Seventh FRAMEWORK PROGRAMME
FP7-1CT-2009-5 - ICT-2009-1.6
Future Internet experimentally-driven research

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D4.2

Experimental methodology, scenarios, and tools

Project description

Project acronym: EULER

Project full title: Experimental UpdateLess Evolutive Routing
Grant Agreement no.: 258307

Document properties

Number: FP7-1CT-2009-5-1.6-258307-D4.2

Title: Experimental methodology, scenarios, and tools
Responsible: Universite Pierre Marie Curie (UPMC)
Contributor(s): Alcatel-Lucent Bell (ALB)

Institut National de Recherche en Informatique et en Au-
tomatique (INRIA)

Interdisciplinary Institute for Broadband Technology
(IBBT)

Universitat Politécnica de Catalunya (UPC)
University Pierre and Marie Curie (UPMC)
Dissemination level: Public (PU)

Date of preparation: July 2012

Version: 1.1

List of authors.

’ Affiliation ‘ Author(s)

INRIA David Coudert, Christian Glacet, Luc Hogie, Aurélien Lancin, Nicolas Nisse
ALB Dimitri Papadimitriou
UPMC Fabien Tarissan, Matthieu Latapy, Daniel Bernardes, Amélie Medem
IBBT Wouter Tavernier
UPC Jordi Perello Muntan
Abstract.

This deliverable describes the experimental evaluation methodology that will be followed and the
experimental scenarios that will be executed in tasks T3.3 and T4.3 to realize simulations and
emulation-based experiments, respectively. The objective in specifying a systematic experimental
methodology is to ensure repeatability, reproducibility, and verifiability of the simulation and
emulation results. While defining the experimental methodology, ensuring that the settings and
running conditions and accordingly the measurement procedures are reproducible or equivalent
conditions can be recreated and/or translated between evaluation cases guarantees the validity
of our experiments. The routing models and associated procedures proposed in WP2 task T2.2
will be experimented on representative topology settings as modeled following the results of WP3,
tasks T3.1 and T3.2.

This deliverable also provides a detailed description of the experimentation an measurement
tools that will be used to realize simulation experiments (as part of task T3.3) and emulation
experiments (as part of task T4.3). For each tool, we further document the functionality, the
properties but also the know and/or discovered limitations together with the assessment on how
they can or cannot be utilized to realize the planned simulation/emulation experiments. According
to this assessment any required modification or customization to be further realized is further
documented.

Contents

1 Introduction 5
2 Experimental methodology 7
2.1 General considerationso 7
21,1 Scenarios e 7
2.1.2 Choice of model parameters L. 7
2.1.3 Size of simulations/emulations L0 Lo 8
2.1.4 Performance evaluation 9
2.1.5 Complementarity between simulation and emulation experiments 9
2.2 Simulation methodology 9
2.2.1 Simulation model 10
2.2.1.1 Discrete Event Simulation (DES) Model 10
2.2.1.2 Continuous Simulation Model 10
2.2.2 Methodology 11
2.2.3 Simulation Platform o 13
2.2.3.1 Positioning e 13
2.2.3.2 Description 14
2.3 Emulation methodology 14
2.3.1 Emulation platform 15
2.3.2 Experiment workflow oo 16
2.3.3 Experimental components Lo L Lo oo 17
2.3.4 Enabling experiment events and measurements 17
3 Scenarios 23
3.1 Topologies e 23
3.2 Network partitioning and addressing oL 25
3.3 Traffic o 25
3.4 Specific scenarios L 26
3.4.1 Stresstest of arouter L 26
4 Tools 29
4.1 Simulation tools/platforms Lo Lo 29
4.1.1 DRMSim, a network simulator for the investigation of routing schemes . . . 29

4.1.2 Grph, an efficient portable graph library tailored to network simulation and
graph analysis L 30
4.1.3 Generation of dynamic routing trees / Internet dynamics on artificial graphs 31
4.1.3.1 Graph generation oL oo 31
4.1.3.2 Routing strategy Lo L Lo 31
4.1.3.3 Network changes 32
4.2 Generation of P2P traffic demand / Epidemic Spreading Simulation 33
4.2.1 Python-based simulator for greedy routing in the hyperbolic plane 33
4.3 Emulation tools/platforms L o 34

4.3.1 Click Modular Router 34

4.3.2 Quagga 35

4.4 Other Experimentation support tools oL 37
4.4.1 Sage . ..o e 37

4.4.2 Experimentation support tools oL L oL 38

4.4.2.1 AS-numbering and IP-addressing information generation 38

4.4.2.2 Configuration of virtual experiment topologies 38

4.4.2.3 Experiment execution script support 38

5 Conclusion 41

Chapter 1

Introduction

In the context of the EULER project, several routing models and algorithms scoping applicability
to the Internet are designed and developed. The range of routing paradigms the project investigates
is relatively large: it covers a spectrum ranging from dynamic compact routing to geometric routing
and its multiple variants, e.g., updateful and updateless. Further, by relying on the results of
topology modeling investigations performed in WP3, these paradigms are expected to take benefit
of the statistical and structural properties of the Internet topology and better characterization of
its dynamics. Ultimately, the resulting routing paradigms would lead to distributed and dynamic
routing schemes that are specialized for the Internet while taking into account its short-term
dynamics and its long-term continuous evolution.

The aim of this document is to describe the common experimental methodology that will be
followed by project partners for evaluating the behavior and the performance of the routing schemes
through numerous experimentation. These experiments comprise both simulation and emulation,
which play here a complementary role. Indeed, each of them has its own advantages and drawbacks.
Simulations (in particular, simulation by discrete event) is well suited for experiments involving
spatial metrics, structure, and dimensions as simulation enables handling of large-scale topology
cases and produces results that are easier to tune, reproduce, and compare. On the other hand,
emulation has the advantage of being more realistic thus providing valuable insight in temporal
metrics and behaviour (although on smaller scale and at a higher cost). Moreover, emulation
experiments enables to check the realism of simulation results and simulation experiments to
extend the applicability of emulation results. Indeed, results obtained by means of simulation
and emulation experiments are complementary when the experimental scenarios are commonly
specified and their execution adapted (without introducing any bias) to the simulation or emulation
environment,.

The experimental methodology reported in this document will allow i) measuring and analyzing
the functional and performance metrics described in deliverable D4.1, and ii) evaluating the results
obtained against the criteria described in deliverable D4.1. The described methodology shall
lead to verifiable, reliable, repeatable, and reproducible simulation and experimental results. For
this purpose, a set of scenario for conducting simulation and experimentation is documented.
Both static and dynamic scenarios are considered, where dynamics includes network topology
growth, situations of single and multiple topology failures as well as routing policy changes. These
scenarios rely on the models reflecting the Internet topology as produced within task T3.1, and
on measurement-based topology modeling performed within task T3.2. Specific classes of network
topologies will also be used for stressing the routing schemes in both static and dynamic contexts.
Next, this deliverable presents the documentation of the tools that have been developed within
task T4.2 in order to perform our investigations. These tools include graph libraries allowing
to analyze efficiently network topologies, the implementation of several models of graphs, and a
dedicated network simulator for investigating on the routing schemes.

This document is organized as follows. The experimental methodology is presented in Chap-
ter 2. Then, in Chapter 3, we present the set of scenarios that will be used to conduct simulation

and emulation experiments of routing schemes and their corresponding procedures. Next, in Chap-
ter 4, we document in Section 4.1.1 the DRMSim network simulator. In the Section 4.1.2 of this
chapter, we describe the Grph graph library tailored to network simulation and graph analysis. We
also document several tools used for specific purpose by project partners and to the development
of which project partners contribute. These tools includes the Sage open-source mathematics
software system (Section 4.4.1 page 37).

Chapter 2

Experimental methodology

The EULER project strongly relies on the use of experiments to evaluate the functionality and the
performance of the routing schemes designed as part of WP2. The specification of these experi-
ments therefore is crucial, and it must follow a rigorous, systematic, and effective methodology.
This chapter discusses these key methodological questions raised by such experiments, the details
of which being defined in the next chapters.

2.1 General considerations

Our experiments rely on scenarios, which we first discuss. Given a scenario, one has to define
appropriate parameters for running it, which we present after that. Size of instances used in
experimentations being a key issue, we discuss that next. Finally, two key concerns are presented,
namely robustness of observations and performance evaluation.

2.1.1 Scenarios

In the context of our project, an experiment consists in simulating or emulating a running network
routing a given traffic demand. The key components of such experiments are the network topology
(which may be modeled as a simple graph or a much more detailed topology with node types,
link capacities, etc), a routing scheme (which defines how the traffic demand is handled by the
network) and a traffic demand (which nodes sends data to with other(s)).

Each of these components may be modeled in many ways, at very different levels of abstraction,
with key impact on the experiments we are able to run (for instance, if the topology is very
details, then simulations cannot be very large) and on their outcome (different topology /routing
schemes/traffic demands will lead to different results).

We will detail which models we consider for each of these components in the next sections.
From a methodological point of view, the key point is that we have a set of models for each of the
three components, and that in principle any combination (triple) of models may be considered.

2.1.2 Choice of model parameters

Once a choice of three models for topology, routing scheme and traffic demand is made, thus defin-
ing a scenario, there are still difficult choices to make before being able to run an experimentation:
one has to decide each parameter of each chosen model.

Choosing appropriate parameters for a single model is already a difficult task. As a conse-
quence, choosing appropriate parameters for all models in a scenario may be extremely challeng-
ing. Indeed, it is impossible to scan the wide variety of possible values for parameters of these
models (their combination induces an exponential inflation of possible choices). Instead, some
decisions must be made for reducing the number of possible choices.

7

As our aim is to run realistic experiments which reflect how routing would really perform in
real settings, we take benefit of the measurement-based nature of EULER project to choose a
reasonable number of appropriate parameters.

