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D4.1 - Performance objectives, evaluation, criteria 
and metrics  

 

Executive Summary 
In the context of the EULER project, several routing models and algorithms 
applicable to the Internet will be developed and designed. The range of 
routing paradigms that the project will investigate is relatively large; it 
covers a spectrum ranging from dynamic compact routing to greedy routing 
and its variants, e.g., updateful and updateless. Further, by relying on 
the results of investigations performed in WP3, these paradigms are 
expected to take benefit of the statistical and structural properties of 
the Internet topology and better characterization of its dynamics. 
Ultimately, the resulting routing paradigms would lead to distributed 
routing schemes that are specialized for the Internet while taking into 
account its dynamics and its continuous evolution. The aim of this document 
is to provide a common set of functional and performance objectives that 
each routing model and algorithm developed in the context of the EULER 
project shall meet. Next this document details the performance criteria to 
determine when a given routing scheme actually meets its objectives. It 
also details the performance metrics that will have to be measured either 
by simulation and/or by emulation in order to set the requirements on the 
corresponding measurement and scenario execution tools. Next, this document 
develops the experimental evaluation criteria and metrics will be exploited 
to determine and measure if the emulated routing protocol components that 
will be developed comply with both functional and performance objectives. 
Note that in order to consider such performance evaluation by emulation as 
scientifically valid, the experimental methodology shall lead to 
verifiable, reliable, repeatable and reproducible experimental results. 
Moreover, in order to perform verifiable and reliable experimental 
comparisons between the functionality and the performance offered by the 
different routing protocol components that will be emulated, we propose a 
framework to perform experimental comparison of routing protocols. Finally, 
this document concludes by detailing the requirements on the various tools 
that will be required to conduct the different validation, and verification 
phases of the routing schemes that will be developed in the context of the 
EULER project as well as the evaluation and analysis of their performance.  
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Structure of the Document 
This document is organized in three main sections. The first section 
(Section 2) details the objectives that the EULER project will realize in 
terms of functional evaluation and analysis. The second section (Section 3) 
considers the objectives in terms of the performance evaluation and 
analysis. The last section (Section 4), the objectives are explained in 
relation to experimental analysis (evaluation and comparison). Each of 
these parts details four elements: objectives, criteria, metrics, and 
comparison (when applicable). The performance evaluation and analysis will 
be conducted as part of task T2.2 (by means of formal verification methods) 
and as part of task T3.3 (by means of simulation using the simulation tools 
that task T4.2 will develop). The experimental evaluation and analysis will 
be conducted as part of task T4.3 by means of routing protocol component 
emulation and the measurement tools that task T4.2 will develop. 
 
The relationships between these tasks and the specification of the routing 
system architecture, the routing model(s), and the design of the 
corresponding algorithms (as part of the task T2.2 of WP2) are depicted in 
Fig.1-3. 
 
 
 

 

 

 
 
 
 

 

 

 



FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing 

Deliverable 4.1                                                        Page 6 / 39 

Terminology 
The following terms are used throughout this document: 
 
Architecture: the architecture of a distributed computational system is 
formally described by a set of function, objects/information, and state 
together with their behavior, structure, composition, relationships, and 
spatio-temporal distribution which characterize its domain of 
applicability. The specification of the associated functional, 
object/informational, and state models leads to an architectural model 
comprising a set of components (procedures, data structures, state 
machines, etc.), the description of their respective behavior and structure 
as well as the characterization of their interactions (messages, calls, 
etc.) describing their connection(s)/relation(s). 
 
(Design) Principles: suggests normative rules/guidelines on how a 
designer/an architect can best structure the various architectural 
components. Design principles also describe the fundamental and time 
invariant laws underlying the working of an engineered artifact. 
 
Pattern or scheme: refers to a set of models that are based on the same 
"principles" and thereby sharing the same essential and global 
characteristics as well as structuring/cohesive elements. 
 
Model: a model is formally defined as a systematic and logical description 
of complex system by means of a simplified abstract representation. In the 
present context the routing model comprises the procedural model together 
with its associated data model, state machine model, and the data 
communication model which characterizes the interactions and interfaces 
(i.e. messages, calls, events, etc.) between the elements of the model 
(i.e. procedures, data structures, state machines). 
 
