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Abstract—We propose a functional model of the routing system 
that aims to be used as a common framework from which any 
specific routing scheme can be derived: the traditional routing 
schemes OSPF, RIP, BGP, etc., the compact routing schemes, the 
greedy routing schemes, and new ones. The proposed model will 
provide a common language to develop routing schemes and will 
facilitate the comparison between them. The design of a 
functional model of the routing system is part of the work being 
done in the FP7 European project EULER (Experimental 
UpdateLess Evolutive Routing), which aims to investigate new 
interdomain routing schemes for the Future Internet. 

Keywords- routing architecture; functional decomposition; 
EFFBD diagrams; Future Internet 

I.  INTRODUCTION 

The main objective of the EULER exploratory research 
project [1] is to investigate new routing paradigms so as to 
design, develop, and validate experimentally a distributed and 
dynamic routing scheme suitable for the future Internet and its 
evolution. The resulting routing scheme(s) is/are intended to 
address the fundamental limits of current stretch-1 shortest-
path routing in terms of routing table scalability but also 
topology and policy dynamics (perform efficiently under 
dynamic network conditions). Therefore, this project will 
investigate trade-offs between routing table size (to enhance 
scalability), routing scheme stretch (to ensure routing quality) 
and communication cost (to efficiently and timely react to 
various failures). The driving idea of this research project is to 
make use of the structural and statistical properties of the 
Internet topology (some of which are hidden), as well as the 
stability and convergence properties of the Internet policy, in 
order to specialize the design of a distributed routing scheme 
known to perform efficiently under dynamic network and 
policy conditions when these properties are met. 

The project will develop new models and tools to 
exhaustively analyze the Internet topology, to accurately and 
reliably measure its properties, and to precisely characterize its 
evolution. These models, that will better reflect the network 
and its policy dynamics, will be used to derive useful properties 

and metrics for the routing schemes and provide relevant 
experimental scenarios. The project will develop appropriate 
tools to evaluate the performance of the proposed routing 
schemes on large-scale topologies (order of 10k nodes). 
Prototype of the routing protocols as well as their functional 
validation and performance benchmarking on the iLab.t 
experimental facility [2] and/or virtual experimental facilities 
such as OFELIA [3] will allow validating under realistic 
conditions the overall behavior of the proposed routing 
schemes. 

One of the initial objectives is to design a generic routing 
architecture from where all the specific routing schemes will be 
derived. The motivations for initiating the architecture work by 
means of a systematic approach include the following: 

 To determine a common baseline with a common 
architecture that covers all/part of the routing 
models/schemes. 

 To facilitate comparison between the different routing 
schemes that will be designed. 

 To define a common "language"; thus, preventing 
misinterpretation among different dimensions and 
actors involved in the design of routing system. 

 To lead to modular software development (preventing 
duplicates). 

In other words, by starting from a top-level view down to 
the design of the routing scheme, it results into a holistic 
approach of the problem that is complementary to experimental 
/bottom-up approach. Past experiences show that without a 
well defined system architecture, adding or removing 
functionality leads to further complexity (see IP control plane 
design today); in practice, finding the suitable tradeoff between 
evolutivity, flexibility, and performance is critical to ensure 
longevity of the architecture. 

A. Definitions 

A “system architecture” is defined in [4][5][6] as a set of 
functions, states, and objects/information (referred to as 
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“elements”) together with their behavior, structure 
(relationships and interactions), composition and spatio-
temporal distribution. The specification of these elements is 
referred to the functional model architecture, the information 
model architecture and the state model architecture, 
respectively. Note that the architectural specification includes 
the principles and guidelines governing their design and 
evolution over time.  

In this paper we focus on the functional model. Functional 
(routing) model determines a systematic decomposition of the 
(routing) system by defining the routing system functional 
design, its inputs/outputs, and its various interfaces. This 
modeling technique (or methodology) enables thus to 
systematically describe the automated processing that a 
complex system must perform to transform available inputs to 
the desired outputs. The fundamental underlying idea is the 
following: the system is viewed as a distributed computing 
function. The processing performed by the system can be 
explained by iteratively decomposing the more complex top-
level functions or functional areas into a set of simpler 
functions (subfunctions). Each subfunction is computed by an 
organized sub-system. This decomposition is performed up to 
the level of atomic functions that cannot be further 
decomposed.  