A typical example is topology modeling: while there exists a wide variety of topology models,
from Erdés-Réniy random graphs to bottom-up models of network components and their intercon-
nection, each with its own set of parameters, we will use information from actual measurements
to choose these parameters. Current state-of-the-art is to rely on properties observed from maps,
and we will follow this approach when appropriate (or when no other choice is possible). Going
further, we conduct in EULER measurements targeting the accurate estimation of specific prop-
erties, like the physical degree of core routers (i.e. their number of interfaces). As many models
use prescribed degree distribution as a key parameter, this knowledge allows us to choose the
appropriate degree distribution (without having to try many different distributions).

This approach is very general and central in EULER experimentations: although it remains far
from complete, we have an unprecedented knowledge of actual properties of the Internet topology,
routing schemes and traffic demand. As a consequence, we may choose appropriate values for
model parameters without having to try wide ranges of possible choices, which is essential for
limiting the number of experiments to be conducted without reducing their outcome.

2.1.3 Size of simulations/emulations

A key parameter for experiments is the size of involved objects: number of nodes and links in
considered topologies, amount of traffic, etc. Also, as experimental approaches result in outputs
which depend on the particular instances considered, one must repeat experiments with different
instances to study their robustness; then, choosing an appropriate number of instances may be
difficult.

Obviously, as our experiments aim at studying the behaviour of routing protocols in the In-
ternet environment, the best choice is to run them in settings reflecting this environment (and its
evolution). As a consequence, topologies should have a size comparable to the one of the Internet,
or at least comprise a sufficiently representative number of AS, traffic should reflect actual demand
on the Internet, etc. This means that one may consider millions of nodes and users, or even more.

Unfortunately, this is not reachable for many experimental tools. Only the most simple ones
(like graph generators) are able to handle such sizes, most being very limited (sometimes to a few
hundred nodes, like in the case of detailed emulation tools). Even then, simulating traffic demand
from many nodes to many others leads to untractable computations. It is therefore crucial to
handle size issues carefully in our experimentations.

The first situation is when one has to choose a size of objects involved in experimentations
(topologies and traffic demand, mainly). Current best practice is to use the largest possible objects,
in the hope that the behavior observed using them will reflect their behavior on the Internet in
a reasonable way. This is not sufficient however, and in EULER we will systematically study the
impact of object sizes on the outcome of each experiment: we will run experiments with different
object sizes and observe how results vary. This will provide accurate information on the impact
of object size, and we may have to extrapolate observations to infer the results we would obtain
with larger objects (and the Internet) if we were able to conduct experimentations at such large
scales.

Another key issue is the study of robustness of observations with regard to the particular in-
stances used in experimentations: observations may vary much depending on the specific topology
or traffic demand considered, as well as arbitrary choices made during routing. It is crucial for
EULER to both estimate the typical behaviors and how far from these typical situations one
may be in practice. To experimentally explore this, we will run several instances of experiments
with the same parameters and study the distribution of results. We may in particular distinguish
situations where the results are homogeneous (all results are close to a typical situation) and the
situations where they have huge variability. This in itself is a criterion for performance of the
considered setting (its predictability).

2.1.4 Performance evaluation

Once the methodology for conducting experimentations is described, we still have to define a
methodology for performance evaluation. Performance evaluation involves the specification of a
performance model, performance measurements, and performance results analysis.

1. Performance model: the specification of a performance model defines the significant as-
pects of the way in which a proposed or actual system operates in terms of resources con-
sumed, accessed, scheduled, etc. together with the various delays by processing and/or
physical/hardware limitations (such as speed, bandwidth of communications, access latency,
etc.). A performance model provides useful information on how the proposed vs BGP routing
system/model will or does actually work. Based on the information contained in the per-
formance model, the interpretation of the execution of the routing process model (by means
of simulation or emulation) provide further insight into the routing system’s behavior, and
can be used to identify where the routing model design is inadequate.

2. Performance measurement: many performance metrics may be used for this purpose, like
routing path stretch, routing table size (per-node memory space required to store routing
table entries), computational complexity of the routing algorithm, routing paths link/node
centrality or convergence time, and comparing them is a challenge in itself. The performance
metrics relevant for EULER are described in deliverable D4.1.

3. Performance analysis: our performance analysis includes i) performance comparison against
performance criteria associated to each performance metric (the performance criteria relevant
for EULER are described in deliverable D4.1), ii) comparison of performance measurement
results obtained for the reference routing model (BGP) and those obtained for the routing
models designed in the context of WP2 (the performance comparison criteria relevant for
EULER are described in deliverable D4.1), and iii) performance assessment against design
routing process model as determined by the performance model.

2.1.5 Complementarity between simulation and emulation experiments

In general, spatial measures are more easily achieved in simulation environments whereas temporal
measures are more easily achieved by means of emulation. Simulations (in particular, simulation
by discrete event) is well suited for experiments involving spatial metrics, structure, and dimen-
sions as it enables handling of large-scale topology cases and produces results that are easier to
tune, reproduce, and compare. On the other hand, emulation has the advantage of being more
representative of the actual execution of procedures thus providing valuable insight in temporal
metrics and behaviour (although on smaller scale and at a higher cost).

Moreover, emulation experiments enables to check the realism of simulation results and sim-
ulation experiments to extend the applicability of emulation results. Indeed, results obtained by
means of simulation and emulation experiments are complementary when the experimental sce-
narios are commonly specified and their execution adapted (without introducing any bias) to the
simulation or emulation environment.

2.2 Simulation methodology

Following Shannon [Shannon75], simulation is the process of designing a model of a real system
and conducting experiments with this model for the purpose either of understanding the behavior
of the system or of evaluating various strategies (within the limits imposed by a criterion or
set of criteria) for the operation of a system. Ingalls [Ingalls02], further defines simulation as
the process of designing a dynamic model of an actual dynamic system for the purpose either
of understanding the behavior of the system or of evaluating various strategies (within the limits
imposed by a criterion or set of criteria) for the operation of a system. Simulation can thus be seen

9

as the process of exercising a model to characterize the behavior of the modeled entity process, or
system over time.

Simulation is one of the most widely used techniques for i) understanding, characterizing and
analyzing the behavior of complex systems, ii) construct theories or hypotheses that account for
the observed behavior, iii) use the model to predict future behavior, that is, the effects that will
be produced by changes in the system.

2.2.1 Simulation model

As depicted in Figure 2.1, simulations may be deterministic or stochastic, static or dynamic,
continuous or discrete. In this figure, the term system refers to a group of objects that are
joined together in some regular interaction or interdependence toward the accomplishment of

some purpose.
System model

‘ Static ’ ‘ Dynamic] Static } Dynamic

I E.g. Monte Carlo

1 1 1
[Continuous ’ { Discrete ’ [Continuous] [Discrete }

{ Time-stepped 1 [Event-driven ’

E.g. DES

Figure 2.1: Simulation model.

The following sections describe in more details the simulation models that will be used in the
context of the EULER T3.3 task.

2.2.1.1 Discrete Event Simulation (DES) Model

Discrete Event Simulation (DES) is commonly used in computer communication networks. DES
simulation is characterized by being i) stochastic: some state variables are random variables, ii)
dynamic: evolution over time, and iii) discrete: state variables change instantaneously at only a
countable number of points in time upon occurrence of events (instantaneous occurrence that may
change the system state).

2.2.1.2 Continuous Simulation Model

In a continuous model, the state variables change in a continuous way, and not abruptly from
one state to another (infinite number of states). Continuous variables are typically described by
differential equations. The simulation consisting in solving sets of differential equations numerically
over time. Note this doesn’t prevent that discrete events can occur over time that affect the
continuously changing variables.

10

2.2.2 Methodology

As previously introduced, performance measurement and analysis by simulation requires to spec-
ify a theoretical model (of the system under study) from which a performance analysis can be
performed. Using the feedback from this performance analysis a behavioural/conceptual model is
then built enabling the development of a simulation specification model. The later can then be
converted into a computational model. Measuring the metrics on the execution of model provides
the information to compare the obtained results with those of the theoretical model. Figure 2.2
depicts the flow chart used for systematic performance evaluation and analysis process.

Foom System model
: A
1
' :"’ "Behavioral" model
! ;
________ : :

1

Performance model I
1

) . Perf
Feedback ' (analytic, algebraic, etc.) i emoé::;:;]ce
1
1 I
1 [. .
: Results ! Simulation model
| |
1
®--="1 Performance analysis | Measures
1 [}
[} A

! |
1 .
----------------------------- - -+ Performance analysis

Figure 2.2: Evaluation by simulation methodology.

The (typically iterative) process to build and develop a simulation model are the following:

1.

2.

Determine the goals and objectives of the simulation

Build a conceptual model including state variables, which variables are static and dynamic,
for the latter are variations continuous and discrete, etc.

Convert the conceptual model into a specification model of the simulation; the specification
typically describes simulation procedures (pseudo-code) and data structures

Convert the specification model into a computational model, i.e., executable computer pro-
gram (note: selection of the programming language is part of this step and consists in deter-
mining whether a general-purpose programming languages or a Special-purpose simulation
language would be used to develop the program)

Verify (verification process): Ask the question: Did we build the model right?
(a) Determine whether the computational model executes as intended by simulation spec-
ification model.

(b) Determine whether the computational model implements assumptions made about the
behavior of the real systems (as transposed in the behavioral model)

(¢) Techniques include: tracing/walk-through, continuity tests (sensitivity tests, i.e., slight
change in input should yield slight change in output, otherwise error), degeneracy tests
(perform execution with extremes values, e.g., lowest and highest), consistency tests
(similar inputs produce similar outputs

11

6. Validate (validation process): Ask the question: Did we build the right model?

(a)

(b)

Determine whether the conceptual model is representative of the actual system being
analyzed. Can the conceptual model be substituted, at least approximately for the real
system?

The validation process also involves determining whether the computational model is
consistent with the actual system being analyzed.

Note that the term simulation is frequently used to refer to the computational model itself

(program).
r----» Routing behavior model Conceptual model [f----a
: l ;
| Specification model ~ «-5
' Performance -
: metrics l : :
Feedback E Simulation model Computational model E i
: \ l .
! easures Verification U
I l :
== Performance analysis Validation ~ ------ '

Figure 2.3: Simulation methodology.

