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Abstract— In this paper, we investigate a compact routing
scheme with applications in static sensor networks and
Internet. More precisely, we propose a new geometric ad-
hoc routing algorithm to route queries in static geometric
graphs in which the number of transmissions for each query
and the space used to store the routing information on
each node in terms of the number of registers (each able
to store an integer/real number) are bounded by O(c logD

log c
)

and O(log3 D) respectively, where c is the length of the
shortest path between the source and the destination and D
is the diameter of the network. Our algorithm significantly
improves the complexity of the currently best known algo-
rithm by Gąsieniec, Su, Wong and Xin in [13] [J. Discrete
Algorithms 5(1): 1-11 (2007)] for the scenario when D ≤
Θ(2

√
log n) that has O(c log n) transmissions for each query

and O(log n logD) registers in each node, where n is the
number of nodes in the network. Moreover, our new routing
algorithm also reserves extremely better scalability compared
with the currently best known algorithm in [13] since it
does not depend on the size of the network. Unsurprisingly,
our new compact routing scheme for geometric graphs also
outperforms the currently best known algorithm for general
graphs by Abraham, Gavoille, and Malkhi in [2] [SPAA
2006], e.g., our scheme can reduce the space requirement
from O(log5 n) per node to O(log3 D) with the exactly same
stretch factor O(log n). While our work directly applies
to sensor networks, we hope that it can stimulate the
future research on impact of the graph properties to the
performance of compact routing schemes.

Index Terms— Compact routing, design and analysis of al-
gorithms, distributed computing, geometric graphs, Internet,
sensor networks.
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I. INTRODUCTION

The growth and multiplication of communication net-
works imposes the search for ever more performant routing
schemes for the transport of information. A shortest path
routing requires a memory per node that scales linearly
with the size of the network, thus is only practical in
small networks. In general, it is desirable to find a compact
routing scheme, i.e., a routing scheme where the quantity
of information stored at every node grows sub-linearly
with the number of nodes, while ensuring that the routing
path between every two node exceeds the shortest path by
a multiplicative factor, called the stretch, that grows slowly
with the size of the network. Different types of networks,
such as the Internet or sensor networks, due to different
technological constraints, different order of magnitudes in
terms of size or memory possibilities, call for different
solutions. However techniques adopted from one field
may very well prove fruitful in another, as we show in
this article. For example, to break the trade-off between
worst-case stretch and memory per node for Internet-
like networks of general topology [2], one must design
routing schemes exploiting particular properties known
to be possessed by the Internet topology. For example,
it has been shown that bounded doubling dimension in
[1], or embeddability of the network into a geometric
space [6, 19] allows for efficient routing schemes. It is
therefore natural to establish connections with the compact
routing problem for networks naturally embedded into the
Euclidean plane, such as sensor networks.
Wireless ad-hoc sensor network [3, 4, 26, 29, 30] is one

of the fastest growing technologies emerged in recent
years. A sensor network consists of a large number of
densely and arbitrarily deployed sensor nodes. The sensor
nodes are self-organized and cooperate among themselves
such that the sensor network is able to monitor an area
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of interest. Sensor networks have found applications in
various areas such as environmental, medical, and military.
Sensor networks differ from traditional networks and

other ad-hoc networks in many aspects. Sensor nodes usu-
ally have strong constraints like small transmission range,
limited power, limited memory, and limited computational
capacity. Multi-hop transmission is involved in sensor
networks when two sensor nodes outside of transmission
range communicate via intermediate nodes. Due to the
limited memory, the topology of the sensor network is
usually unknown to the sensor nodes. Moreover, there is
no global identification (ID) of the sensor nodes since large
number of sensor nodes leads to too much overhead in
computing the ID. Because of the power constraint, sensor
networks have to minimize the number of transmissions
used in communication as more transmissions result in
higher power consumption.
In this paper, we mainly study geometric ad-hoc rout-

ing [21–23] in sensor networks. The problem is to route a
message from a source to a destination via some interme-
diate nodes, we call this communication a query. In geo-
metric ad-hoc routing, it is assumed that each sensor node
is informed of its own and its neighbours’ coordinates [5,
8, 27]; and the source node of a query knows the position
of the destination. Note that having position information
in the sensor nodes (e.g., GPS [15]) becomes more and
more realistic with increasing availability of inexpensive
positioning systems [21]. The objective of the routing
algorithm is to minimise the total number of transmissions
sent for each query. The problem is non-trivial because
although the coordinates of the destination node is known
to the source node, the source node has no idea of what
routing paths are available and which is the best path to
route the query; this is because each node only has local
information about its neighbours but no global information
about the network topology.