B. Enhanced Functional Flow Block Diagrams (EFFBD) 

It is necessary to select a technique for generating the 
different diagrams and decompositions of the functional model. 
In this case the Functional Flow Block Diagram (FFBD) has 
been selected and specifically the Enhanced version (EFFBD), 
which models both the “control” and the “data” aspects of the 
system [7][8][9]. 

FFBD provides a hierarchical decomposition of the 
system's function with a control structure that dictates the order 
in which the subfunctions can be executed at each level of the 
decomposition. The FFBD presents thus the logical sequencing 
of the same subfunctions as those identified through functional 
decomposition by displaying them in their logical, sequential 
relationship. 

Typically a function shall be represented by a rectangle 
containing the title of the function (an action verb followed by 
a noun phrase) and its unique identifier, usually a number. A 
single arrowhead line indicates the functional flow from one 
function to another. The AND constructor is a condition in 
which all preceding or succeeding paths are required. The 
symbol may contain a single input with multiple outputs or 
multiple inputs with a single output, but not multiple inputs and 
outputs combined. See the example in Fig. 1, where F2 and F3 
begin in parallel after completion of F1, and F4 begins after 
completion of F2 and F3. 

 
Figure 1.  An FFBD example. 

In a similar way to the AND constructor there is also an OR 
constructor which is in fact an exclusive OR: only one of 
multiple preceding or succeeding paths is required, but not 
many. An inclusive OR can be build combining AND and OR 
constructors. 

EFFBD displays the control dimension of the functional 
model in an FFBD format (extended with new constructors: 
iteration, loops, and multiple exit from functions) with a data 
flow overlay to effectively capture data dependencies. Thus, 
EFFBD represents: (1) functions, (2) control flows, and (3) 
data flows. The logic constructs allow you to indicate the 
control structure and sequencing relationships of all functions 
accomplished by the system being analyzed and specified. 
When displaying the data flow as an overlay on the control 
flow, the EFFBD graphically distinguishes between triggering 
and non-triggering data inputs. Triggering data is required 
before a function can begin execution. Therefore, triggers are 
actually data items with control implications. 

In EFFBD, a function can begin execution if it is both 
enabled (by control) and triggered (by data). In the case where 
there is no data trigger specified, a function begins execution 
upon being enabled. A function is enabled if the function(s) 
that precedes it in the control flow specification have 
completed execution (e.g., satisfied their completion criteria). 
A function is triggered when the required stimulus data item 
becomes available to the function. See the example in Fig. 2, 
where F4 is enabled by F1 and triggered by data D2, and F5 is 
enabled by F2 and “F3 or F4” and triggered by data D3. 

 
Figure 2.  An EFFBD example. 

C. Outline of the paper 

The paper is structured as follows. In Section II we describe 
our proposed functional model of the routing system 
architecture. In section III we use this generic architecture to 
describe a specific scheme of compact multicast routing. 
Finally, in Section IV we present the conclusions and the future 
work. 

II. DESCRIPTION OF THE ROUTING SYSTEM ARCHITECTURE 

FUNCTIONAL MODEL  

In this section we present our proposal of a functional 
model of the routing system architecture. The “Route” function 
is decomposed iteratively in a set of functions and subfunctions 
(1st and 2nd level decompositions), which are all shown in Fig. 
3. Then, for each function, we provide a definition and describe 
its sequential relationship with other functions using EFFBD 
diagrams. 

The “Route” function is defined as: 

 The process of finding a path in a network from any 
source to any destination along which to send traffic. It 



consists in discovering information about the network 
topology and about the routing paths obtained by other 
nodes, processing this information, computing new 
paths and selecting one of them. The results are stored 
in the Routing Table (RT). 

It is decomposed into the following functions (Fig. 3): 

 Discover Topology Information (DTI), Discover 
Routing Information (DRI), Process Topology and 
Routing Information (PTRI), Determine Routing Path 
(DRP), Generate Routing and Forwarding Tables 
(GRFT) and Relate Name to Locator/Coordinate 
(RNLC). 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 4. 

A. “Discover Topology Information” (DTI) function 

The “Discover Topology Information” function is defined 
as: 

 The acquisition, dissemination and maintenance of 
information about the topology, i.e., states and 
properties of interfaces, links and nodes. Topology 
Information Units (TIUs) are obtained through the 
exchange of information with other (neighbor and 
remote) nodes, and from processing this information. 
The Topology Information Base (TIB) is the database 

where TIUs are maintained. 