Once the simulation program is verified and validated, simulation studies can be performed.
Simulation studies include

1. Design simulation experiments:

(a)

()

Determine the input parameters that should be varied and their interval as well as
the initial conditions for proper initialization (note that some characteristics of the
environment may need to be included in the experiment if not accounted as part of the
simulation model); this step is critical as it provides means for decreasing the run time
of the simulation but still may not provide confidence for stable conditions.

Determine the variables to measure (at which frequency, upon which class of event
(event-driven), etc. taking into account the tradeoff between too much data (that
would in turn require the use of techniques for reducing the amount of collected to a
usable form) and too little data (that would in turn introduce the need for representing
data by statistical distributions);

Determine the execution time taking into account the tradeoff between the resource
consumption (by very long runs) and amortization of effects of resulting from transient
state will be amortized

2. Execution of the simulation program and record tuples of the form
{<initial_condition; input>; <running_condition; output>} referred to as ob-
servations or data.

3. Analyze the output of the simulation program execution towards production of results.
Analysis comprises:

12

(a) Results verification (correctness): test whether the results obtained are in accordance
to the assumptions made about the behavior of the real systems (as transposed in the
behavioral model)

(b) Input validation (representativity): validate assumptions about input parameter values
and distributions. This step is often associated to the output validation phase.

(¢) Results/output validation (representativity): test whether the results obtained are rep-
resentative of those obtained either by real systems or theoretical model of the system

2.2.3 Simulation Platform

As deploying newly designed routing protocols on the Internet is not practicable at a large-scale,
simulation is an unavoidable step to validate their properties. However, the increasing require-
ments in terms of routing information processing (CPU) and storage (memory) introduce several
challenges for the simulation of state-full routing protocols on large-scale topologies (comprising
tens of thousands of nodes).

For these reasons, the EULER project focused its development on the Dynamic Routing Model
simulator DRMSim, a discrete event simulation platform which addresses the specific problem of
large-scale simulations of routing models running on large networks. The motivation for developing
this simulator lies in the limitation of existing simulation tools in terms of the number of nodes
they can handle and in the models they propose. Before describing the DRMSim simulator, the
following section motivates the introduction of such platform and compares to existing routing
simulators.

2.2.3.1 Positioning

We have to distinguish three classes of simulators when it comes to distributed routing: (routing)
protocol simulators, routing configuration simulators, and (routing) model simulators.

e Simulators dedicated to the performance measurement and analysis of the routing protocol
(procedures and format) at the microscopic level. These can be further subdivided between
simulators specialized for BGP protocol specifics, simulators dedicated to routing protocols
and general protocol simulators. The ns [?] discrete-event simulator that relies on the BGP
daemon from Zebra [?] belongs to the second sub-category. This daemon can be used to
build realistic inter-domain routing scenarios but not on large-scale networks due to the low
level execution of the protocol procedures. On the other hand, the SSFNet [?] discrete
event simulator, relies on the implementation of the BGP protocol that was tailored and
validated for the needs of a BGP-specific simulator. In SSFNet, a simulated router running
BGP maintains its own forwarding table. It is thus possible to perform simulation with both
TCP/IP traffic and routing protocols to evaluate the impact of a change in routing on the
performance of TCP as seen by the end systems (hosts, terminals, etc.).

e Simulators dedicated to simulation of BGP protocol operations including the computation of
the outcome of the BGP route selection process by taking into account the routers’ configura-
tion, the externally received BGP routing information and the network topology but without
any time dynamics. These simulators can be used by researchers and ISP network operators
to evaluate the impact of modified decision processes, additional BGP route attributes, as
well as logical and topological changes on the routing tables computed on individual routers
assuming that each event can be entirely characterized. Topological changes usually com-
prise pre-determined links and routers failures whereas logical changes include changes in
the configuration of the routers such as input/output routing policies or IGP link weights.
These simulators are thus specialized and optimized (in terms, e.g., of data structures and
procedures) to execute BGP on large topologies with sizes of the same order of magnitude
than the Internet since these simulators are not designed to support real-time execution.
These simulators usually support complete BGP decision process, import and export filters,

13

route-reflectors, processing of AS_path attributes and even custom route selection rules for
traffic engineering purposes, and BGP policies. Simulators like SimBGP [?] or C-BGP [?]
belong to this category. These simulators are gradually updated to incorporate new BGP
features but are complex to extend out of the context of BGP.

e Simulators dedicated to the simulation of routing models, category to which DRMSim [?]
belongs. Designed for the investigation of the performance of dynamic routing models on
large-scale networks, these simulators allow execution of different routing models and enable
comparison of their resulting performance. Simulators in this category consider models in-
stead of protocols, meaning they do not execute the low level procedures of the protocol that
process exact protocol formats but their abstraction. Thus these simulators require spec-
ification of an abstract procedural model, data model, and state model sufficiently simple
to be effective on large-scale networks but still representative of the actual protocol execu-
tion. However, incorporating (and maintaining up to date) routing state information is also
becoming technically challenging because of the amount of memory required to store such
data. In practice, processing of individual routing states impedes the execution of large-scale
simulations. DRMSim addresses this issue by means of efficient graph-based data structures.
Moreover, by using advanced data structures to represent routing tables, DRMSim can still
run simulation whose number of nodes exceeds ten thousands.

All simulators previously cited here above share many properties. Like DRMSim, they all rely
on Discrete-Event Simulation (DES). However, on one hand, BGP simulators, in order to keep an
acceptable level of performance, optimize their procedures and data structures for BGP protocol
executions; thus, they can not be easily extended to accommodate other routing protocol models.
On the other hand, general routing protocol simulators designed to investigate the effects of
routing protocol dynamics are usually limited to networks of few hundred nodes; thus, preventing
large-scale simulations of state-full routing protocols over networks comprising of the order of ten
thousands nodes.

Because deploying newly designed routing protocols on the Internet is not practicable at a
large-scale, simulation is an unavoidable step to validate their behavioral and performance prop-
erties. Unfortunately, the simulation of inter-domain routing protocols over large-scale networks
(comprising tens of thousands of nodes) becomes a real issue [?] due to the increasing routing in-
formation processing (CPU) and storage (memory) they require. To the best of our knowledge, no
simulator provides the capability to investigate in-depth the behavior and performance properties
of routing schemes when applied to large-scale topologies (comprising tens of thousands of nodes).

2.2.3.2 Description

Section 4.1.1 details the Dynamic Routing Model simulator DRMSim which addresses the specific
problem of large-scale simulations of (inter-domain) routing models on large networks.

2.3 Emulation methodology

The main purpose of WP4 is the experimentation of designed routing schemes in representative
settings. Whereas simulation techniques abstract parts of the experimented components and its
environments (potentially allowing very large scale experiments), emulation-based experimentation
targets the evaluation of lower-level implementations (component prototypes) of the designed
routing schemes. For example, an emulated BGP router, functionality behaves exactly in the
same way as a production quality BGP router. In this case there is a one-to-one mapping between
the defined functions and their implementation. However, emulation experiments require more
implementation effort, as well as more hardware resources to evaluate a given network setup.
This section outlines the planned methodology for the emulation experiments planned in the
context of WP4. This involves the definition of the used platform, the used procedures, the
components to be experimented and the scenario’s and their means for experimental verification.

14

2.3.1 Emulation platform

The iLAB.t virtual wall, experimental facility at IBBT, will be used in WP4 to execute the
experiments associated to T4.3. This experimental emulation facility consists out of 100 servers
connected through a non-blocking Ethernet switch. The 100 high-end servers composing the
experimental facility cluster come each with dual CPU dual core 2.0GHz, 4GB RAM, 4 or 6
Ethernet network interface cards (Gb/s) - PCI express, and 4x80GB disks - software RAID 0
configuration. The servers are interconnected by a Forcel0 E1200 non-blocking Ethernet switch
(1.68 Th/s - 1 Billion pps) that scales up to 672 ports. Each server is connected with 4 or 6
Gigabit Ethernet links to the switch. Once a given number of nodes is reserved, arbitrary logical
topologies can be created between the nodes (taking into account the available number of network
interfaces). These topologies are set up automatically using the control software of the virtual
wall (Emulab, see below) such that the Forcel0 Ethernet switch interconnects the reserved nodes
in the desired logical topology relying on VL ANs.

Remote access to the iLAB.t control system is possible without any restriction on functionality.
As such, large dedicated experimental setup can be built very fast. The resulting setups are the
repeatable and enable dedicated experiments within confined environment where experimental
parameters can be controlled.

/| * Monitor network status

" | e Trigger virtualization

e Configure experimental
nodes

e Trigger events in the
experimental network

‘E e Monitor experiment
Experiment

control node

Experiment operator

control network

Emulab logical topology

Virtual experimental
network

Figure 2.4: Emulation platform setup

Emulab The University of Utah has developed Emulab (www.emulab.net), which is control
software for a very flexible emulation experimental facility based on servers. These servers can
run a variety of operating system images and can be interconnected dynamically in topologies

15

as needed for the experiments. In this setup, network links (bandwidth, delay) can be emulated
through software. This software has been developed for controlling local PC clusters. The software
enables performing automatic and remote configuration, by swapping in and out operating system
images. As such, large dedicated experimental facility can be built very fast.

The Emulab software is used to control the ilab.t virtual wall experimental facility. It makes
possible to fully control the servers and the interconnecting network (without executing experi-
ments themselves). More precisely, it installs the desired operating system image on each server
and configures the Ethernet switch with the right VLAN configuration. It also incorporates mul-
tiple users, a web interface and an archive for experiment setups. However, the user still needs to
define and execute its experiments once the ilab.t virtual wall is configured.

The Emulab software provides the following features to the user:

e Web-based interface with dedicated user accounts;

e The user can graphically draw a testbed layout with nodes and interconnections (or provide
this through an NS2 configuration file);

e The user can select an OS image (Linux, BSD, Microsoft Windows) for each node;
e After the user confirms: all nodes are installed and the necessary interconnections are made;
e After this, the user has full root access to the nodes for executing the experiments;

e Afterwards, the testbed is swapped out again, but available for future experiments with the
same setup. As such, the nodes can be reused by another user;

e Nodes are installed in parallel in a very fast way (couple of minutes).