Function: characteristic action (verb) a system performs to transform 
available inputs to the desired outputs. 
 
Procedure: method to perform a given task/action specified as a sequence of 
discrete steps (each step being a finite instruction or operation, finite 
meaning represented by a finite number of symbols) which have to be 
executed in a regular definite sequence in order to always obtain the same 
result under the same conditions. Note that in the routing system modeling 
context, procedures are devised as sequences of operations that the routing 
function is conjectured to perform as it processes routing information.  
 
Algorithm: consists of sequences of steps (operations, instructions, 
statements) for transforming inputs (pre-conditions) to outputs (post-
conditions). An algorithm provides the description of the effective 
computational procedures composing the procedural model. The pre-conditions 
(of the algorithm) provide the description of the inputs, including their 
types as well as any relationships or properties that they must satisfy 
before execution. The post-conditions (of the algorithm) provide the 
description of the outputs, including all relationships and properties that 
must be satisfied (after execution). 
 
Protocol: a set of procedures (together with their associated data 
structures and state machines) and message/data format. 
 
Functional analysis: In the early design phase, functional analysis refers 
to the systematic process of identifying, describing, and relating the 
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functions a system must perform (thus the functions that need to be 
included in the system) in order to meet its objectives. Functional 
analysis does not address how these functions will be performed. Functional 
analysis deals with i) the top-level functions that need to be performed by 
the system (identification), ii) where these functions need to be performed 
(distribution/space); iii) how often they need to be performed (time); iv) 
under what operational concept and environmental conditions. In the later 
design phase, functional analysis proceeds to lower levels of the system 
decomposition by defining the system functional design, its inputs/outputs, 
and its various interfaces. It then refers to a methodology part of the 
design process that systematically describes the automated processing that 
a complex system must perform to transform available inputs to the desired 
outputs.  
 
Performance analysis: consists in measuring (by means of well specified 
metrics), evaluating, and understanding system performance to decide (based 
on well defined criteria) if designed system meets its performance 
objectives. 
 
Sensitivity analysis: attempts to identify how responsive the results of an 
experimental model are to changes in its parameters: this is an important 
tool for achieving confidence in experimentation and making its results 
credible. The general goal of Sensitivity Analysis is to characterize, 
qualitatively or quantitatively, what impact on a system a particular 
variable will have if it differs from what was previously assumed. In other 
words, by using Sensitivity Analysis, the analyst/the modeler can determine 
how changes in one or several parameters will impact the target variable. 
 
Scientific validity: includes verifiability, reliability, repeatability and 
reproducibility. See definitions here below. 
 
Verifiability: an experiment is verifiable if the outcomes can be verified 
against a formal model, meaning they match models that describe the outcome 
as a function of the experiment input parameter. In the case of functional 
analysis, experiment flow and outcome match a prescribed list of actions 
and/or output. 
 
Reliability: reliability means that the experiment and outcome are valid 
for a certain time run. As a minimum requirement, this means that the 
components of the experiment remain functional (i.e., do not crash or break 
down) during this time period. Furthermore, results and outcomes are 
reliable if they remain consistent during that time period (within a 
certain well-defined range). 
 
Repeatability: the term repeatability is used when repeating the experiment 
within the same experimental scenario, i.e., same platform, experimental 
facility, input parameters, etc. The experiment is repeatable when 
different runs of the experiment (repetitions) yield the same outcome and 
results. Correct experimental methodology and usage of models, algorithms 
and output data processing is required in order to guarantee repeatability. 
 