It is enabled/triggered by the following functions (Fig. 4): 

 Enabled by the DTI function of other nodes, when 
TIUs are received from other nodes through the 
external interfaces. 

 Auto-enabled by certain changes in the TIB, internal 
timers or others. 

 Enabled by the PTRI function, when its processing 
results in terms of TIUs are to be stored in the TIB, or 
when it requests TIUs from the TIB to be processed. 

It enables/triggers the following functions (Fig. 4): 

 It enables the DTI function of other nodes, when TIUs 
are sent to other nodes through the external interfaces 

 It enables the PTRI function in order to process TIUs 
for structuring and analysing topology information. 

 It enables the DRP function in order to process TIUs 
for computing new routing paths. 

It is decomposed into the following functions (Fig. 3): 

 Send and Receive. Sending and reception of TIUs 
to/from other nodes through the external interfaces, 
including the operations related to packet scheduling 

 
Figure 3.  Functional Hierarchical Decomposition of the Routing System Architecture. 

 
Figure 4.  EFFBD of the “Route” function. 



and management of input and output queues (storage, 
sending priorities, discarding rules, etc.) 

 Exchange Topology Information. Activation and 
control of the operations for the acquisition, 
dissemination and maintenance of TIUs (i.e., it initiates 
the sending of TIUs to other nodes, the processing of 
received TIUs and the related operations in the TIB), 
for the processing of TIUs in order to structure and 
analyse topology information, and for the processing of 
TIUs to compute new routing paths. It can be triggered 
by changes in the TIB, by internal timers or others. 

 Operate Topology Information Base. Creation, 
maintenance and use of the TIB database, including the 
control to access the data, the enforcement of data 
integrity, the management of concurrency, the recovery 
and restoration of the database after failures, and the 
maintenance of the database security. 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 5. 

 
Figure 5. EFFBD of the DTI function. 

B. “Discover Routing Information” (DRI) function 

The “Discover Routing Information” function is defined as: 

 The acquisition, dissemination and maintenance of 
information about the routing paths and/or distances to 
reachable destinations. Routing Information Units 
(RIUs) are obtained through the exchange of 
information with other (neighbour and remote) nodes, 
and from processing this information. The Routing 
Information Base (RIB) is the database where RIUs are 
maintained.  

It is enabled/triggered by the following functions (Fig. 4): 

 Enabled by the DRI function of other nodes, when 
RIUs are received from other nodes through the 
external interfaces. 

 Auto-enabled by certain changes in the RIB, internal 
timers or others. 

 Enabled by the PTRI function, when its processing 
results in terms of RIUs are to be stored in the RIB, or 
when it requests RIUs from the RIB to be processed. 

 Enabled by the DRP function in order to store 
“computed” and “selected” RIUs in the RIB. 

 Enabled by the GRTE function in order to retrieve the 
“selected” RIUs from the RIB. 

It enables/triggers the following functions (Fig. 4): 

 It enables the DRI function of other nodes, when RIUs 
are sent to other nodes through the external interfaces. 

 It enables the PTRI function in order to process RIUs 
for structuring and analysing routing path information. 

 It enables the DRP function in order to obtain 
“selected” RIUs. 

It is decomposed into the following functions (Fig. 3): 

 Send and Receive. Sending and reception of RIUs 
to/from other nodes through the external interfaces, 
including the operations related to packet scheduling 
and management of input and output queues (storage, 
sending priorities, discarding rules, etc.). 

 Exchange Routing Information. Activation and control 
of the operations for the acquisition, dissemination and 
maintenance of RIUs (i.e., it initiates the sending of 
RIUs to other nodes, the processing of received RIUs 
and the related operations in the RIB), for the 
processing of RIUs in order to structure and analyse 
routing information, and for the selection of RIUs 
based on some criteria. It can be triggered by changes 
in the RIB, by internal timers or others. 

 Operate Routing Information Base. Creation, 
maintenance and use of the RIB database, including 
the control to access the data, the enforcement of data 
integrity, the management of concurrency, the recovery 
and restoration of the database after failures, and the 
maintenance of the database security. 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 6. 

