
From EULER Project

PmWiki: Skin Templates
This page describes the skin template files (.tmpl) that are used to create PmWiki skins, and how PmWiki uses
them. As described in the skins page, a skin is a collection of files that specifies the layout for PmWiki pages.
Each skin must include a template file that provides the skeleton for displaying a PmWiki page.

Finding and Processing Templates

When you set the value of the $Skin variable in a configuration file like local/config.php, like this

Use the Foo Skin.
$Skin = 'foo';

it tells PmWiki to search for a skin of that name, and use it. The usual result of the search is for PmWiki to
load a template file from the appropriate skin directory. In this example, that would probably be the file
pub/skins/foo/foo.tmpl.

The actual processing that PmWiki goes through to find a template file is important for those who are making
complex skins, so its worth mentioning what those steps are:

Security Note

The default value for $SkinLibDirs has server-side and client-side files stored in the same
publicly-accessible directory. That is, $SkinDir and $SkinDirUrl point to the same place. This is done
for convenience (both for the skin user, and the skin writer), but it is not necessary.

It has the side effect that its possible to construct a URL (like this one) that will let you look at the contents of
the the .tmpl or .php files that a skin uses. This is usually not an issue as skin files should not contain any
sensitive information.

Still, a purist might want to move their .tmpl and .php files out of the directories that are accessible as
URLs, and modify their $SkinLibDirs array to reflect this.

When $PageTemplateFmt is blank (as it should be), PmWiki gathers the names of all candidate
skins. It starts with any action-specific skin that is specified in $ActionSkin[$action]. Thus, if
the current action is 'login', and $ActionSkin['login'] is 'Bar', then PmWiki will look for a
skin named 'Bar'.

1.

If no skin has been found yet, it looks for the skin(s) named in the $Skin variable (which is allowed
to be an array) and uses the first skin it can find. If it gets to the end of the list without finding a skin,
it issues an error.

2.

To attempt to find a skin, PmWiki first consults the $SkinLibDirs variable to know where to look.
Skins consist of server-side files that are loaded by PmWiki (such as .php and .tmpl files) and
client-side files (such as .css files and images) that will be requested by the user's browser when they
look at a skinned PmWiki page. $SkinLibDirs is an array of key/value pairs. The key is a
directory to look in for the server-side files, while the corresponding value is a URL that points to the
public client-side resources used by the skin. The default value of $SkinLibDirs is:
$SkinLibDirs = array(

3.

EULER Project | PmWiki / Skin Templates

PmWiki: Skin Templates 1

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/Skins?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#SkinDirUrl
http://www.pmwiki.org/pmwiki/pub/skins/pmwiki/pmwiki.tmpl
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/LayoutVariables?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/LayoutVariables#ActionSkin
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/LayoutVariables?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/LayoutVariables#SkinLibDirs

 "./pub/skins/\$Skin" => "$PubDirUrl/skins/\$Skin",
 "$FarmD/pub/skins/\$Skin" => "$FarmPubDirUrl/skins/\$Skin");

So, using the above definitions, PmWiki would try to find the skin 'foo' by looking for a directory
called ./pub/skins/foo and then for $FarmD/pub/skins/foo (with the value of $FarmD
replaced by the root server directory for Farm files). The first such directory that was found would be
assumed to contain the skin it was looking for. It would then set $SkinDir to the name of this
directory and $SkinDirUrl to the corresponding URL.
Once a valid skin directory has been found, PmWiki starts processing the files in that directory,
looking for a .php skin file to run. It first looks for one with the same name as the skin. So, if the
skin is 'foo', it looks for foo.php. If no such file is found, it then checks for a file named
skin.php. If one of these .php files is found, PmWiki loads and runs it. This allows a skin to
define custom markup, or custom configuration parameters. It also allows a skin to choose between
which of several different .tmpl files to load.
To specify which .tmpl file to load, simply call LoadPageTemplate() inside the skin .php
file, with the name of the .tmpl file to be loaded:
LoadPageTemplate($pagename, "$SkinDir/xyz.tmpl");
For example, a skin might specify a special template to be used if the action is 'print':
if ($GLOBALS['action'] == 'print')
 LoadPageTemplate($pagename, "$SkinDir/print.tmpl");

When the action is something else, PmWiki will fall back to loading the default .tmpl file instead.