The WP4-related parts of EULER website and mailing lists contain further information on
using the ilab.t platform (information on accounts, manuals, etc.).
The resulting experiment setup consists of the following elements, as illustrated in Figure 2.4:

1. the experiment operator: end-user which triggers/configures/controls the experiment
from its laptop/desktop

2. the experiment control node: a node which is part of the defined Emulab experiment
and whose purpose is exclusively to control the execution of the experiment (it is thus not
connected via data interfaces towards other parts of the experimental setup).

3. the Emulab logical topology: the logical experiment network as swapped in by the
Emulab software (this does not include any virtualization)

4. the virtualized experimental network: the emulated network to be used for experi-
mentation, resulting from using virtualization technology on top of the swapped-in Emulab
network topology

2.3.2 Experiment workflow

Emulation-based experimentation in the context of task T4.3 follows a structured process ensuring
repeatability and automation. Figure 2.5 illustrates the different elements and phases in the
envisioned experimentation workflow.

The experimentation process follows 7 phases:

1. Swap-in preparation: definition of the software images and Emulab-topology to be used.

2. Swap-in execution: during this process the virtual wall control software loads the config-
ured software images on the reserved nodes and interconnects the nodes according to the
pre-configured topology (as described in an ns2 format)

16

3. Experiment preparation:

(a) Definition of the virtualization process enabling multiple emulation nodes to run on
existing physical nodes of the Emulab experiment.

(b) Configuration of the experiment controller node.

(¢) Experimentation environment monitoring to verify of the configured initial experiment
conditions are valid (including for example the validation of link connectivity).

(d) Definition of the experimentation script. This script steers the entire execution (time
sequence) of the experimentation, including the setup of network traffic, the addi-
tion/removal of network elements, etc.

4. Experiment execution, resulting into experiment-related output (logfiles, tracefiles, etc.)

5. Post-processing: the process of deducing usable (and statistically valid) numeric and
graphical conclusions as an outcome of the experiment.

2.3.3 Experimental components

Experimentation relying on the emulation (prototyping) of routing schemes consists of two major
components:

e routing functionality: consisting of all control functionality of developed schemes in WP2
related to: discovery, pre-processing, routing table production, and resolution functionality
(which includes locator/identifier functionality in relationship to existing IP addressing/sub-
netting). Experimentation in T4.3 focuses on these components.

e forwarding functionality: consisting of functionality responsible for receiving and trans-
mitting data traffic. The forwarding process used by traditional routing schemes is based
on lookups in forwarding tables (Forwarding Information Bases or FIBs). The forwarding
decision in greedy routing is based on a set of distance comparisons between a node’s neigh-
bors and the destination coordinate of a received packet. Experimentation of forwarding
functionality is optional in the context of task T4.3, and is mainly of value in the context of
stress tests.

2.3.4 Enabling experiment events and measurements

Once the initial experiment setup has been completed (bootstrapping), the execution of the exper-
iment can start. As illustrated in Figure 2.6, the resulting experimentation consists of monitoring
the configuration and the state(s) of running elements as well as the activation of given network
events such as network topology changes or the generation of network traffic (only for the evalu-
ation of forwarding functionality). This process is steered by the experiment script. Experiment
scripting functionality requires verifying evaluated experiment conditions. For example, if links
are disabled in the script, logging functionality will maintain the state of the affected link after
the planned disabling step. Post-processing functionality will then allow to verify if planned ex-
periment conditions have taken place during the run. More information about using experiment
scripts can be found in Section 4.4.2.3.

Experimental performance is characterized through the experimental metrics as defined in
deliverable D4.1. Three classes of metrics can be distinguished. The metric definitions are taken
from deliverable D4.1 and are extended with respect to their measurement in the experimental
setup. An overview is given below.

1. Routing performance metrics

17

(a)

Routing path length: the number of nodes along the routing path from source to destina-
tion as produced by the routing protocol. The routing path length can be exactly mea-
sured in emulation experiments. This measure allows computing the resulting stretch
of a routing scheme. For routing schemes that maintain the actual routing path ((ab-
stract) node sequence) in routing tables, the routing path length can be determined by
counting the number of (abstract) nodes composing the routing path to each destina-
tion. For routing schemes that maintain or greedily compute a partial/local routing
path information, in particular, the next-hop neighbor towards each destination, and
in order to avoid implementing the forwarding functionality in the emulated prototype,
this metric can be measured by implementing ICMP-alike packet forwarding in the
control plane, allowing to record the number of hops of these packets sent between
nodes. When divided by the corresponding topological path length, the resulting ratio,
referred to as the multiplicative stretch, is expected to remain close to 1 (small and
upper bounded deviation from the actual topological path length defines one of the
main routing quality criteria).

Routing table size: the number of routing table entries and their total size (expressed in
terms of memory space) required to store them per node. Note this number /size should
be sub-linear with respect to the number of nodes/reachable prefixes. This metric can
be measured in emulation through the implementation of table counters per node.

Computational complezity (of the routing algorithm): this metric can be measured
by determining i) the number of CPU cycles and the memory space required to com-
pute each routing path and ii) the time required to locally compute each routing path
with respect to the input size. Computational complexity can be verified in emulation
by recording a counter/timestamp for every atomic step performed locally during the
routing path computation.

Communication cost: the rate (x size) of routing protocol messages exchanged between
nodes that are needed by the routing protocol to properly operate. Note that routing
protocol messages may include topology information and/or routing information; both
types of information are referred to as routing protocol information. The exchange rate
can be measured in emulation by monitoring the number of routing protocol messages
exchanged per time unit/per event between adjacent nodes. Recording the size of each
message enables to further determine the instantaneous capacity and estimate the time
required to exchange these messages.

Connectivity time: the time needed for a newly added destination to become reachable
through the existing network topology (connected component of the topology). In case
of routing protocol information push: this time includes the propagation of the routing
protocol messages and thus the corresponding information across the network topology.
In case of routing protocol information pull: this time accounts for the query/response
delay (and associated resolution if any) of this new routing protocol information by an
existing node. In the emulation framework, this can be measured i) by adding additional
information to the logging interface (which can be checked after the experimentation
run), and ii) by sending ICMP-alike packets on the path between the affected nodes
(see previous point on routing path length).

Convergence time: network topology change(s) (e.g. link/node failure) or routing pro-
tocol change(s) (e.g. re-configuration) result in routing states change. Upon occurrence
of such event, several destinations become unreachable (e.g., loss of connectivity) and
remain potentially unreachable until routing states (re-)converge on the new topology.
The time elapsing between the occurrence of such event and the time at which all desti-
nations are again reachable is an indirect way to deduce the convergence time of routing
protocol states (one assumes that achieving full reachability implies routing state con-
vergence). This metric can be measured in emulation through the investigation of time

18

stamps of logfiles of routers', notification to control node, or packet loss measurement
between affected traffic streams?

(g) Configuration time: number of actions to perform off-line configuration of newly added
elements into the topology being network partition(s), node(s), link(s), or destina-
tion(s). The associated operations can be modeled in emulation and have a relationship
to the number of steps/commands needed in the experimentation script.

2. Forwarding performance metrics

The implementation of forwarding functionality in the context of emulation is not required
to determine the performance of the routing scheme. Such implementation will thus only be
considered in the second stage of experimentation. This section lists the possible forwarding
performance metrics and indicates how they will be measured in the experimental setup.

(a) Forwarding table size: the number of forwarding table entries and their total size per
node (that should be sublinear with respect to the number of nodes/reachable prefixes).
The emulation setup can measure this by implementing and maintaining node counters
forwarding table.

(b) Forwarding delay: the time needed to determine the outgoing interface/port of a packet
from its incoming attributes (including destination coordinates, destination address,
destination label, etc.) using the local forwarding table. This metric is of particular
importance for routing protocols that assume more than one lookup/online computation
operation to forward individual packets. Measurement of forwarding delay can be
implemented by timestamping individual packets at the monitored node(s) before the
forwarding process starts and after the forwarding process completes. Another mean to
measure the forwarding delay is to measure the total delay experienced when packets
traverse a node and substract the propagation, transmission and queuing delay.

(c) (Aggregated) Throughput: average rate of packets generated by a given (set of) source
that is successfully delivered to a given (set of) destination along a (common) forward-
ing path. This metric can be approximated in emulation through the use of configurable
traffic generation/reception tools such as iperf (possibly adapted to make them com-
patible with the routing scheme to be evaluated).

(d) Delay: the time interval elapsing between sending a packet from a source node, and
the reception of that packet at the destination node. The delay can be approximated
in emulation (half round-trip time) through the use of Ping-like functionality (imple-
mentation of ICMP-type packets).

(e) Jitter: the difference in end-to-end delay between selected packets in a sequence of
packets flowing from a given source to a given destination. This metric can be measured
in emulation by extending end-to-end traffic measurement tools such as iperf or D-ITG.

(f) Packet loss: this occurs when one or more packets of data traveling across a network
fail to reach their destination. This metric can be measured in emulation by extending
end-to-end traffic measurement tools such as iperf or D-ITG.

1
2

time offset estimation will be required between different experimental nodes
some form forwarding functionality will be needed

19

Swap In preparation

Node software

Topology image

NS2 Image for emulab

%4

SWAP IN on
EMULAB virtual
wall platform

v

Experiment preparation

Time
sequence

Node
status
Experimentaton | | | [

environment Experiment script +----
monitoring

—

Run experiment

Experiment
Node virtualization controller
configuration

<
[}
QO
o
£
@
3
@
ES

Experiment output

Log file output Trace file output

Measurement
output

i

Post processing

Experimental results

Data Graphs

Figure 2.5: Experimentation flow in emulation

20

Configuration /
State monitoring

N Time ev_ent
dynamics
Experimental
functionality »| Topology changes
—» Traffic generation

Figure 2.6: Experimental functionality

Experimental
metrics

4

Verification

21

22

Chapter 3

Scenarios

EULER experimentations strongly rely on the notion of scenario, which define the topology, the
addressing, and the traffic demand we consider for each routing scheme experiment. Note that
several routing experiments can be performed without involving any actual traffic/forwarding.
These scenarios are instances obtained either from measurements or from models. Therefore, we
need to describe which measurements and models we consider.