A. Previous work

The simplest routing algorithm used in sensor networks
is the flooding algorithm [7, 17] in which every node, upon
receiving a message, will forward the message to all of
its neighbours. The major problem of employing flooding
algorithms in sensor network is that it is difficult for a
sensor node to make sure that the same message will not
be forwarded more than once because a sensor node cannot
keep track of all messages it has received so far with
its limited memory. As a result, termination of flooding
cannot be controlled easily. In addition, the total number
of transmissions used to route a query from the source
to the destination can be huge; the lifetime of the sensor
network would be much reduced by a flooding algorithm.
Another simple algorithm is the greedy algorithm [11,

16, 18, 28] in which a node forwards a message to the
neighbour node that is the closest to the destination node.
However, it has been observed that greedy algorithm

does not guarantee the query can ultimately reach the
destination [22].

More recent work on geometric routing tries to exploit
structural property of the graph representing the network
and algorithms with bounded number of transmissions
are derived. These include face routing by Kranakis et
al. [20], which uses O(n) transmissions for a network
with n nodes. Later this algorithm is enhanced to adaptive
face routing [22], the number of transmissions used is
bounded by O(c2), where c is the length of the shortest
path between the source and the destination. However,
both algorithms are not applicable in practice due to large
computation complexity. Kuhn et al. [21, 23] combined
face routing and greedy routing and came up with an
algorithm, called GOAFR+ which also uses O(c2) trans-
missions and this algorithm can be implemented practi-
cally. A lower bound of Ω(c2) transmissions has been
proved to be necessary to finish geometric routing [22],
implying that GOAFR+ is asymptotically optimal. Note
that the above algorithms work on Unit-Disk Graph that
possesses Gabriel Graph property (definitions will be given
in Section II). Recently, Gasieniec et al. [13] studied two
variants of the geometric routing problem: single-source-
queries routing and multiple-source-queries routing. For
the former, there is a distinguished source node and it has
a number of queries to be routed to different destination
nodes; for the latter, each sensor node can be a source node
and it might have queries to route to different destination
nodes. In either case, we know neither the shortest path C
between a source s and a destination t nor its length c
in advance. Note that the shortest path may be much
longer than the Euclidean distance between s and t. For
the single-source-queries routing, Gasieniec et al. gave
an algorithm whose total number of transmissions used
is O(c) for each query. For the multiple-source queries
routing (compact routing scheme), a novel algorithm had
been proposed which takes O(c log n) transmissions for
each query and O(log n logD) space complexity in terms
of the number of registers on each node. For both single-
source and multiple-source routing in [13], the routing
stage is preceded by preprocessing procedures requiring
O(nD) and O(n2D) transmissions, respectively, where D
is the diameter of the network. (Note that a lower bound
of Ω(c2) transmissions has been proved if preprocessing
is not allowed [22].) The preprocessing is worthwhile
if it is followed by frequent queries. For example, in a
network in the form of a grid with length d, the number of
nodes in the network is O(d2). The preprocessing requires
O(d3) and O(d5) transmissions respectively while the
previous best solution takes O(d2) transmissions [21–23],
thus, the preprocessing is worthwhile when on average
there are Ω(d) = Ω(

√
n) queries per node. Moreover,

the preprocessing approaches are also acceptable in the
real sensor networks. We could imagine that there is an
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extra initial power (say, batteries) available during the
preprocessing stage or alternatively the position of the
sensors are known in advance and the preprocessing can
be done before the sensors are deployed in the field.
Geometric routing in directed graphs was also studied [9].
In this paper, we assume symmetric transmission power
for the sensor nodes and we focus on undirected graph.