4.

If no appropriate .php file is found, or if that file doesn't load a template, then PmWiki falls back to
looking for a template with the same name as the skin, or, failing that, any .tmpl file at all, so long
as its the only one in the directory. If it finds one, it will load and process it. If not, it will issue an
error.

5.

Template file format

A template file is basically an HTML file that also contains variable substitutions (indicated by '$') and special
directives embedded in HTML comments. The following special directives are required in the template file.

The directive <!--PageText--> belongs to the <body> section of the HTML document, and tells
PmWiki where the main content of each wiki page should be placed.

1.

The directive <!--HTMLHeader-->, which goes somewhere in the <head> section of the HTML
document.

2.

The directive <!--HTMLFooter--> directive, which typically goes before the final </body> tag
and is used by some recipes to insert things at the end of the HTML document. Prior to PmWiki 2.2.0
the <!--HTMLFooter--> directive was optional.

3.

When PmWiki displays a page, it replaces the directives and variable substitutions with the values appropriate
to the current page. For example, the <!--PageText--> directive is replaced with the page's contents,
while any instances of $PageUrl are replaced with the url (address) of the current page.

There is a long list of variables available for substitution in pages; some of the most useful include:

$PageUrl the url of the current page
$ScriptUrl the base url to the pmwiki.php script
$Title the page's title (e.g., "`SkinTemplates")
$Titlespaced the page's title with spaces (e.g., "Skin Templates")
$Group the name of the current group (e.g., "`PmWiki")
$FullName the page's full name (e.g., "`PmWiki.SkinTemplates")

EULER Project | PmWiki / Skin Templates

Security Note 2

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#FarmD
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#FarmD
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#SkinDirUrl

$LastModified the page's last modification time
$PageLogoUrl the url of a site logo
$WikiTitle the site's title
$SkinDirUrl the url of the skin's folder

This last variable, $SkinDirUrl, is particularly useful in templates as it allows the skin designer to refer to
other files (such as images or style sheets) in the skin folder without having to know the exact url.

The template is not limited to using the variables listed here; nearly any PHP global variable that begins with
a capital letter can be used in a skin template. Page variables can also be used in templates.

Skin directives

Besides the required <!--PageText--> and <!--HTMLHeader--> directives, PmWiki provides other
built-in directives for generating page output. It's not necessary to use any of these directives, but they can
often add capabilities to a skin

<!--wiki:Main.SomePage-->
<!--page:Main.SomePage-->

The <!--wiki:Main.SomePage--> directive outputs the contents of Main.SomePage.
$-substitutions are allowed in directives, thus a directive like <!--wiki:$Group.SomePage-->
will include "SomePage" of the current group.
If multiple pages are listed in the directive, then only the first available page is used. Thus
<!--wiki:$Group.SomePage Site.SomePage--> will display the contents of SomePage
in the current group if it exists, and Site.SomePage if it doesn't. To always display Site.SomePage,
even if $Group.SomePage exists, use two consecutive <!--wiki:...--> directives.
The <!--wiki:...--> directive only displays pages for which the browser has read permissions.
The <!--page:...--> directive displays pages even if the browser doesn't have read permission.

<!--file:somefile.txt-->
The directive <!--file:somefile.txt--> outputs the contents of another file (on the local
filesystem) at the point of the directive. If the file to be included is a .php script, then the PHP script is
executed and its output is sent to the browser. Like the <!--wiki:...--> directive above,
$-substitutions are available to be able to output files based on the current page name or group.

<!--markup:...-->
The markup directive processes any text that follows the colon as wiki markup and displays that in the
output.

