
 
 

 
 

Internet curvature and possible implications on routing system design 
In 2004, Shavitt and Tankel [1] identified a new characteristic of the Internet graph, its curvature 
so as to better represent the Internet distance map in a geometric space. They show empirically that 
the Internet topology (namely, the AS graph) embeds with better accuracy (smaller average 
distortion) into a low-dimensional hyperbolic space than into a Euclidean space with comparable 
dimension. In their seminal work, C. Papadimitriou and D. Ratajczak [2] introduced the notion of 
greedy embedding of the graph G = (V, E) defined by the physical network topology in the 
Euclidean plane. 

A greedy embedding of an undirected graph G in a metric space (X, d) is a mapping f : V(G) → X 
with the following property: for every pair of distinct vertices s, t ∈ V(G) there exists a vertex u 
adjacent  to  s  such  that  d(f(u), f(t)) < d(f(s), f(t))  (distance  preserving).  Following  this definition, a 

greedy embedding of a graph G in a metric space (X, d) is a mapping of G in (X, d) such that a distance decreasing path exists between 
every pair of vertices in G. A distance decreasing path from s to t in a greedy embedding of G is a path (s = v1, v2, . . . , t = vk) such that 
d(vi, t) > d(vi +1, t), for i = 1, 2, ... , k -1. Greedy routing is thus a natural abstraction of geometric routing in which nodes are assigned 
virtual coordinates in a metric space, and these coordinates are used as addresses to perform point-to-point routing in this space. The 
main challenge here consists in finding the appropriate mapping function f together with a polynomial-time algorithm for embedding 
V(G) in the space X (and maintaining it) so as to allow for greedy routing using the metric d associated to that space (without 
degradation). Introduced by R. Kleinberg in 2005 [3], greedy embedding in hyperbolic metric space was a crucial step in search of means 
to overcome known limitations of geometric routing on unidirected graph G embedded in the Euclidean space. 

Work on Internet topology embedding to hyperbolic spaces was further progressed by R. Kleinberg who demonstrated in 2007 [4] 
that every connected finite graph has a greedy embedding in the hyperbolic plane (though reconstructing such embedding upon topology 
modification still requires O(n) operations per modification). A hyperbolic n-space, denoted Hn, is the maximally symmetric, simply 
connected, n-dimensional Riemannian manifold with constant sectional curvature -1. A classical example of hyperbolic geometry is the 
Poincaré disk model D ={(x, y)∈R2|x2 + y2 <1} which represents the hyperbolic plane H2 as the interior surface of an open unit disk 
whose points lie inside the unit circle ∂D = {(x, y)∈R2|x2 + y2=1} (the circle itself representing the boundary of the disk at infinity), and 
the geodesics are the arcs of circles orthogonal to the boundary of the unit disk ∂D. Sectional curvature describes the curvature of 
Riemannian manifolds and controls the rate of geodesic deviation. A metric space (X, d) is called geodesic if any two points x, y ∈ X in can 
be joined by a path (a geodesic [x, y]) whose length coincides with the distance d(x, y) between these two points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
To a certain extend hyperbolicity measures the deviation from tree-likeness. Several authors have thus tried to determine the 

hyperbolicity of the observable Internet topology with the expectation to exploit routing schemes known to provide a competitive 
memory-stretch tradeoff if the graph determined by the topology shows bounded hyperbolicity. De Montgolfier et al. [5] check 
empirically the Gromov’s four-points condition [7] on the AS graph and on various router level graphs. A metric space (X, d) is δ-
hyperbolic when it verifies the four-point condition, i.e., when the Gromov product (x · y)o =[d(o, x) + d(o, y) - d(x, y)]/2 of any two 
points x, y ∈ X with respect to a fixed reference point o ∈ X satisfies the inequality (x · y)o ≥ min{(x · z)o, (y · z)o} - δ, for some δ ≥ o, and 
any four points o, x, y, z in X. Following the four-point condition, the hyperbolicity of a simply connected unweighted graph G = (V, E) 
equipped with metric dG(x, y) is the minimum value of δ ≥ 0 such that the metric space DG = (V, dG) is δ-hyperbolic. Note also that the 
case δ = o coincides with the family of metric trees (if o is the root of the tree, then (x · y)o corresponds to the distance from o to the least 
common ancestor of x and y): trees are o-hyperbolic. V. Ramasubramanian et al. [6] show empirically that Internet delays follow a 
relaxed version of four-point condition. Following this finding, they propose to actually build a tree representation where the nodes can 
be embedded (i.e., mapped onto leaves of a virtual tree, whose inner nodes are virtual points and whose edge weights are carefully 
selected so as to represent original graph measurements). This allows to estimate latencies and to solve natural tasks such as selection of 
servers with short latency. 
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Poincaré disk model 