B. Our results

In this paper, we adopt the Unit-Disk Graph [10] to
model a sensor network [21] (formal definition to be
given in Section II). Note that this is the exactly same
model as the one used in [13]. In this paper, we mainly
focus on the compact routing scheme (e.g., corresponds
the multiple-source-queries routing problem in [13]) with
applications in static sensor networks. More precisely,
we propose a new geometric ad-hoc routing algorithm
to route queries in static sensor networks in which the
number of transmissions for each query and the space
used to store the routing information on each sensor
node in terms of the number of registers are bounded
by O(c logD

log c ) and O(log3 D) respectively, where c is the
length of the shortest path between the source and the
destination and D is the diameter of the network. Our
algorithm significantly improves the complexity of the
currently best known algorithm in [13] for the scenario
when D ≤ Θ(2

√
logn) that has O(c logn) transmissions

for each query and O(log n logD) registers in each node,
where n is the number of nodes in the network. Our
algorithm is a tuned version of the one in [13] but
we propose a new pruning approach based on a more
smarter parameter for construction of the clusters. More-
over, our new routing algorithm also reserves extremely
better scalability compared with the currently best known
algorithm in [13] since it does not depend on the size
of the network. Furthermore, our new compact routing
scheme for geometric graphs also significantly improves
the currently best known algorithm for general graphs in
[2], e.g., our scheme can reduce the space requirement
from O(log5 n) per node to O(log3 D) with the exactly
same stretch factor O(log n) but for geometric graphs.
Note that most of the existing compact routing schemes
including the one in[2] require an online storage (e.g., the
space for the headers) but we do not take this assumption
in this work. We hope that our work can stimulate the
future research on impact of the graph properties to the
performance of compact routing schemes. In addition to
the results for static sensor networks, we also address some
compact routing related issues for the Internet. Due to the
space constraints, we defer these results to the full version
of this paper.

C. Organization of the paper

The rest of the paper is organised as follows. In sec-
tion II, we recall the formal definition of the network

model. Later in section III, we introduce the concepts,
data structures and procedures used for the single-source
routing scheme in [13] which will be adopted as a sub-
procedure in our new compact routing scheme. In sec-
tion IV, we show how to perform almost optimal queries
originating from any node of the network in a distributed
fashion. Finally in section VI, we conclude this work.

II. MODEL

In this section, we recall the formal definition of the
network model [13, 21–23]. A sensor network is repre-
sented as a collection of n nodes arbitrarily distributed
in the Euclidean plane R2. Precisely, a sensor network is
modelled as a graph G = (V,E), with the set of nodes
V ⊆ R2 and the set of wireless undirected connections E.
We assume that every node in V has the same transmission
range, i.e., we adopt here the Unit-Disk Graph model. In
this model, neighbouring nodes with edges connected are
at distance at most 1. It is also assumed that the graph
G possesses graph properties of Ω(1) model [23] (also
called civilized graph). As mentioned earlier, in geometric
routing, every node knows its own and its neighbours’
coordinates.
It has been shown that the unit disk graph with the Ω(1)

model has a bounded size in terms of the diameter of the
graph.

Lemma 1: The number of nodes n (e.g. the size of
the network) for a unit disk graph under the Ω(1) model
assumption can be bounded by O(D2), where D is the
diameter of the graph.
In this work, we investigate the multiple-source-queries

(e.g., distributed compact routing), where a query is de-
fined as follows: A source node s wants to communicate
via exchange of a control message with a destination node
t, knowing only its coordinates (xt, yt) in R2. Note that
s is aware of neither the topology of G nor the shortest
(or in fast end) path between s and t. Furthermore, we
assume that the network is static [13, 17, 24, 29]. In this
context our paper differs from the previous model [21–
23], which assumes that the network is temporarily static
i,.e., it does not change for the duration of each query,
though between any two queries, the network topology can
change arbitrarily. In sensor networks the complexity of a
solution is usually expressed in terms of the total number
of transmissions rather than the time used to complete a
particular task. This is due to the concern of limited power
of the sensor nodes.
Our model is summarised as follows:
1) Each node v ∈ V knows its coordinates (xv, yv) as

well as the coordinates of its neighbours.
2) The source node s knows only (xt, yt), the coordi-

nates of the destination node t.
3) Each node has O(1) number of neighbours.
4) Each node’s memory is limited to poly-logarithmic

number of registers in terms of the diameter of the
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network (each able to store an integer) used to keep
local information, e.g., up to O(log3 D) registers per
node.