3.1 Topologies

There are many ways to choose a topology representing the underlying network on which the
experiment takes place. Such topologies may be directly obtained through measurements which
provide maps of the Internet. In EULER experiments, we use state-of-the-art maps like the ones
provided by CAIDA and DIMES. However, such maps are known to be partial and biased, which
may have an influence on experiment outcomes. EULER solves this issue by conducting reliable
measurements of Internet properties (like its degree distribution) and then use graph models to
generate graphs which fit these properties. In a way, these artificial graphs are closer to the real
Internet than any map. In addition, we use models to generate graph families with different
properties in order to study their impact on routing performances. There, the key concern is not
that the model topology should be similar to the actual Internet topology, but that we are able to
tune topology properties in order to identify desirable vs undesirable properties for the (future)
Internet topology.
We therefore use three kinds of topologies:

e Internet maps
— CAIDA ' provides Internet maps at IP and AS levels collected on a regular basis since

2004.

— DIMES 2 provides AS-level maps of the Internet collected from a large number of dis-
tributed monitors (approximately one thousand).

— RouteViews ? collects BGP tables since 1997 on a set of BGP routers, making it possible
to build dynamic AS maps.

— Radar? collected for several months in continuous IP-level maps from a hundred moni-
tors every few minutes, making it possible to study the dynamics of ego-centered views.

e Measurement-based artificial graphs

lhttp://www.caida.org/home/
2http://www.netdimes.org/
Shttp://www.routeviews.org/
4nttp://www-rp.lip6.fr/~latapy/Radar/

23

http://www.caida.org/home/
http://www.netdimes.org/
http://www.routeviews.org/
http://www-rp.lip6.fr/~latapy/Radar/

— One key objective of EULER is to obtain the first accurate and reliable estimate of the
degree distribution of the Internet topology. This distribution is a key parameter to
many graph models, including the Configuration Model. We will therefore use artificial
graphs with the appropriate degree distribution as topology models.

— Another approach consists in taking ebefit from new measurement approaches based on
mtrace which give a bipartite view of the Internet, more accurate than classical view;
we will combine this with random bipartite graph models in EULER to obtain artificial
graphs reflecting this property.

e Model graphs®

— ER random graphs are used as a baseline for topology modeling, and give insight on
the impact of density on experimentations.

— Random graphs with prescribed degree distribution make it possible to investigate the
impact of degree distribution.

— Bipartite random graphs adds to this the possibility to tune clustering properties using
the bipartite structure and study their impact.

— Albert-Barabasi graphs rely on the notion of preferential attachment and make it pos-
sible to explore the impact of this feature on our results.

— BRITE, a parameterized topology generator which aims at modeling different aspects
that lead to the power law behavior observed in Internet-like topologies such as pref-
erential connectivity, incremental growth, node placement strategies, and connection
locality.

Note that, as explained in deliverable D3.1, each of these models has its own interest in the
context of EULER. For instance, although ER graphs are very unrealistic models for the Internet,
they provide a baseline for evaluation of results with other models. Similarly, random graphs with
prescribed degree distribution make it possible to focus on this specific and important property.
Other listed models are more complex but also more representative, enabling in turn to capture
more subtle Internet topology-related features.

In addition to these topologies, EULER has a special interest in dynamic topologies. Several
of the Internet maps described above have been collected for years, and so capture some kind
of dynamics. In particular, RouteViews and Radar data capture this dynamics at a rather high
frequency, below one day or even one hour. In addition to this real data, in a way similar to
what we do with static topologies, we model the dynamics of topology in a way which maps the
observations from measurements and in ways which allow us to study the impact of dynamic
features on our experimentations.

We consider in particular models capturing the following dynamics:

e load balancing, i.e. routers which forward traffic towards a given destination over several
paths in order to distribute their incoming load,

e congestion-induced routing changes, such capability requires to enhance the routing path
computation with traffic-driven processes (e.g. monitor the traffic rate per unit of time per
routing path)

e link and node failures modeled by their (temporary) removal from the network,
e link switch, consisting in replacing two links a — —b and ¢ — —d by links a — —c and b — —d.

In a measurement-based approach, such dynamics are tuned in a way which fits real-world obser-
vations; in a more exploratory way, we make experiments with wide variety of parameter values
in order to gain insight on their impact on observations.

5See deliverable D3.2 for more details on each model and deliverable D3.1 for a comparative study of the
weaknesses and strengths of each model.

24

Figure 3.1: Inter-AS vs intra-AS router control configuration in BGP

3.2 Network partitioning and addressing

The formal topology description in terms graphs comprising edges and vertices is not sufficient
as input for the experimentation in the context of Task T4.3. The EULER-designed routing
schemes intend to provide an alternative to the BGP-based inter-AS routing which distributes and
maintains the required information to ensure the reachability of/connectivity to IP (sub)networks
from remote end-hosts/terminals.

The nodes of the graph on which BGP routing operates are ASes. At the time of writing
this document, the size of this topology is of the order of 40K ASes. An AS can be seen as an
abstract node consisting itself of a router topology modeled as a graph and that may comprise up
to thousands of nodes. Only a limited number edge routers participate in the inter-AS routing
of BGP. Within a given AS, edge routers operate such that other ASes are not informed about
the internal structure of that AS (note that from some traffic engineering attributes of BGP such
as the Multi-Exit Discriminator (MED) one may derive the behaviour of routing paths crossing
neighboring ASes). In the context of BGP, one distinguishes between iBGP for intra-AS routing
exchanges between BGP routers located at the edge of a given AS, and eBGP for routing exchanges
between BGP routers belonging to different ASes (see Figure 3.1).

In the context of EULER experimentation (Task T4.3), the designed routing schemes are
evaluated against BGP on the following aspects for what concerns network partitioning in AS and
IP addressing space segmentation in (sub)networks:

1. The evaluation of mechanisms which are responsible for the distribution of host/IP
(sub)network connectivity (i.e., reachability)

2. The evaluation of mechanisms responsible for intra-AS control activity

3. The evaluation of AS partitioning mechanisms (in order to determine how many logical
routing levels an alternative routing scheme would have to support).

Besides a suitable mapping of graph nodes to ASes, adequate IP addresses need to be assigned
to graph nodes, and subnets need to be associated to graph nodes (and subgraphs). Whereas for
some existing topologies (such as the CAIDA network topology), some of these details might be
known, for synthetically generated topologies, this information needs to be generated. For this
reason, scripts can be developed, as mentioned in Section 4.4.2.1.

3.3 Traffic

Once a topology has been determined, and addresses (i.e., locators) have been assigned, what we
have basically is a addressable network topology: a network infrastructure without traffic between
hosts/terminals attached to the network. The last step towards running experiments therefore is
to model traffic demand to be routed in the network.

Modeling traffic demand is a challenging task, for which current state-of-the-art is relatively
poor (as compared to modeling of topology or routing schemes, for instance). In most cases,
experiments only consider the very simple scenarios where one node sends traffic to all other

25

nodes, and where all nodes send traffic to all others. We will consider these scenarios as baselines
for our traffic demand modeling, and we develop in EULER a measurement-based approach aimed
at better capturing the features of real traffic.

First notice that file exchanges between Internet users nowadays contribute for a great fraction
of all Internet traffic, typically more than half of it. Thanks to our measurements of exchanges in a
large-scale P2P system, we have deep insight on such exchanges among millions of users, involving
millions of files: we know which peers seek which files and when, and we also know which other
peers provided them to the seeking peers. Based on this data, we design models of file spreadings
among users of a P2P system in order to capture the main features of the induced traffic demand.
Thanks to these models, we are able to generate traffic much more realistic than previously, and
use it in simulations in our global framework (topology and routing).

Our measurement-based traffic models therefore typically consists in file exchanges between
Internet users which mimic offer and demand encountered in a large P2P system. They consist
in file spreadings among users (nodes in the network) based on simple spreading mechanisms
tuned to fit real-world observations. Such models, detailed in the next chapter, generate lists of
exchanges between users that the network has to route. Although this is not fully realistic, it is by
far more realistic than current approaches and it is a good complement to one-to-all and all-to-all
experiments.

3.4 Specific scenarios

3.4.1 Stress test of a router

Several network conditions can introduce stress to the network and individual network nodes. A
network node comprises functionality to receive packets, process them, and to transmit them on
an outgoing interface. Buffering is used at the incoming and outgoing interfaces to avoid dropping
packets while they wait to be processed by an entity having limited capacity.

The forwarding process introduces delay, measure by the difference between the packet arrival
time in a router and the packet departure time. This delay can change under changing network
conditions. When a router needs to process heavy bursts of network traffic (high number of
packets within short time frame), buffers can filled up, resulting in dropped packets (packet loss)
and increased delay for the packets that aren’t dropped.

Therefore, as part of the experimentation of the forwarding plane, an experiment will be
performed to characterize the correlation between the load a router is experiencing for given
configuration of buffer sizes, and the introduced delay and packet loss. Increasing the traffic load
(in Mbps) to levels which are close to, or even above the routers capacity is a meaningful stress
test for characterizing the traffic sensitivity of a router.

The stress test of a router can be accomplished by wiring all interfaces of the tested router to a
device which is able to produce and receive network traffic and measure the resulting delay, packet
loss and other related metrics. The latter device can either be professional testing equipment, or
a modified software router with sufficient capacity and measurement capabilities installed.

26

number of interfaces

ouT

processing time

forwarding delay

1 S

T
packet arrival

27

T >
time
packet departure

Figure 3.2: Forwarding delay of a router

28

Chapter 4

Tools

EULER experiments use a large variety of simulation and emulation tools, which we describe
in this section. We grouped them into three categories: simulation tools/platforms, emulation
tools/platforms, and other experimentation support tools.

In each of these sections, we listed tools/platforms by decreasing order of importance or gen-
erality. All tools/platforms are fully documented and provided in deliverable D4.3.