In Fig. (a), L1,L2;L3 and 
P1;P2;P3 are examples of 
geodesics. L1;L2;L3 intersect 
to form triangle ABC. The sum 

of its angles a + b + c < π (as 
opposed to Euclidean 
geometry where the sum of the 
angles of a triangle equals to 
π). Also, there are infinitely 
many geodesic lines (examples 
are P1;P2;P3) that are parallel 
to line L1 and go through a 
point C that does not belong to 
L1. 

Subscribe to electronic EULER newsletter: https://sympa.inria.fr/sympa/info/euler-news 
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As an interesting algorithmic consequence, a δ-hyperbolic graph 
G = (V, E) of n vertices can be approximated in O(n2) time by a tree 
with additive error of 2 δ(logn) [7]. C.Gavoille and O.Ly [8] use 
this property to derive a distance labeling scheme (DLS) which 
assigns to each vertex of any bounded hyperbolicity graph G a label 
of O(log2n) bits such that distances can be approximated with an 
additive error of O(δlogn). Given a finite set S of points of a δ-
hyperbolic metric space, Chepoi et al. [9] propose linear-time 
algorithms (in the number of links) for computing the diameter of S 
with an additive error 2δ and an approximate radius and center of a 
smallest enclosing ball for S with an additive error 3δ. They also 
provide a simple linear-time construction of distance approximating 
trees of δ-hyperbolic graphs G on n vertices with an additive error 
O(δlogn). In a following paper [10], the authors show that every 
unweighted δ-hyperbolic graphs has an additive O(δlogn)-spanner 
with O(δn) edges. Moreover, the authors propose an O(δlogn)-
additive error routing labelling scheme with O(δlog2n)-bits labels. 

However, according to the best available measurement data [11], 
as the Internet topology grows, the number links connecting nodes 
of similar degrees (tangential links) increases faster than the 
number of links connecting low-degree to high-degree nodes (radial 
links), i.e., its deviation from tree-likeness increases. Topology 
measurements fail to detect some tangential links interconnecting 
medium-to-low degree nodes since many of these links belong to 
none of the spanning trees rooted at the vantage points in the core. 
This excess of tangential links is responsible for a slightly higher 
assortativity of the AS-graph and the increase of the number of 
BGP routing paths even if the network size itself doesn't increase. 
This observation suggests that capturing hyperbolicity upper 
bounds becomes critical as tree approximation errors are 
proportional to δ. 

Besides verifying the four-point condition, equivalent definitions 
of δ-hyperbolicity involving different but comparable values of δ can 
be considered. The space X is δ-hyperbolic if all the geodesic 
triangles in X are δ-slim or δ-thin for some fixed δ ≥ ο. Verifying the 
δ-slim triangles condition means that there exists a constant δ ≥ ο 
such that for any geodesic triangle in X (a geodesic triangle with 
vertices x, y, z ∈ X is the union [x, y] ∪ [y, z] ∪ [z, x] of three 
geodesic segments connecting these vertices) and for any point w ∈ 
[x, y], the distance d(w, [y, z] ∪ [z, x]) ≤ δ (and similarly for the 
other sides [y, z], [z, x] of the triangle). Verifying the δ-thin 
triangles condition means that there exists a constant δ ≥ ο such 
that for any geodesic triangle in X and any pair of points v, w lying 
on its sides and equidistant from one of its vertices (e.g., v ∈ [x, z], 
w ∈ [x, y] and d(x, v) = d(x, w)), the distance d(v, w) ≤ δ. Despite its 
simplicity proving such condition holds globally results in a major 
computational challenge, in particular, if we assume that 
topological information is not globally available. 

