvature and temperature of complex networks
D. Krioukov, F. Papadopoulos, A. Vahdat, and M. B. Phys. Rev. E 80, 035101(R) (2009)

Real AS Internet graph
Einsteinian-H2 Model

Real AS Internet graph
Einsteinian-H2 Model

Concentration of ASs

Metabolism and a bipartite version of model are also extremelly congruent

0 Alanine and Aspartate
Purine and Pyrimidine
Glycine and Serine:
Glyoxylate Alanine and Aspartate
Purine and Pyrimidine
Glycine and Serine:
Glyoxylate Alanine and Aspartate
Purine and Pyrimidine
Glycine and Serine:
Glyoxylate
 UMP UDP
M. A. Serrano, M. Boguñá, and F. Sagués, arXiv:1109.1934

A new class of models with metric properties that can be used to model real systems like the Internet

ONavigation is optimally efficient in the Einsteinian- H^{2} model

OMetric properties are also a connection with the community structure of the network

Ombedding of the real Internet graph offers a readily available solution for inter-domain routing.

A million thanks to my collaborators in these works

M. Ángeles Serrano Departament de Química Física Universitat de Barcelona, Spain

Dmitri Krioukov, kc claffy Cooperative Association for Internet Data Analysis (CAIDA) UCSD, USA

and Fragkiskos Papadopoulos Department of Electrical and Computer Engineering University of Cyprus, Cyprus

Tesselation with uniform hexagons

Tesselation with uniform hexagons

Infinite number of geodesic lines going through C and parallel to L_{1}