5) Nodes exchange messages limited in size to O(1)
integers.

III. PRELIMINARIES

For the completeness of our presentation and clari-
fication of the differences and significant improvement
compared to the existing work in the literature, we re-
produce some concepts, data structures and procedures as
ones used in [13] as follows.

A. Data structures

In the querying systems, we use several objects/data
structures, including

• Breadth first search tree (BFS) B rooted in the source
node s, spanning all nodes in G. We assume that each
node (x, y) ∈ G learns about its BFS level bfs(x, y)
in B during the construction of B.

• P (x, y) denotes the post order number of the node
(x, y) in B. This post order number is used as the
physical address of the node.

• Pre-super levels
The BFS levels in B are split into �logD� + 1
pre-super levels such that each pre-super level is
composed of a number of consecutive BFS levels.
More formally the i-th pre-super level contains BFS
levels from 2i to 2i+1− 1, for i = 1, ..., �logD�− 1.
Level 0 contains BFS levels 0 and 1. Level �logD�
contains BFS levels from 2�logD� toD. The pre-super
levels are used in the construction of super levels.

• Super levels and borders
In each pre-super level with even index, say 2i, we
choose a BFS level with the smallest number of
nodes. This BFS level forms the i-th border . The
borders split the BFS levels of B into � �logD�+1

2 	
super levels. The i-th super level contains the BFS
levels between the i-th and the (i + 1)-th border
(but not including the (i + 1)-th border). Each node
(x, y) in B is aware of its super level S(x, y) ∈
[0, � �logD�+1

2 	 − 1].
• Image

Each node (x, y) generates an image containing the
key in the form of a 3-tuple (S(x, y), x, y) and the
content P (x, y). The image is denoted by I(x, y) =
((S(x, y), x, y), P (x, y)).

• A priority queue PQ is a heap-like structure em-
bedded into the BFS tree B to rearrange the images
according to their keys. I.e, the key of an image stored
in a parent is smaller than those stored in its children.
PQ is used to sort the images within super levels in
B.

Using this priority queue, we rearrange the images
within a particular super level i such that the follow-
ing properties are satisfied.

– Suppose there are k subtrees T1, T2, T3, ..., Tk

rooted at the nodes in the i-th border. Give the
post order number PTj (x, y) to every node (x, y)
in each subtree Tj , for j = 1, ..., k.

– Each node (x, y) ∈ Tj at super level i gets a
rank Ri(x, y) = (

∑j−1
q=1 |Tq|) + PTj(x, y).

– Sort all images at super-level i such that
images with smaller keys are placed in
nodes with smaller ranks. I.e, if two im-
ages I(x1, y1) = ((i, x1, y1), p(x1, y1)) and
I(x2, y2) = ((i, x2, y2), p(x2, y2)) with the lex-
icographic order (x1, y1) < (x2, y2)

1 are
moved to two locations (u1, v1) and (u2, v2)
in super level i respectively, then Ri(u1, v1) <
Ri(u2, v2).

According to the sorting strategies, the following
Lemmas have been shown in [13].
Lemma 2: If a node u belongs to the i-th super-level,
then the image of u will be stored at a node v in the
i-th super-level as well.
Corollary 3: If the distance between s and t is c,
then the distance between s and the node m used to
store the image of t is bounded by O(c).

• A search path is the longest connected path in the
BFS tree B which starts from the source node. The
images stored in the nodes in the i-th border will be
replicated to the nodes along the search path in the
i-th super level correspondingly (see Figure 1 for an
example).
The following lemma in [13] also guarantees that
replication requires O(1) memory in each node.
Lemma 4: The nodes in the search path need O(1)
memory to store all the images of the nodes in the
borders.