The seminal work of M.A.Serrano et al. [12] opens new 
perspectives in approaching geometric routing. Indeed, these 
authors found in 2007 that self-similarity of clustering in real 
complex networks (such as the Internet) provides strong empirical 
evidence that hidden metric spaces underlie the observable 
topology of these networks. They provided further evidence that 
this metric space explanation is plausible by introducing a class of 
network models and by finding that networks generated by 
elements of this class reproduce all the self-similar effects that can 
be empirically observed in real networks. Subsequently, these 
authors found that these hidden metric spaces are hyperbolic. 
Consequently, research has shifted towards finding construction 
rules of hyperbolic spaces that best reproduce the hidden properties 
of observable topologies (hence, the resulting scheme doesn't 
require maintenance of a global network-wide structure to perform 
the embedding) so as to allow for greedy routing using the 
standard metric for hyperbolic space. 
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How the EULER project is progressing? 
The EULER project, started on October 1st, 2010, is completing its 
first year of the 3-year project duration. 

EULER organized the second edition of the TERANET (Toward 
Evolutive Routing Algorithms for scale-free/internet-like 
NETworks) International Workshop. Co-located with the 25th 
International Symposium on DIStributed Computing (DISC), the 
workshop took place on September 19, 2011 in Rome, Italy. This 
yearly event focuses on current research dedicated to new routing 
paradigms, models, and algorithms for distributed and dynamic 
routing systems applicable to the Internet and its continuous 
evolution. The agenda of the workshop as well as the extended 
abstract and the presentations of the six invived speakers are 
available at the following URL (EULER wiki): http://www-
sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Events/TERANET2011. 
The next preliminary project meeting will take place on November 
7-9, 2011 at UPC, Barcelona, Spain. 

Regarding the WPs activities, task T2.1 of WP2 is steadily 
progressing the specification of the routing system architecture. 
The work comprises two parts: Part 1 dedicated to the Routing 
system architecture itself and Part 2 dedicated to Routing system models. 
In Part 1, research work is dedicated to the definition of a 
hierarchical decomposition of the routing functional area by means 
of Enhanced Functional Flow Block Diagram. Particularly, we have 
identified and defined the sub-functions (such as discovery or 
determination of routing path) composing the routing function, and 
the spatial and temporal distribution existing among them. The 
work is also dedicated to the specification of the information 
(extended entity-relationship) model specifying the properties and 
the organisation of the routing related information, including their 
relation and their interaction. The second part of the work is 
dedicated to the specification of the routing procedures and the data 
structures by means of class diagrams and sequence diagrams 
(representating message exchanges between interacting entities).  

Concerning WP3, major efforts have been concentrated in the 
edition of the deliverable D3.1 and deliverable D3.2. D3.1 collects, 
describes and compares the state-of-the-art graph models and the 
desired properties known to be useful to either compact or greedy 
routing schemes on hyperbolic metric spaces. D3.1 also includes 
experimental work concerning graph generation and property tests. 
D3.2 focuses on the topology analysis and modelling based on 
measurements. It presents a set of measurable quantities of 
Internet, the tools able to collect such quantities and the datasets 
available so far for the project. 

In the context of WP4, task T4.2 continues the activity on the 
documentation of experimental methodology, scenarios, and tools. 
A (non exhaustive) list of existing tools and tools developed in the 
course of the EULER project has been defined. The term tool 
includes topology/graph generators, topology/graph properties 
testers, routing model simulators, and routing protocol emulators. 

For more information: http://www.euler-fire-project.eu. 
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