4.1 Simulation tools/platforms

4.1.1 DRMSim, a network simulator for the investigation of routing
schemes

The objective of DRMSim is to provide a routing model simulator to the scientific networking
community. DRMSim does not aim at performing accurate simulations at the forwarding level.
Instead it focuses on the underlying routing layer itself, by exposing a clear and dedicated Appli-
cation Programming Interface (API) to its users. In other words, it is devoted to the construction
of routing tables and so to the evaluation of the behavior and performances of various distributed
routing schemes (performance metrics are: stretch, size of routing tables, number of messages,
adaptivity to topological modifications, etc.). Simulations are modeled according to the discrete-
event paradigm.

Many researchers willing to conduct experimentations on the routing layer opt for widespread
solutions like ns-2, OMNet++, etc. However, these protocol simulators do not permit easy access
to their routing models since they are designed to provide reasonable accuracy of the physical
layer, and maximum accuracy of the MAC protocols. The induced cost for achieving accuracy
has a negative impact on the overall performance of their simulation engines. The DRMSim
routing model for physical and MAC layer is designed as a compromise between performance
and detail. In particular, performance is always prioritized as long as the routing models are
respected. Therefore, DRMSim enables its users to conduct simulations on large network instances
that cannot be handled by other simulators. In particular, when coupled with the Grph library
(see Section 4.1.2, page 30), it enables the simulation of networks composed of more than 10000
nodes. Also, its API makes it easier the experimentation of novel routing schemes in the team
under various scenario including dynamic evolution of the topology and of the routing policies.

Up to now, DRMSim is primarily targeted to the FP7 STREP EULER project partners.
However, as soon as it will have reached a higher level of maturity, it will be made available to a
larger scientific community. To this end, DRMSim is already distributed under the terms defined
by the General Public License GPLv3.

DRMSim is entirely written in Java, but it relies on the Grph library which runs pieces of
native code (often C code compiled on-the-fly). The core of DRMSim consists of about 60,000
lines of code. The development of DRMSim has been done in collaboration between Alcatel-Lucent

29

Bell (ALB) and INRIA. Preliminary experiments showing the possibilities of DRMSim have been
presented in [HPTM10].

References.

HPTM10 L. Hogie, D. Papadimitriou, I. Tahiri, and F. Majorczyk, Simulating routing schemes
on large-scale topologies, Proceedings of 24th ACM/IEEE/SCS Workshop on Principles of
Advanced and Distributed Simulation (PADS), Atlanta (GA), United States, pages 8p, May
2010.

DRMSim web site: http://www-sop.inria.fr/mascotte/projets/DCR/

DRMSim source code: available at https:gforge.inria.fr/projects/drmsim/

4.1.2 Grph, an efficient portable graph library tailored to network sim-
ulation and graph analysis

In the context of the EULER project, we have been developing a suitable graph library for conduct-
ing numerical and statistical analysis of graph topological properties, in collaboration with task
T3.1. This graph library, called Grph, is also used by DRMSim as a support for routing scheme
to evaluate topological properties that could facilitate routing. Also, this library will continuously
been extended according the requirements of tasks T2.2, T3.1, and T3.3.

The main objective of Grph is to provide researchers and engineers a suitable graph library for
graph algorithms experimentation and network simulation. Grph is mainly a software library, but
it also comes with a set of executable files for user interaction and graph format conversion; as
such, it can be used autonomously. Performance and accessibility are the primary targets of the
Grph library. At every stage, it is designed to be efficient, both in terms of computation time and
in terms of memory requirements. Its model considers mixed graphs composed of (un)directed
simple- and hyper-edges. It allows to handle large dynamic graphs in the order of millions of
nodes. Grph comes with a collection of base graph algorithms which is regularly augmented.

Grph uses the inherent parallelism of multi-core processors and multi-processor computers
whenever possible, and performs caching of the results of graph algorithms in order to avoid re-
computation (this is particularly useful in the context of network simulation). Grph integrates a
bridge to native code (libraries or external applications) which allows the implementation of critical
algorithms in C/C++. In order to provide this bridge, Grph resorts to on-the-fly compilation.
Additionally, it provides a console-based interactive interface (shell), making experimentation more
accessible.

So far, most known users of the Grph library are part of INRIA and part of the EULER project.
Grph is distributed under the terms of a license defined by its contributors and is available for
download. This license allows free usage and access to the source code. See http://www-sop.
inria.fr/mascotte/software/grph.

Grph enables its users to conduct experiments on large graph instances that cannot be directly
processed in Java. In particular, it enables the creation and manipulation of graph instances
composed of several millions of nodes. Most researchers and engineers willing to deal with graphs
from a programming point of view resort to JUNG or JGraphT (Java), to Boost (C++) or Sage
(Python). Because of its implementation language, Grph is in direct competition with JUNG
and JGraphT; these projects were very active in the past but exhibit very low activity during
the last two years (i.e., no new release and almost no traffic on their mailing-list). In addition,
a number of tools for statistics as well as for the computation of distributions, linear regressions,
power-law exponents, etc. are also provided. A detailed list of algorithms is available at http:
//www-sop.inria.fr/members/Luc.Hogie/grph/grph-algos.pdf.

Our current and future plans include the design and development of a framework for the
distribution of computational-intensive graph algorithms across a farm of servers as well as the
addition of new property tests. These include bridging-centrality, localized bridging-centrality,
group betweenness, vertex cover, growth, and hyperbolicity (exact, approximate, and heuristic

30

http://www-sop.inria.fr/mascotte/projets/DCR/
https:gforge.inria.fr/projects/drmsim/
http://www-sop.inria.fr/mascotte/software/grph
http://www-sop.inria.fr/mascotte/software/grph
http://www-sop.inria.fr/members/Luc.Hogie/grph/grph-algos.pdf
http://www-sop.inria.fr/members/Luc.Hogie/grph/grph-algos.pdf

algorithms). A preliminary implementation is already available but further algorithmic improve-
ments are sought.

4.1.3 Generation of dynamic routing trees / Internet dynamics on ar-
tificial graphs

The Internet is a living system that evolves in time. Everyday, many nodes and links are added or
removed, during planned maintenance or because of unexpected network failures. It is important
to map the Internet topology, it is equally or even more important to understand its dynamics.
The goal of our research is to study the dynamics of the Internet. We focus on the dynamics
of the IP-level routing topology around a single node. We first measure this topology using
our traceroute-like measurement tool: tracetree. We periodically probed the route to several
destinations from a single monitor in the Internet. This results in a series of routing trees which
represent different ego-centered views of the routing topology around the monitor. Then, we
analyze the resulting data to identify relevant behaviors that characterize the dynamics. Finally,
we propose a model whose initial goal is explanatory.

Our model reproduces on artificial graphs the measurements performed on the Internet. We
represents the Internet IP-level topology as an artificial graph G = (V, E), where vertices corre-
spond to IP addresses and edges correspond to the IP-level links between two IP addresses. It
incorporates four ingredients: the routing topology, the routes from the monitor to the destina-
tions in this topology, load balancing, and routing modifications. For modeling each ingredient, we
try to make the simplest choice possible, our goal being to obtain a baseline model which makes it
possible to investigate the role of each component, and to which future and more realistic models
should be compared. It follows the steps below :

1. First, generate an artificial graph G and set ¢ to 0.

2. From G;, randomly select one node as the monitor and d nodes as the destinations (d is
given).

3. From G;, extract a routing tree T; from the monitor towards the d destinations.
4. Add s changes to the topology of the graph G;, which produces the graph G;1.

5. Repeat steps 2, 3 and 4, thus obtaining a series of trees Ty, T1, T3, ... that simulates periodic
tracetree measurements.

This process generates a series of trees Ty, 11, Ts, ... that simulates periodic tracetree mea-
surements, on which we can conduct similar analysis as those we performed on real data.

4.1.3.1 Graph generation

The first step of the simulation is to generate the network graph. Let G = (V, E) be an undirected
and unweighted graph with V' as the set of vertices (|[V| = n) and E, the set of edges (|E| = m).
Different proposals for the topology of G can be used, such as regular topologies, realistic network
topologies or randomly generated topologies. In our work, we test simple random graphs, like
Erdos-Rényi and power-law graphs. It is well known that these graph models may not reflect
the reality of a network. However, its a good starting point for our work because it is simple to
understand and to analyze.

4.1.3.2 Routing strategy

The result of a tracetree measurement from one monitor to many destinations is a routing tree.
In our simulation, we assume that it is a routing tree of shortest paths between the monitor and
the destinations. Several strategies may exist to compute shortest paths in a graph, we implement
and test two of them, which we call (a) the source-routing (b) and the hop-by-hop model.

31

The source-routing: this model assumes that the monitor knows all the shortest paths
through a given destination. Therefore, the monitor makes the choice of one shortest path among
the other. As a result, for each destination, every shortest path has the same probability to be
picked.

The hop-by-hop: This model tries to mimic the behavior of real routers on the Internet.
Usually to route data, Internet routers search in their routing tables the closest neighbors to des-
tinations and send them the data. Therefore, our hop-by-hop model does not choose a shortest
path, instead it chooses a node. Each node on the shortest path has to choose one of its neighbor.
A straightforward process to implement this model between a single monitor and a given set of
destinations is the following (1) Extract all shortest paths between the monitor and each destina-
tion; (2) For each destination, traverse all existing shortest paths to fill the routing table of each
node with the appropriate neighbor; (3) Build a routing tree on top of the resulting subgraph of
shortest paths. We build routing tree in the same principle as tracetree. Each routing path is
traversed from the destination to the monitor. The traversal is interrupted when we reach a node
that is already in the tree. During our experiment, we find this process highly resource consuming
because we have to do many traversals of the tree; specially for large graphs (more than 500,000
and 1,000, 000 nodes). We improve our implementation by performing a simple breadth-first search
(BFS) from the monitor towards the destinations and then, by removing all branches that do not
lead to the destinations

4.1.3.3 Network changes

In the final step, we model how the Internet evolves during time. While probing the Internet
with active measurements, it appears that the path from the monitor towards a given destination
may not be the same at different rounds. Previous studies already highlights many factors behind
the dynamics of Internet paths, some of them being load balancing and route evolution. The
dynamics in Internet may be observable on its topology or on the routing. For instance, load
balancing along different paths materialize routing dynamics.