B. The outline of single-source-queries routing

In our new distributed compact routing scheme (e.g.,
multiple-source-queries routing) described in Section IV,
we will adopt the single-souce-queries routing scheme
from [13] as a sub-procedure in the design and analysis
of the algorithm. To clarify our presentation, we briefly
introduce the key idea and necessary approaches from [13]
as follows.
In single-source-queries routing, a distinguished source

node s wants to communicate with a destination node t,
knowing only the coordinates (xt, yt) of the destination
node in R2. Note that s is neither aware of the topology
of G nor the shortest path between s and t. This is due to
the lack of memory in the nodes of the network.

1We say (x1, y1) < (x2, y2) iff x1 < x2 or x1 = x2 and y1 < y2.
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Fig. 1. [13] A BFS tree divided into super levels and a search path
in one of the superlevels. (The shaded levels are the border chosen in
the corresponding super levels and the images stored in the borders are
replicated to the search path.)

The single-source-queries routing algorithm consists of
two phases: preprocessing phase and routing phase. In
the preprocessing phase, it runs the procedure called
SINGLEPREPROCESS(). The objective of this procedure
is to store, for any node t, a copy of its information
(including a post order number of t in the BFS spanning
tree rooted at the source node s) in a “special” node m
such that it is easy to find a path from s to m according to
the coordinates of t (precisely, (1) if the distance between
s and t is c, the distance between s and m is bounded by
O(c); (2) according to the coordinates (xt, yt), the source
node s could communicate with the node m in limited
number of transmissions bounded by O(c)). In the routing
phase, it runs the procedure called SINGLEROUTING().
For a given destination node t, the procedure firstly finds
the node m, and then communicate with the node t using
an optimal number of transmissions O(c) according to the
additional information (a post order number of t) stored
in the node m.
Note that the preprocessing procedure is done only once.

After that the source node s can query any other nodes of
the network using an optimal number of transmissions.

C. Preprocessing in single-source-queries routing

In this section, we remark the O(nD)-transmissions
preprocessing procedure for single-source-queries routing
from [13]. Procedure SINGLEPREPROCESS() creates the
data structures discussed in section III-A. The number of
transmissions involved is bounded in Lemma 5.

Procedure SINGLEPREPROCESS(s)
1) Create BFS spanning tree B rooted at the source

node s;
2) Give the post order number to each node in B;
3) Construct the search path;

4) Split the BFS levels in B into the pre-super levels;
5) Construct the borders and the super-levels in B;
6) Sort the nodes in each super-level, using the sorting

step (described on page 4) and the priority queue
PQ (described on page 4).

Lemma 5: The number of transmissions used to com-
plete Procedure SINGLEPREPROCESS(s) can be bounded
by O(nD).

D. Procedure SINGLEROUTING

After the preprocessing phase has been performed, it
enters into the routing phase. The following procedure
describes how the routing between the source node s and
any destination node t runs.

Procedure SINGLEROUTING(s, t)
1) Set i = 0; (starting from the first super level)
2) While t has not been found

a) Find the first node on the search path in
super level i, of which the image is greater
than (xt, yt) (we call this image crucial image
I(xc, yc) recall that the images stored in the
search path is in ascending order);

b) Copy this crucial image in the query and route
the query back to s;

c) Find the node u on the border which stores
I(xc, yc);

d) Go through the subtree routed at u; If we
find I(xt, yt), then go back to s and find t
using P (xt, yt);

e) Set i = i + 1;

One of the crucial theorems from [13] which will be
used in the analysis of our new distributed compact routing
scheme in Section IV states:

Theorem 6: For any destination node t, communication
between the source node s and t can be completed using
O(c) transmissions and O(1) space complexity in terms
of the number of registers, where c is the length of the
shortest path from s to t.