Reproducibility: an experiment is reproducible when the same experiment can 
be reproduced in different experimental setups, e.g., different platforms, 
different experimental facilities. Typically, reproducibility comes into 
play when a third party performs the same experiment in order to verify 
scientific validity of the outcome and results of the experimental 
scenario. 
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1. Introduction 
 
In the context of the EULER project, several routing models and algorithms 
applicable to the Internet will be developed and designed. The range of 
routing paradigms that the project will investigate is relatively large; it 
covers a spectrum ranging from dynamic compact routing to greedy routing 
and its variants, e.g., updateful and updateless. Further, by relying on 
the results of investigations performed in WP3, these paradigms are 
expected to take benefit of the statistical and structural properties of 
the Internet topology and better characterization of its dynamics. 
Ultimately, the resulting routing paradigms would lead to distributed 
routing schemes that are specialized for the Internet while taking into 
account its dynamics and its continuous evolution.  
 
The aim of this document is to provide a common set of functional and 
performance objectives that each routing model and algorithm developed in 
the context of the EULER project shall meet. Indeed, over time sufficient 
experience has been acquired to devise the functionality any routing scheme 
should deliver and the performance objectives it is required to meet. Next 
this document details the performance criteria to determine when a given 
routing scheme actually meets its objectives. It also details the 
performance metrics that will have to be measured either by simulation 
and/or by emulation in order to set the requirements on the corresponding 
measurement tools. Indeed, simulation and emulation experiments serve 
different purposes but are also subject to different constraints. For 
instance, executing emulated routing protocol components on experimental 
facilities requires accounting for the physical limits of the facility in 
terms of, e.g., number of nodes, processing/CPU and memory available at 
each node, and number of links. Experimental evaluation criteria and 
metrics will be used to determine and measure if the emulated routing 
protocol components that will be developed comply with both functional and 
performance objectives. These experimental evaluation criteria and metrics 
drive an important part of the experimental work that will be conducted as 
part of this experimental project. Moreover, in order to perform fair and 
reliable experimental comparisons between the functionality and performance 
offered by the different routing protocol components that will be emulated, 
a section of this document is dedicated to the experimental comparison of 
different routing protocols. 
 
Finally, we conclude this deliverable by documenting the requirements on 
the various tools that will be required to conduct the different 
validation, and verification phases of the routing schemes that will be 
developed in the context of the EULER project as well as the evaluation and 
analysis of their performance.  
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2. Functional Evaluation and Analysis 
 
In the early design phase, functional analysis refers to the systematic 
process of identifying, describing, and relating the functions a system 
must perform (thus the functions that need to be included in the system) in 
order to meet its objectives. It does not address how these functions will 
be performed. Functional analysis deals with i) the top-level functions 
that need to be performed by the system (identification), ii) where these 
functions need to be performed (distribution/space); iii) how often they 
need to be performed (time); iv) under what operational concept and 
environmental conditions. 
 
The basic idea of functional analysis is that the system is viewed as 
computing a function (or, more generally, as solving an information 
processing problem). Following the definition provided by [Buede2000], a 
function is a transformation process that changes inputs into outputs. The 
system itself is modeled as a single, top-level function that can be 
decomposed into a hierarchy of subfunctions. The top-level function is 
partitioned into a set of subfunctions that use the same inputs and produce 
the same outputs as the top-level function. Functional analysis assumes 
that processing can be explained by iteratively decomposing the top-level 
complex function into a set of simpler functions (subfunctions) that are 
computed by an organized sub-system. Each of these subfunctions can then be 
partitioned further. The decomposition process continues until atomic 
functions are attained. Atomic functions are functions that by definition 
can not be further decomposed. The expectation is that when this type of 
decomposition is performed, the subfunctions taken individually will be 
simpler than the original functions.  
 
Classically, there are four elements to be addressed by functional analysis 
approach. The first one, the hierarchical decomposition of the top-level 
function into sub-functions enables to identify the functions that need to 
be performed by the routing system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Hierarchical decomposition of the routing functional area 
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2.1 Routing functionality 
 
Routing functionality is the combination of all functions that transform 
topology and/or routing information into routing paths that populates local 
routing tables. In turn, these entries steer the forwarding functionality. 
Typically, these functions are combined into a single component, referred 
to as the routing engine that comprises the following functions: 
 
The FCAPS acronym denotes the set of routing system management functions 
including Configuration management, Accounting/Administration, Performance 
management, and Security management. Being mainly routing scheme specific 
their usage will be considered on per-protocol basis. 
 