At first, in order to simulate load balancing, each node chooses at random the next node on
a shortest path to the destination, and we therefore implement a random BFS. It generates a
shortest-path tree from the monitor to the destinations by considering the neighbors of explored
nodes in a random order. These routing trees will therefore be different from one random BFS to
the next, even if the underlying graph does not change.

Second, in order to account for route evolution, we propose to rely on simple graph modifica-
tions that can affect the shortest paths. We use a simple approach based on link rewiring. Given
our graph G = (V, E), we test the two following approaches for link rewiring.

Link swap. It consists in choosing uniformly at random two links (u,v) and (x,y)! and swap
their extremities, i.e. replace them by (u,y) and (z,v). This approach has a the main interest
that it conserves the degree distribution of all nodes in G. This features is particularly important
when analyzing the dynamics of graphs with specific degree distribution. For instance, ensures
that, when running the simulation on a power-law graph for example, we still end up with a power
law graph at each round(improve).

link removal. Another approach for graph rewiring is to simply remove a link (z,y) at
random, and then create a new link (u,v) between two nodes u and v chosen at random. This
procedure may not conserve the degree distribution of the initial graph. To do so, we can choose
nodes x and y such their degree are the same as the nodes u and v, respectively. We implement
both variants of this model in our code.

1We choose them such that the four nodes are distinct.

32

4.2 Generation of P2P traffic demand / Epidemic Spread-
ing Simulation

Diffusion phenomena are ubiquitous in complex networks, for example: the spread of virus on
contact networks, gossip on social networks and files in peer-to-peer (P2P) networks. In these
contexts, epidemiological models have established themselves as reference in the study of informa-
tion spreading. In particular the SIR model is a standard choice since it is a model based upon
few assumptions and can be characterized with one parameter, namely the spreading probability
p. In our study of real file spreading in P2P networks, we have decided to simulate file spreadings
and compare them with real data to assess the pertinence of this model. More precisely, we have
estimated the spreading probability assuming the real data was generated by this model — to cal-
ibrate the model — and than we have performed the simulations. To do so, we have implemented
a simple, discrete-time version of the standard SIR model as follows.

Given a network, represented by a graph, each file spreading corresponds to an independent
epidemic in the graph, in which each node is in one of the following states: susceptible, infected
or non-interacting (sometimes denoted remowved, hence the acronym SIR). Susceptible nodes do
not possess the file and may receive it from an infected node, thus becoming infected. Infected
nodes, in turn, spread the file to each of its neighbors, independently, with probability p and
become promptly non-interacting thereafter. Although non-interacting nodes remain in this state,
infected nodes may unsuccessfully try to infect them sending the file. In this setting, the simulation
inputs for each file spreading are:

e A spreading parameter p € [0, 1]

e An underlying network represented by a graph G = (V, E)

e A list of initial providers (nodes which possessed the file at ¢ = 0)
e A simulation bound (on time or on the number of infected nodes)

The simulation proceeds as follows: for each file F', we begin with the initial providers in an
infected state and the other nodes in a susceptible state. At each step, infected nodes will infect
each of its neighbors with probability p, becoming non-interacting afterwards. The epidemic
continues as long as there are active infected nodes and as long as the simulation bound is not
attained. The simulation output will be a list of spreading events, each represented by the following
4-tuplet: (t P C' F), where t > 0 is a timestamp, and the other three integers are unique ids for
provider P € V, client C' € V, and transmitted file, F'. In other words, each entry in the output
trace corresponds to a transmission of F' by P to C' at time t.

The artificial spreading trace generated by the simulation can be compared to the real trace,
typically in terms of the number of infected nodes, and the maximum number of hops a file has
done from its original source to the final destination. In fact from these traces it is possible to
build a spreading cascade which is a directed graph capturing several quantitative and qualitative
features of the diffusion. These cascades are the current focus of our study on real information
diffusion.

4.2.1 Python-based simulator for greedy routing in the hyperbolic plane

IBBT developed a custom simulation environment in Python/C++ in support for greedy routing,
having the following functionality:

e generation, loading and storing of network graphs
e implementation of several spanning tree algorithms for large graphs

e functionality to determine coordinates in the Hyperbolic plane (Poincare disk) for nodes in
a graph, based on a spanning tree (greedy embedding in the hyperbolic plane)

33

functionality to determine coordinates using arbitrary precision

functionality to determine tree coordinates for nodes in a graph, based on a spanning tree
(greedy embedding in a regular tree)

failure evaluation and recovery mechanisms to evalute the robustness of embeddings

e functionality to evaluate the performance of several embeddings with respect the path length
(stretch)

e functionality to simulate the distributed behavior of spanning tree algorithms

The graph-based algorithms were implemented on top of the existing Networkx-library, and
numerical algorithms were built using the scientific packages Numpy and Scipy. Some parts of the
code were optimized in C++ (either Cython or Weave) to allow for large scale network simulations.
The evaluation of multiple floating point precision values was performed using the GNU MPFR C
library developed by INRIA. The distributed simulation is based on the simulation functionality
of the SimPy.

4.3 Emulation tools/platforms
4.3.1 Click Modular Router

FromDevice 1—4 Null 4—-' [b Nl > ToDevice

receive ___push(p)
packet p — e | '-P-t}ff]'f{_j::}_
return ___ ™ enqueue p
returh e

- Eﬂ.kll 0) . ready to

E,ull{} e transmit

dequene p a——"""
a0 . Teturnp

and return it ——np _returm

T send p

Figure 4.1: Click Element chain

The CLICK Modular Router is an open source platform developed in C++ that allows to let a
Linux PC to act as a configurable router or switch. Therefore it is often referred as an emulation
platform. The Click architecture is built in a modular way, such that the configuration of a router
or switch boils down to the interconnection of a chain of connected modules, or elements which
process packets or frames. The interconnection of the elements, which enables packet hand off
between the different elements, is defined in what is called a click script. Elements can be of two
types: push and pull. In push elements, frames are initiated by the source and pushed downstream,
whereas in pull elements the trigger comes from the sink which pulls packets into its direction.
Another aspect of elements is that they can have several incoming and outgoing such as to receive
and send frames from and to different other elements. Finally elements can be configured through
configuration strings at the moment their interconnection is defined in a click script. Once the
click-script has been defined and started, elements can still be accessed or reconfigured through
the use of handlers, which are a type of Unix sockets through which certain attributes at C++
class level can be tweaked.

The framework has a lot of pre-built elements, for examples for classification, queuing or even
elements which perform Ethernet specific functions such as Spanning Tree control or a act as
Ethernet learning switch. Besides pre-built elements, Click can be extended with custom made

34

elements in C++. As the example below will illustrate, special elements called FromDevice and
ToDevice are elements which enable to capture and send packets or frames to the standard Ethernet
interfaces in Linux. The configuration of a click router or switch can be represented as a graph.
In the next example the basic configuration of a simplified IEEE 802.1d bridge is shown. The
typical packet flow, starting at the point of arrival from one of the Ethernet interfaces, is that
it first undergoes a classification such as to distinguish between control and data plane frames,
the first class is processed by the spanning tree element, the second class goes through a learning
switch (Etherswitch). Before and after the learning elements called suppressors are used, such as
to force that certain ports are blocked as a result of the spanning tree (this is also the reason why
these elements are referenced in the configuration of the STP element).

Click has also proven to reach acceptable performance numbers, for example the paper ;93; Mea-
suring Clickj92;s Forwarding Performancej94; by Felipe Huici has shown that a router running
Click on commodity hardware can forward at rates of hundreds of Mbps even for minimum-sized
packets. More specifically, an Opteron 2.0GHz computer with 2GB of memory and Intel Pro
1000MT Server adapters with polling drivers can forward at rates of as much as 361 Mbps, largely
outperforming Linux native forwarding rates of approximately 265 Mbps under the same setup.

FromDevice(eth0) | | FromDevice(ethl)
¥ ¥

Classifier(...) Classtfier(...)
802.1d other 802.1d other

\
s1 :: Suppressor

|
. 2

@ v
| EtherSpanTree(s) | Et erSwztc
-,/ o
| ToDevice(eth0) | | ToDevice(ethl)

Figure 4.2: An Ethernet switch implemented in Click

There are currently two drivers that can run Click router configurations, a Linux in-kernel
driver and a user-level driver that communicates with the network using Berkeley packet filters
[McCanne and Jacobson 1993] or a similar packet socket mechanism. The user-level driver is most
useful for profiling and debugging, while the in-kernel driver is good for production work.

One of the advantages of the Click platform is that click configurations can not only be used for
emulation purposes, but also for simulation goals in combination with ns2. This setup, typically
referred to as nsclick, can make use of several click nodes in a ns2 simulation test.

4.3.2 Quagga

Quagga is an open-source routing protocol suite providing implementations of different IP proto-
cols such as Open Shortest Path First (OSPF), Routing Information Protocol (RIP) and Border
Gateway Protocol (BGP). The software is developed in C and it is available for UNIX platforms,
in particular Linux, Solaris and BSD.

The Quagga architecture consists of a core module (i.e., zebra), which acts as an abstraction
layer to the UNIX kernel, and a set of client modules each one corresponding to the implementation

35

of a specific routing protocol. Hence, the zebra module provides an API through which overlying
routing protocol modules can access to the kernel routing table and network interfaces (Figure 4.3).

ripd New protocol

Unix kernel routing table / interfaces

Figure 4.3: Quagga architecture: the zebra daemon (zebrad) interfaces the client routing protocol
daemons (bgpd, ospfd and ripd) with the Unix kernel. New client protocol daemons can easily be
incorporated in the architecture.

During bootstrap, the zebra daemon is started first and the desired routing protocol/s dae-
mon/s is/are started afterwards. In this way, zebra is able to interface the communication between
the routing daemons and the kernel, thus providing access to the routing table and network in-
terfaces. For configuration, all daemons in Quagga are equipped with a command-line interface,
which follows a CISCO 10S-like syntax. Alternatively, a pre-defined configuration file can also be
used.