 

 
Figure 6. EFFBD of the DRI function. 



C. “Process Topology and Routing Information” (PTRI) 
function 

The “Process Topology and Routing Information” function 
is defined as: 

 The structuring and analysis of information about the 
topology (in terms of TIUs) and the routing paths (in 
terms of RIUs) using advanced techniques which 
permit: (1) to obtain patterns, features, properties and 
hidden relationships in the information, by applying 
statistical and artificial intelligence methods over large 
data sets; (2) to derive complex information from 
simple information; (3) to transform a coordinate space 
to another space with new properties, which allow to 
compute better paths 

It is enabled/triggered by the following functions (Fig. 4): 

 Auto-enabled by means of internal timers and others in 
order to process information. 

 Enabled by the DTI function, when this function 
requires processing TIUs for structuring and analysing 
topology information. 

 Enabled by the DRI function, when this function 
requires processing RIUs for structuring and analysing 
routing path information. 

It enables/triggers the following functions (Fig. 4): 

 It enables the DTI function for requesting TIUs from 
the TIB that are to be processed or for storing TIUs in 
the TIB that have been processed. 

 It enables the DRI function for requesting RIUs from 
the RIB that are to be processed or for storing RIUs in 
the RIB that have been processed. 

 It enables the DRP function in order to process 
“structured” RIUs or TIUs for computing new routing 
paths. 

It is decomposed into the following functions (Fig. 3): 

 Mine. Given a set of TIUs or RIUs, finding of (hidden) 
relationships, patterns, features/properties or classes 
between them (in terms of TIUs), by applying 
statistical and artificial intelligence methods over large 
data sets. 

 Compose. Production of combinations from TIUs or 
RIUs so as to build more complex TIUs and RIUs 
(called “structured” TIUs or RIUs). 

 Map/Embed. Transformation of a given metric space 
(in terms of TIUs) into another metric space (in terms 
of TIUs) with new properties, which allow to compute 
better paths. The transformation is given by a mapping 
function. 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 7. 

D. “Determine Routing Path” (DRP) function 

The “Determine Routing Path” function is defined as: 

 The computation of new routing paths (called 
“computed”) from the information about the topology 
(in terms of TIUs) and the routing paths (in terms of 
RIUs), and the selection of some of these computed 
paths (called “selected”) based on some criteria. 

It is enabled/triggered by the following functions (Fig. 4): 

 Enabled by the DTI function in order to process TIUs 
for computing new routing paths. 

 Enabled by the DRI function in order to obtain 
“selected” RIUs. 

 Enabled by the PTRI function in order to process 
“structured” RIUs or TIUs for computing new routing 
paths. 

 
Figure 7. EFFBD of the PTRI function. 



It enables/triggers the following functions (Fig. 4): 

 It enables the DRI function in order to store 
“computed” and “selected” RIUs in the RIB. 

 It enables the RNLC function in order to resolve or 
locate a node identifier as well as to identify itself (in 
terms of IIUs). 

It is decomposed into the following functions (Fig. 3): 

 Compute. Obtaining of new routing paths (called 
“computed”) in terms of RIUs from (“structured”) 
RIUs and/or TIUs. It can be seen as the operation of 
finding the routing paths that minimize or maximize a 
multi-constrained multi-objective function. 

 Select/Filter Path. Given a set of RIUs, choice of a 
limited number of RIUs (called “selected”) either by 
enforcing selection rules, by applying filters, or by 
multi-criteria decision. Note that RTEs are derived 
from these “selected” RIUs. 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 8. 

 
Figure 8. EFFBD of the DRP function. 

 

E. “Generate Routing and Forwarding Table” (GRFT) 
function 

The “Generate Routing and Forwarding Table” function is 
defined as: 

 The generation of the Routing Table (RT) and the 
Forwarding Table (FT). Routing Table Entries (RTEs) 
are derived from the “selected” routing paths 
(“selected” RIUs) stored in the RIB, and Forwarding 
Table Entries (FTEs) are derived from these RTEs. 

It enables/triggers the following functions (Fig. 4): 

 It enables the DRI function, in order to retrieve the 
“selected” RIUs from the RIB. 

It is decomposed into the following functions (Fig. 3): 

 Derive Routing Table Entries. Derivation of the RTEs 
from the “selected” routing paths (“selected” RIUs) 
stored in the RIB, and the storage in the RT. 