Discovery: 

• Local discovery (also referred to as neighbor discovery): 
functionality enabling the acquisition/dissemination of knowledge 
about the local environment (neighborhood) to local entities 
including local and remote interfaces (and their properties), 
incident links (and their properties), and nodes adjacent to 
incident links (and their properties). 

• Remote discovery (also referred to as network discovery): 
functionality enabling the acquisition/dissemination of knowledge 
about the non-local environment from/to remote entities including 
remote links/nodes, paths and/or distances to reachable 
destinations. 

 
Structuring of topology information units and/or routing information units: 

• Embedding: given metric spaces (X,dX) and (Y,dY), where dX and dY are 
distance function, a mapping function f: X → Y, x → y=f(x) is called 
an embedding. An embedding is called distance-preserving if for all 
x, y ∈ X, dX(x,y) = dY(f(x),f(y)). 

• Composition: production of combinations from topology and/or routing 
information units so as to build more complex topology and/or 
routing information units (called structures). 

• Mining: includes all functions enabling to find (hidden) 
relationships between routing and/or topology information units, 
features/properties and classes in these information units. 

 
Routing path resolution: 

• Computation: function applied to (structured) routing information 
units and/or (structured) topology information units to produce 
routing paths which can be used to derive routing table entries. 
Computation can be seen as the operation of finding the routing path 
that minimizes/maximizes a (multi-)constrained (multi-)objective 
function. Computation functions can be sub-divided into: 

o Global computation: for instance, application of the Dijkstra 
shortest-path tree algorithm on the entire link state topology 

o Incremental computation: by making use of the structure of the 
previously computed shortest-path tree, this approach 
minimizes the changes to the topology of an existing shortest-
path tree when some link states in the network have changed 

o Sequential computation: makes use of intermediate computation 
steps before computing routing paths to destinations 

• Selection: either by enforcing selection rules, by applying filters, 
or by multi-criteria decision on a set of routing information units 
(typically routing paths with associated attributes). By means of 
this processing, a limited number of routing paths is selected from 
which routing table entries can be derived. 
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Additional functions part of the routing functional area include 

• Transfer of routing table entries: a mechanism allowing to export 
the routing table entries towards the forwarding engine component  

• Trigger for renewal/update of the local routing states based on 
external or internal events.  

 
Associated functionality to the routing functional area can be classified 
as follows: 

• Identification: the functionality that assigns identifiers to nodes. 
These names can be either topology-dependent (locators) or topology-
independent (names); a locator can take the form of a label, a 
topology-dependent address or a coordinate. 

• Resolution: translation (or mapping) from the name of the 
destination to its associated locator. 

• Location: the functionality allowing destinations to be located by 
means of the resolution function. 
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3. Performance Evaluation and Analysis 
 
This section describes the performance objectives, criteria and metrics to 
be met by candidate routing models/algorithms. These performance criteria 
and metrics will drive the performance evaluation of the routing models and 
algorithms to be conducted in the context of the task 2.2 (by means of 
formal methods/techniques) and task T3.3 (by means of simulation). Indeed, 
tasks T2.2 and T3.3 shall be distinguished from the experimental analysis 
(comprising both evaluation and comparison) of routing protocol components 
that will be conducted by means of emulation/prototypes as part of task 
T4.3. 
 
This section also analyzes the fundamental and unavoidable trade-offs that 
exist between some of these performance criteria and metrics. This shall be 
taken into account when specifying routing procedures in context of task 
T2.1 and designing the corresponding algorithms in the context of task 
T2.2. For instance the memory space - routing path stretch tradeoff is at 
the inception of compact routing schemes.  
 
3.1 Performance Objectives 
 
This section details the performance objectives that the routing algorithms 
that will be designed in the context of WP2 task T2.2 shall meet. We 
recognize the fundamental tradeoffs that exist between these objectives. 
3.1.1 Scalability 
 
Definition: ability of a computational system (hardware or software) to 
continue to function (without making changes to the system) under 
satisfactory and well specified bounds, i.e., without affecting its 
performance, when its input is changed in size or volume or in their 
respective rate of variation. Examples include increasing number of 
nodes/AS, increasing number of links, increasing number of hosts/prefixes. 
 