Quagga provides an implementation of OSPF in its versions 2 and 3, which fulfill the standard
specifications defined in [RFC2328] and [RFC2740], respectively. While OSPFv2 is the standard
version for IPv4, version 3 is the OSPF implementation for IPv6. Standard compliant imple-
mentations of RIPvl [RFC1058], RIPv2 [RFC2453] and the RIP version for IPv6 (i.e., RIPng
[RFC2080]) are also provided in the platform. The BGP-4 implementation of Quagga follows the
specifications in [RFC4271]. Furthermore, this implementation incorporates the multi-protocol
extensions defined in [RFC4760] in support of multicast and IPv6. Specifically, the Subsequent
Address Family Identifier field defined in [RFCA4760] contains the Network Layer Reachability
Information (NRLI) used for multicast forwarding.

The Quagga software contains a rich development library to facilitate the implementation
of protocol/client modules, coherent in configuration and administrative behavior. This library
includes a set of implemented structures for easy data management (such as lists, hash tables,
etc.), different structures to develop socket-based communications rapidly (IP, UDP or TCP) and
a module to facilitate the implementation of finite state machines, which are the basic elements
necessary to develop any routing protocol.

4.4 Other Experimentation support tools

4.4.1 Sage

Sage (see http://www.sagemath.org) aims to provide the arsenal mathematicians, researchers,
and students need in order to perform calculations. The basic concept is to combine the power
of many established software packages under a common Python-based interface. Even more than
that, it provides powerful and unique algorithms in its own library. The mission of Sage is to
create a viable free open source alternative to Magma, Maple, Mathematica, and Matlab.

EULER’s interest in Sage comes from the combination of a large collection of state-of-the-
art graph algorithms, including bridges with NetworkX (see http://networkx.lanl.gov/), a
collection of algebra computation algorithms, and a simple interface with main linear programming
solvers (GLPK, CBC, CPLEX, Gorubi). We use it both for research and educational purposes.

Sage was initially targeted to mathematicians and has now extended to a large community. It
is used in computer science (e.g., algorithmics, combinatorics, graph theory, geometry, etc.) and in
education. It is freely available and distributed under the General Public License. The community
of users is large and distributions are downloaded approximately 6500 times per month. The
communities of both users and developers are animated through mailing-lists (about 50 messages
per day for the developers community) and periodic workshops gathering developers and main
users.

Through its large library of algorithms and user-interface, Sage constitutes an advance in the
field of graph algorithms experimentation. By providing high-level building blocks, it facilitates
the implementation of complex graph algorithms, thus allowing for rapidly testing a hypothe-
sis. Furthermore, Sage allows for sharing the effort of optimizing the implementation among a
community (e.g., one may propose a faster implementation of an existing algorithm).

Sage is mainly written in Python, Cython, and C by a worldwide community of developers
(180 contributors for version 4.7.2 released on 2011-10-29, including 3 members of INRIA). It
has around 300MB of source code. The user interface is in Python which makes it intuitive
for beginners, while advanced users can also use Cython and C for implementing or optimizing
demanding algorithms.

INRIA members have already contributed to more than 100 graph algorithms, added inter-
faces to specific linear programming solvers, and actively contributed to the improvement of the
documentation. In particular, Nathann Cohen (former Ph.D. student of INRIA) wrote tutorials
on graph theory and on linear programming in Sage, and he contributed to the French translation
of the book entitled “A tour of Sage”.

Sage provides a set of algorithms for generating graphs and testing properties. An updated
list of available topology generators and property tests is documented in the online reference
manual of Sage (http://www.sagemath.org/doc/reference/sage/graphs/graph.html), and a
list of graph theory software included in or interfaced with Sage is documented at http://wiki.
sagemath.org/graph_survey.

However, one should be aware of Sage’s limitations. In particular, the data structures chosen
for simplifying both the implementation in Python and the ease of use (especially for beginners) are
not fully optimized. Consequently, the memory consumption could be quite large, and some basic
operations are slow compared to other software (e.g., the Grph software presented in Chapter 4.1.2
page 30). Furthermore, the size of graphs that can be manipulated with Sage is currently limited
to 65535 (216 — 1) nodes. The main argument for this limitation is that the computation time of
quadratic (or more) algorithms on larger graphs is enormous and requires a careful control of the
memory usage. Also, one should prefer a dedicated implementation in C.

Within our current and future plans, in collaboration with task T3.1, we aim at contributing to
Sage by proposing our implementation of some missing topology property tests and new random
graph generators for inclusion into future releases of Sage. This effort is also relevant in the context
of the dissemination of the EULER’s algorithmic results to a broader audience.

37

http://www.sagemath.org
http://networkx.lanl.gov/
http://www.sagemath.org/doc/reference/sage/graphs/graph.html
http://wiki.sagemath.org/graph_survey
http://wiki.sagemath.org/graph_survey

4.4.2 Experimentation support tools
4.4.2.1 AS-numbering and IP-addressing information generation

In order to perform emulation-based routing experimentation on a graph which only consists of
node- and link descriptions, a tool needs to be developed to generate AS names, IP addresses
and IP address ranges connectivity in relation to the graph’s nodes. A Python-based tool will be
implemented to generate this data based on a text file containing the graph topology in terms of
links and nodes.

4.4.2.2 Configuration of virtual experiment topologies

Given the limited number of physical nodes (about 100) on the testbed infrastructure of EULER
(ilab.t), virtualization techniques will be needed to emulate topologies having thousands of nodes,
in order to experiment realistic network scenario’s in the context of inter-AS routing.

In order to maximize the number of emulated routers on a given physical testbed node, network
namespaces and Linux containers (LXC?) will be used as virtualization technology. The network
namespace’ is a private set of network resources assigned to one or several processes. These have
their own set of network devices, IP addresses, routes, sockets and so on. Other processes outside
of the namespace cannot access these network resources, neither know they exist.

That allows:

e virtualization : the processes inside the network namespaces do not know anything about
the network resources outside the namespace and use the resources without conflicting with
other network namespaces. For example:

— several network namespaces can have ethO and lo network devices.

— several apache servers listening on *:80 can be launched into different network names-
paces.

e isolation : the processes cannot access to the network resources which are outside the names-
pace. For example:

— a process cannot sniff traffic related to another network namespace.

— a process cannot shutdown an interface belonging to another network namespace.

The above virtualization technology allows to emulate tens to hundred* routers on a single
physical testbed node.

A configuration tool is under development to deploy larger scale experiments on the virtual
wall relying on LXC technology. Given a topological description, its related addressing, software
and its configuration, the tool targets to automatically generate and execute virtualized network
environments mapping to the topology given as input.

4.4.2.3 Experiment execution script support

Once the virtualized experimental testbed has be deployed, the real experiment can be started. The
latter involves the evaluation of the implemented routing schemes with respect to their performance
metrics as described in D4.1 under dynamically changing network conditions. For the purpose of
reproduceability, experiment scripts will be used, as started from the control node (see Section
2.3.1).

The experiment script hardcodes the roadmap of the experiment in terms of: software to
start and stop, topology dynamics, network traffic generation, wait instructions, logging actions

2http://Ixc.sourceforge.net /

3description taken from the referred website

4using OLSR daemons, in the context of EULER, detailed scalability of this technology still needs to be evaluated
with respect to Quagga router software

38

to be made, etc. The experiment script can rely on UNIX batch scripting, Python scripts or
OMF?®-based control.

Shttp://mytestbed.net/

39

40

Chapter 5

Conclusion

This deliverable documents the experimental systematic methodology that will be applied, the
representative scenario that will be used, and the tools that will be executed to i) experiment the
routing schemes developed in WP2, ii) evaluate their functionality and performance, and iii) com-
pare their functionality and performance, in particular against BGP routing. These experiments
include both simulation and emulation on scenarios. These scenarios to become handful for rout-
ing experiments must at least comprise the specification of a topology and an addressing model.
Experiments involving traffic and thus the specification of traffic models, can be realized once
the routing scheme itself is experimentally validated but involve the development of a forwarding
model (in simulation experiments) and forwarding component (in emulation experiments).

As simulation and emulation experiments involve different levels of abstraction of the routing
process, the specification of the routing experiments themselves will be specifically documented
in Deliverable D3.5 and Deliverable D4.5. By keeping these scenarios independent of the type of
experiment (simulation vs emulation), the EULER project aims at exploiting their complemen-
tarity.

EULER simulation and emulation experiments will also use a large variety of simulation and
emulation tools. For this purpose we have grouped them into three categories (simulation tool-
s/platforms, emulation tools/platforms, and other experimentation support tools) and document
them by decreasing order of importance or generality. The specification/implementation of the
tools are further reported in deliverable D4.3.

41

	Introduction
	Experimental methodology
	General considerations
	Scenarios
	Choice of model parameters
	Size of simulations/emulations
	Performance evaluation
	Complementarity between simulation and emulation experiments

	Simulation methodology
	Simulation model
	Discrete Event Simulation (DES) Model
	Continuous Simulation Model

	Methodology
	Simulation Platform
	Positioning
	Description

	Emulation methodology
	Emulation platform
	Experiment workflow
	Experimental components
	Enabling experiment events and measurements

	Scenarios
	Topologies
	Network partitioning and addressing
	Traffic
	Specific scenarios
	Stress test of a router

	Tools
	Simulation tools/platforms
	DRMSim, a network simulator for the investigation of routing schemes
	Grph, an efficient portable graph library tailored to network simulation and graph analysis
	Generation of dynamic routing trees / Internet dynamics on artificial graphs
	Graph generation
	Routing strategy
	Network changes

	Generation of P2P traffic demand / Epidemic Spreading Simulation
	Python-based simulator for greedy routing in the hyperbolic plane

	Emulation tools/platforms
	Click Modular Router
	Quagga

	Other Experimentation support tools
	Sage
	Experimentation support tools
	AS-numbering and IP-addressing information generation
	Configuration of virtual experiment topologies
	Experiment execution script support

	Conclusion