 Transfer to Forwarding Table. Derivation of the FTEs 
from the RTEs stored in the RIB, and the storage in the 
FT. 

The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 9. 

 
Figure 9. EFFBD of the GRFT function. 

 

F. “Relate Name to Locator / Coordinate” (RNLC) function 

The “Relate Name to Locator / Coordinate” function is 
defined as: 

 The identification, resolution and location of nodes 
(associated to routing), based on Identification 
Information Units (IIUs). This function is mainly 
“external” since the identification information is not 
maintained by the nodes but by an external entity. 
Internally, in the nodes, this function is responsible of 
managing the requests of identification, resolution and 
location with this external entity and/or an internal 
database where the identification information is 
cached. 

It is enabled/triggered by the following functions (Fig. 4): 

 Enabled by the DRP function, in order to resolve or 
locate a node identifier as well as to identify (in terms 
of IIUs). 

It is decomposed into the following functions (Fig. 3): 

 Identify. Assignment of identifiers to nodes. These 
identifiers can be either topology-dependent (locators) 
or topology-independent (names). A locator can take 
the form of a label, a topology-dependent address or a 
coordinate. 

 Resolve. Translation, conversion, or mapping from the 
name of the destination to its associated locator. 

 Locate. The functionality allowing destinations to be 
located by means of the resolution function. 



The sequential relationship between these functions using 
an EFFBD diagram is shown in Fig. 10. 

 
Figure 10. EFFBD of the RNLC function. 

III. AN APPLICATION EXAMPLE: A COMPACT MULTICAST 

ROUTING SCHEME 

A. Compact multicast routing 

Compact routing schemes address the fundamental tradeoff 
between the memory space required to store the routing table 
entries and the length of the routing paths that these schemes 
produce [10]. As recently formalized in [11], dynamic compact 
multicast routing algorithms enable the construction of point-
to-multipoint routing paths from any source to any set of 
destinations referred to as leaves. The tree determined by this 
point-to-multipoint routing path is commonly referred to as the 
Multicast Distribution Tree (MDT) as it enables the 
distribution of multicast traffic. 

In [12] we recently proposed a name-independent compact 
multicast routing (CMR) scheme for leaf-initiated, distributed 
and dynamic construction of MDT. In this context, “leaf-
initiated” means that the join/leave requests are initiated by the 
leaves; “distributed” implies that transit nodes process the 
join/leave requests and compute the routing table entries (no 

centralized processing by the root); and “dynamic” refers to the 
on-line capability to timely process the join/leave requests as 
they arrive without re-computing and rebuilding the MDT from 
scratch. The objective of the proposed algorithm is to minimize 
the routing table sizes of each node n ∈ V at the expense of i) 
routing the packets on paths with relative small deviation 
compared to the optimal stretch obtained by the Steiner Tree 
algorithm as well as ii) higher communication cost compared 
to the Shortest Path Tree algorithm. To this end, CMR reduces 
the local storage of routing information by keeping only 
(direct) neighbor-related entries rather than tree structures (as 
in ST) or network graph entries (as in both SPT and ST). As 
such, it is actually a true “protocol independent” multicast 
routing scheme. In other terms, the novelty of this algorithm is 
on maintaining local topology information (|deg(n)| routing 
table entries) instead of global topology information (|V-1| 
entries) providing the least cost next hop during the MDT 
construction. As a first contribution, in [12] we only focused on 
a leaf node u joining MDT. 

B. Hierarchical decomposition of CMR 

The hierarchical decomposition of CMR is shown in Fig. 
11. The problem consists in joining a leaf node u to a multicast 
tree sourced in s. If node u is already part of MDT then it is 
either a transit or branching node of the already deployed 
MDT. Otherwise, node u is not part of MDT and it must search 
for the least cost branching path towards a node v belongs to 
MDT. 

As said above, nodes do not store topology information and 
only keeps local storage of routing information knowing only 
(direct) neighbor-related entries. The information needed to 
reach a given multicast source s is acquired by means of a 
discovering search mechanism (details explained in [12]) that 
returns the upstream node along the least cost branching path to 
the MDT sourced at s. Such mechanism is triggered whenever 
a node decides to join a given multicast source s as part of a 
multicast group.  