IV. MULTIPLE-SOURCE-QUERIES ROUTING

In multiple-source-queries routing, each sensor node can
be a source node and it might have queries to route to
different destination nodes. Unlike single-source-queries
routing, there is no single distinguished source node. A
simple way to exploit the algorithm for single-source
queries would be to choose one central node r such that
every communication between s and t is done via r.
Yet there is no guarantee that the length of the route
via r is comparable with the length of the shortest path
between s and t. Therefore, it highlights the necessities
of time-efficient algorithms to accomplish almost optimal
multiple-source queries.
Roughly speaking, we divide the graph into clusters

(which may overlap with each other); a node is chosen
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in each cluster as the central node and communication
between the nodes in the same cluster will be handled,
as in the single-source-queries case described in Section
III, between the nodes and the central node. To ensure
that the nodes communicate within clusters efficiently
(not using too many transmissions), the clusters have
to be constructed in a way to preserve local distances
between the nodes. For any pair of source and destination
nodes si and ti having a distance di apart, (1) they are
both contained in some cluster with diameter comparable
to di; and (2) the source node si can locate this cluster
using a number of transmissions that is also comparable
to di; more precisely, both quantities are O(di

logD
log di

) which
significantly improves the current best known solution
in [13] in which the both complexities are bounded by
O(di logn). It is the crucial property we achieved in our
new distributed compact routing scheme.

A. Preprocessing for multiple-source-queries routing

In this section, we are going to describe a preprocessing
for multiple-source-queries routing. We first construct a
set of clusters as mentioned above and then apply the
procedure SINGLEPREPROCESS() to each of the clusters.
It is a similar approach as the one used in [13] but we
derive a better construction of the clusters which allows
us to improve the currently best known solution in [13]
by a logarithmic factor.

1) Construction of clusters: We adopt the similar clus-
ters concept as used by Gąsieniec et al. [13, 14], and
Gaber and Mansour [12] but a different pruning parameter.
Initially we pick an arbitrary node r ∈ V as the central
node of the graph G and construct a BFS tree in G with
respect to r. Recall that the BFS level of a node is j if its
shortest distance to r is j. Let D be the radius of G, which
is the maximum distance between r and any other node.
The construction of clusters takes a parameter d, and we
will run the construction for d = 1, 2, . . . , 2logD.

Definition 7: A partition π(x) of the graph G is a
division of V into groups, each of which comprises 4d
consecutive BFS levels, where the first group starts from
BFS level x. Precisely, for i = 1, 2, · · · , �D−x

4d 	, the i-th
group, denoted as Gi(x), contains all nodes at BFS levels j
with (i− 1− x) · 4d ≤ j ≤ (i − x) · 4d− 1.
The 2-partition of the graph G comprises two different

partitions: π(0) which starts with the group G1(0), and
π(2d) which starts with the group G1(2d).
Note that BFS levels 0, 1, . . . , x− 1 are excluded from

the partition π(x). For any group Gi(x), its top level is
(i − 1 − x) · 4d, and its bottom level is (i − x) · 4d −
1. Note that Gi(x) is not necessarily connected. In each
group Gi(x), we first construct some pre-clusters, based
on which we construct the clusters.

Definition 8: For each node u belonging to the top level
of Gi(x), the pre-cluster Si

u is defined to be the set of all
nodes in Gi(x) whose distance from u is at most 4d.

Now we briefly describe the key idea of our new strategy
for the clusters construction, which is similar as the one
suggested by Gąsieniec et al. [14] but we derive a better
trade-off between the diameters and the number of colors
for the constructed clusters by growing appropriate pre-
clusters.
The growing algorithm executes in O(log d logn)

stages, where d is the diameter of the pre-cluster. In
Stage j, where 1 ≤ j ≤ log d logn, a collection of clusters
Cj
∗ would be created. An arbitrary pre-cluster is chosen as

a core of a new cluster Cj
0 . The core Cj

0 is extended,
by adding a layer all pre-clusters that intersect with Cj

0

or are at distance at most 1 from Cj
0 , to form a new

core and is then further extended similarly. The extension
continues as long as the number of new nodes to be added
is at least log d times than the number of nodes already
present in the core Cj

0 which is the key difference on the
construction of the clusters with the one in [13, 14], where
d is the diameter of the original pre-cluster Cj

0 ; otherwise,
the extension of Cj

0 is terminated and the pre-clusters in
the new layer are promoted for consideration in Stage j+1.
Note that in [14] the extension of the core Cj

0 will be
continued when the number of new nodes that will be
included in the cluster Cj

0 is no less than the number of
nodes that have already been in the core Cj

0 . We then grow
the clusters Cj

1 , C
j
2 , . . . similarly until all pre-clusters are

either included in a cluster or promoted to Stage j + 1.
It can be easily observed that each cluster is a union of

some pre-clusters; each pre-cluster belongs to exactly one
cluster; and each cluster is a connected sub-graph of G.
A more detailed analysis of the growing process gives in
the following theorem.