<!--function:SomeFunction args-->
This directive calls a PHP function named "SomeFunction", passing the current page's name and the
text following the function name as arguments. PHP functions called in this manner are typically
defined in a local customization file. Args allows only one argument, which has to be splitted then.
<!--function:SomeFunction arg1 arg2 arg3--> generates one parameter "arg1 arg2
arg3". However variables can be used (like $LastModifiedBy).

Page sections

A template file can designate "sections" that are included or excluded from the output based on page
directives or other criteria. A section always begins with <!--Page...Fmt--> and continues to the next
section, the end of the template file, or <!--/Page...Fmt-->. For example, a template can specify a
<!--PageLeftFmt--> section that is excluded from the output whenever the (:noleft:) directive is
encountered in the page's contents. PmWiki's predefined sections (and their corresponding page directives)

EULER Project | PmWiki / Skin Templates

Template file format 3

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#SkinDirUrl
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PageVariables?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PageDirectives?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PageDirectives?action=print

are:

<!--PageHeaderFmt--> (:noheader:)
<!--PageFooterFmt--> (:nofooter:)
<!--PageTitleFmt--> (:notitle:)
<!--PageLeftFmt--> (:noleft:)
<!--PageRightFmt--> (:noright:)
<!--PageActionFmt--> (:noaction:)

Skin designers can define custom sections and markups, but currently all section names in the template must
begin with "Page" and end with "Fmt". As mentioned you also have to define the corresponding markup (for
example in your config.php) like this:

Markup('noxyz', 'directives', '/\\(:noxyz:\\)/ei',
 "SetTmplDisplay('PageXYZFmt',0)");

Internationalization (i18n)

Skins can also be internationalized by using $[...] substitutions. Any string placed inside of $[...] is
treated as a "translatable phrase", and the phrase is looked up in the current translation tables for a
corresponding output phrase. If a translation is available, then the translated phrase is substituted at that point,
otherwise the original phrase is left intact.

For example, the substitution $[Edit] will display the current translation of "Edit" if it is known, otherwise
it displays "Edit". Thus, the same template can be used for multiple languages, displaying "Editer" when
French translations are loaded, "Bearbeiten" when German translations are loaded, and "Edit" when no
translation is available.

Understanding old config files

This information is deprecated, but we're still including it in the docs so you can better understand any really
old local/config.php files you look at.
The original method of telling PmWiki where to find a skin used to be to set $PageTempateFmt to the path
of a .tmpl file on the server. This is still respected by PmWiki, so if, for example, you were to set
$PageTemplateFmt to ./pub/skins/foo/foo.tmpl then PmWiki would simply load and use that
file, but without setting the special $SkinDir and $SkinDirUrl variables that are required by all modern
skins.

DO NOT USE $PageTemplateFmt

How do I customize the CSS styling of my PmWiki layout?

See Skins for how to change the default PmWiki skin. See also Cookbook:Skins, where you will find
pre-made templates you can use to customize the appearance of your site. You can also create a file called
local.css in the pub/css/ directory and add CSS selectors there (this file gets automatically loaded if it exists).
Or, styles can be added directly into a local customization file by using something like:

$HTMLStylesFmt[] = '.foo { color:blue; }';
Where can the mentioned "translation table" be found for adding translated phrases?

See Internationalizations.

EULER Project | PmWiki / Skin Templates

Page sections 4

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/Internationalizations?action=print
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/PathVariables#SkinDirUrl
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/Skins?action=print
http://www.pmwiki.org/wiki/Cookbook/Skins
https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/Internationalizations?action=print

Is it possible to have the edit form in full page width, with no sidebar?

If the sidebar is marked with <!--PageLeftFmt-->, adding (:noleft:) to Site.EditForm will hide it
when a page is edited.

Can I easily hide the Home Page title from the homepage?

Yes, you can use in the wiki page either (:title Some other title:) to change it or
(:notitle:) to hide it.

Retrieved from https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/PmWiki/SkinTemplates
Page last modified on July 02, 2009, at 05:13 PM

EULER Project | PmWiki / Skin Templates

Understanding old config files 5

	EULER Project | PmWiki / Skin Templates