Two types of messages are involved in this process, namely 
the request (type-R) messages flowing in the upstream 

 
Figure 11. Functional Hierarchical Decomposition of CMR. 



direction, i.e., towards the multicast source, and response (type-
A) messages sent in the downstream direction, i.e., towards the 
joining leaf node u.  

Higher cost may hinder CMR applicability to large-scale 
topologies such as the Internet. Hence, to keep the 
communication cost as low as possible, the algorithm's search 
process is segmented in two different stages by executing first 
a local search covering the leaf's neighborhood (the so-called 
vicinity B), and, if unsuccessful (no nodes belonging MDT are 
found), executing a global search over the remaining topology. 
For this very reason, a flag e distinguishes the messages 
exchanged during the search stages, both type-R and type-A 
messages are flagged as internal, e=0, if belonging to the local 
search procedure, and as external, e=1, otherwise. Besides, 
type-R messages comprise a maximum path budget, pbudget, 
to define the vicinity B. Being decremented at each hop with 
the vicinity node’s out-degree, pbudget settles the maximum 
reachability of type-R messages with flag e=0 by determining 
the size of the vicinity B, whenever pbudget = 0. 

This algorithm needs to keep only the Multicast Routing 
Information Base (MRIB) and Tree Information Base (TrIB) 
type of routing entries. MRIB is the MDT topology 
description, i.e., it indicates the upstream neighbor to which to 
send the join requests along the MDT. After a node becomes 
member of a MDT, a multicast routing entry is dynamically 
created and stored in the local Tree Information Base (TrIB). 
From these routing table entries, multicast forwarding entries 
are created. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a proposal of a functional 
model of the routing system architecture. This generic routing 
architecture aims to be used as a common framework from 
which any specific routing scheme can be derived. We have 
decomposed the route function in a set of subfunctions and 
described their sequential relationship using EFFBD diagrams. 
In order to show the validity of the proposal, we have used this 

generic architecture to describe a specific compact multicast 
routing scheme. 

Next step is the integration of this functional model with an 
information model (which is already being developed), in order 
to create a complete architecture of the routing system. 

REFERENCES 
[1] EULER research project, EU-FP7-258307, http://www.euler-fire-

project.eu. 

[2] iLab.t experimental facility at IBBT, http://www.ibbt.be/en/ilab/ilab-t 

[3] OFELIA experimental facility, http://www.fp7-ofelia.eu/ 

[4] D.E.Perry and A.L.Wolf, “Foundations for the Study of Software 
Architecture", ACM SIGSOFT Software Engineering Notes, Vol.17, 
No.4, October 1992. 

[5] D. Garlan and D. E. Perry, “Introduction to the special issue on software 
architecture”, IEEE Transactions on Software Engineering, 21(4), Apr. 
1995, pp. 269-274. 

[6] G. Booch, Presentation at the Software Developers’ Conference, 1999. 

[7] A. McInnes, B. Eames, R. Grover, “Formalizing Functional Flow Block 
Diagrams Using Process Algebra and Metamodels”, IEEE Transactions 
On Systems, Man, and Cybernetics—Part A: Systems And Humans, 
Vol. 41, No. 1, January 2011. 

[8] J. Long, “Relationships between Common Graphical Representations in 
System Engineering”, 2002 Vitech Corporation, Accessed June 2011, 
available at: 
http://www.coinsweb.nl/wiki/ccdownloads/CommonGraphicalRepresent
ations_2002.pdf. 

[9] B.F. Blanchard, BF and W. Fabrycky, “Systems Engineering and 
Analysis”, Prentice Hall, Second Ed., 1990, (Fifth Ed., 2011) and 
Defense Systems Management College 1990. 

[10] D. Peleg and E. Upfall, “A trade-off between space and efficiency for 
routing tables,” J. ACM, vol. 36, no. 3, pp. 510–530, Jul. 1989. 

[11] I. Abraham, D. Malkhi, D. Ratajczak, “Compact multicast routing,” 
Proc. 23rd Int. Symp. DISC'09, Elche, Spain, pp.364–378, Sep. 2009. 

[12] P. Pedroso, D. Papadimitriou, D. Careglio, “A name-independent 
compact multicast routing algorithm”, available as Technical Report, 
UPC-DAC-RR-CBA-2011-15, March 2011 

 

 

 