Theorem 9: For every d considered in the graph of
diameter D, (a) the diameter of each cluster is O(d logD

log d ),
(b) every node only belongs to O(log d logD) number of
clusters, and (c) for any two nodes whose shortest path
between them is of length d, then in at least one of the
partitions of the 2-partition, there exists at least one cluster
that contains both nodes.

Proof: According to the construction of the clusters,
we know that the number of iterations for the extension
of each core cluster can be bounded by O( log n

log d ) since the
number of new nodes in the core cluster will increase at
least by a log d factor in each iterations. Combining with
the factor that n = O(D2) (Lemma 1), the diameter of
each cluster can be bounded by O(d logD

log d ). In each stage,
there are at least O( n

log d) nodes that will be reduced for
the consideration in next stage. Consequently, there are at
most O(log d log n) stages needed for the construction of
the clusters. According to Lemma 1, we know the property
(b) holds. Based on the exactly same arguments in [14], the
property (c) for the constructed clusters directly follows.

Lemma 10: The number of transmissions required
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to construct all clusters for different values of d is
O(D5 logD), where D is the diameter of the network.

Proof: (Sketch) The crucial step in the construction
is the growing of a core cluster. First consider the growing
for a particular d value. In Stage 1, to grow a core
cluster, we start traversal from the (newly added) nodes
in the core cluster for distance 4d to reach all other
pre-clusters that have intersection or with distance one
apart. This can be done by using O(n′nd) transmissions,
where n′ is the number of (newly added) nodes in the
core cluster. Notice that the clusters constructed in the
same stage are all disjoint. Therefore, Stage 1 requires at
most O(n2d) transmissions. After Stage 1, there are at
most (1 − 1

log d)n nodes remained. Therefore, the num-
ber of transmissions required for a particular d value is
O(

∑
0≤j≤2. log d logD(((1− 1

log d )
jn)2d)) = O(n2d log d).

Hence, the total number of transmissions required is
O(

∑
0≤i≤logD(n2.2i.i)) = O(n2D logD). Combining

with Lemma 1, it directly follows.
2) Applying SINGLEPREPROCESS() in the clusters:

After constructing the clusters, we apply Procedure SIN-
GLEPREPROCESS() to each of these clusters. This is
done by arbitrarily picking one node r in each clus-
ter, say the central node of the first pre-cluster cho-
sen in the corresponding cluster; and then applying
SINGLEPREPROCESS(r). The following lemmas state the
number of transmissions required for this preprocessing
and the memory requirement needed in each node.

Lemma 11: Applying SINGLEPREPROCESS() to all
clusters requires O(D3 log2 D) transmissions.

Proof: By Lemma 5, applying SINGLEPREPRO-
CESS() on a cluster of size n′ and diameterO(d logD

log d ) takes

O(n′d logD
log d ) transmissions. By Lemma 9 (b), every node

belongs to at most O(log d logD) clusters. Therefore, the
total number of transmissions required for applying SIN-
GLEPREPROCESS() for a particular d is O(nd log2 D) =
O(dD2 log2 D). Counting all d values we use, the total
number of transmissions for applying SINGLEPREPRO-
CESS() is O(D3 log2 D); thus, the lemma follows.

Lemma 12: For any node u in the graph, the memory
size required to store the information of all clusters that u
belongs to is O(log3 D).

Proof: By Lemma 9 (b) and the fact that there are
O(logD) different d values, a node only belongs to at
most O(log2 D) clusters. Together with Lemma 4 which
states that O(1) memory is required for one cluster, the
total memory size required is O(log3 D); thus, the lemma
follows.

Remark 13: The multiple-source-queries can be per-
formed in constant space with a poly-logarithmic trans-
mission overhead.
The memory consumption in each node of the network

can be reduced to a constant in the following way which
is the same approach as in [13]. Note, that the O(log3 D)

space requirement comes from the need of use of the
clustering system, where each node has to remember the
clusters to which it does belong to. In the space efficient
solution the set of single nodes is replaced by the set of
super-nodes, where each super-node is a small cluster of
neighbouring nodes of size Θ(log3 D). The set of super-
nodes is computed as follows. We first build a spanning
tree TS in G = (V,E). Then the algorithm partitions
the set of nodes into super-nodes by cutting branches of
TS of size O(log3 D). This is always feasible since the
maximum degree of TS is O(1). The super-nodes (each
based on a branch from TS) form the set of nodes V̄ in
the new graph Ḡ = (V̄ , Ē). In Ḡ, for any v, w ∈ V̄ a
pair (v, w) ∈ Ē iff there exist x, y ∈ V, s.t., x ∈ v, y ∈ w
and (x, y) ∈ E. Note that the maximum degree in Ḡ is
bounded by O(log3 D). The original nodes in each super-
node play a role of single cells in a distributed memory.
The new graph Ḡ can be preprocessed similarly as G.
Now, the information about the O(log3 D) clusters can
be distributed evenly within each super-node, s.t., each
original node stores information about a constant number
of the clusters. However on the downside there will be
a poly-logarithmic transmission overhead related to the
larger degree and to the cost of internal search for an
appropriate information in the distributed memory of each
super-node.

B. Procedure MULTIROUTING

After the construction of clusters and the preprocessing,
we enter the routing stage. Procedure MULTIROUTING()
describes how the routing between any pair of source s
and destination t runs which is the same approach as in
[13] but under a different clustering system.

Procedure MULTIROUTING(s, t)

1) Set d = 1;
2) While the cluster containing both s and t has not

been found

a) For every cluster with diameter O(d logD
log d ) that

s belongs to

i) Based on the BFS tree in this cluster, s
sends a message to the root r with in-
formation including the coordinates of the
destination t;

ii) Apply SINGLEROUTING(r, t);
iii) If t can be found, the routing is completed

and the procedure terminates; otherwise,
continue with the next cluster;

b) Set d = 2 ∗ d;
The following theorem gives the performance of Proce-

dure MULTIROUTING().
Theorem 14: For any pair of source s and destination t,

the communication between s and t can be completed
using O(c logD

log c ) transmissions, where c is the length of
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the shortest path from s to t and D is the diameter of the
network.

Proof: Procedure MULTIROUTING starts from d = 1
and doubles d in each iteration. By Lemma 9 (c), the
largest value of d tried by MULTIROUTING is at most 2c.
Together with Theorem 6, the total number of transmis-
sions required is O(

∑
0≤i≤�log 2c	 2

i logD
i ) = O(c logD

log c ).
Thus, the theorem follows.

V. COMPACT ROUTING IN INTERNET

As mentioned in the Introduction, compact routing
techniques for the Internet and for sensor networks can
cross-fertilise each other. Due to the space constraint, we
only list our result here and will defer the details of our
new approach for the compact routing with application in
Internet in the journal version of this paper.

Theorem 15: For each weighted n-node graph, and inte-
ger k ≥ 1, there is a polynomial time constructible name-
independent routing scheme with stretch factor 10k that
uses O(k2 k

√
n log2 n)-register routing tables per node.

Note that our new scheme significantly improves the
currently best known solution in [2] that has the stretch
factor 64k and the exactly same size for the routing tables
at each node.

VI. CONCLUSION

In this paper, we propose a distributed compact rout-
ing scheme with applications in static sensor networks
and Internet. Our new routing algorithm can significantly
improves the complexity of the currently best known
geometric ad-hoc routing algorithm in [13]. Moreover, we
also show the interesting observations that the properties
of graph (network) can be used to significantly improve
the performance of compact routing schemes. We hope our
work can stimulate the future work on compact routing in
sensor networks and Internet.
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