Quantitative objective: the number of reachable nodes/hosts the routing 
scheme/model shall support should be of the order of 109. So, at least 3 
order of magnitudes higher than the current routing protocols such as 
Border Gateway Protocol (BGP) supports today (about 3.5 106). The number of 
Autonomous Systems (AS), which is approximately of the order of 3.5 104, 
should be able to scale up to 3.5 107. In proportion, each AS containing in 
average 10 nodes, the number of nodes to be supported should be of the 
order of 108. 
3.1.2 Complexity 
 
Definition: by complexity we refer here to the computational complexity and 
algorithmic complexity of the routing algorithm. 

• Computational complexity: a measure of the computational resources 
needed to solve computational problems. Computational resources are 
measured in terms of either time (i.e., number of elementary 
computational steps per second) or space (i.e., size of memory 
usually measured in bits or bytes) or some combination of the two. 

• Kolmogorov complexity (a.k.a. program-size complexity) a measure of 
complexity that quantifies how complex a system is in terms of the 
length of the shortest computer program, or set of algorithms, need 
to completely describe the system. In other terms, this measure of 
complexity qualifies how small a model of a given system is 
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necessary and sufficient to capture the essential patterns of that 
system. Formally, the Kolmogorov complexity of a string x is the 
length of the smallest program p that outputs x, relative to some 
model of computation. That is, Cf(x) = minp {|p| : f(p) = x} for some computer f;  Cf(x) is the minimal length of a program for f (without additional input) to compute the output x. This definition can be 
extended to account for the input string y by defining the 
conditional Kolmogorov complexity of a string x, relative to a 
string y and a model of computation f as Cf(x|y) = min{|p| : Cf(p,y) = x}. Cf(x|y) is the size of the minimal program for x when started with input y. 

 
Quantitative objective: the computation complexity (both in time and space) 
should grow sublinearly with the number of reachable nodes/prefixes. 
3.1.3 Routing Quality 
 
Definition: the quality of the routing paths as produced by the routing 
algorithm (both in stationary and non-stationary conditions) as determined 
by their stretch, stability, and convergence properties 
 
Quantitative objectives related to routing quality cover: 

• Path cost/length: Minimize the ratio between the cost/length of the 
routing path(s) as produced by the routing scheme and the minimum 
path cost/length for the same source-destination pair. Note that 
resilient/fault-tolerant schemes may further deteriorate this ratio 
(in particular, for pre-provisioned schemes enforcing the 
disjointness of protected/ protecting routing path pairs before 
failure occurrence). 

• Stability: the stability properties of the individual routing 
entries and routing table should be such that they minimize 
perturbation resulting from i) the exploration of the routing state 
space (compared to the BGP uninformed path exploration intrinsic to 
shortest-path vector algorithm) and ii) the routing policies 
interactions (compared to BGP routing policy interactions that can 
lead to non-deterministic and unintended but stable routing states, 
and "dispute wheels", i.e., non-deterministic and unintended but 
unstable states). 

• Convergence: upon occurrence of an instability event, e.g., physical 
topology change, routing topology change or protocol change, the 
convergence properties of the routing system should minimize the 
number of operations/execution steps (expressing the convergence 
time) needed to reach a new routing state. This new routing state 
results from the local re-computation and/or re-selection of new 
routing paths. The properties of this new state shall verify are i) 
consistency (do not result in any forwarding loop due to this event) 
and ii) globally stable (do not lead to any subsequent re-
computation of routing table entries due to this event). 

3.1.4 Adaptivity 
 
Definition: the capacity of the routing system to adapt/react in a timely 
and cost-effective manner when internal or external events occur that 
affects its value delivery. Adaptivity to topology changes (due to network 
engineering e.g. add/remove link or node or network failures) is referred 
to as structural adaptivity. Next, adaptivity is also concerned with the 
spatio-temporal variability of the traffic (leading to traffic engineering 
decisions and/or network engineering decisions) and with its ability to 
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support arbitrary non-technical constraints and/or decisions/rules (driven 
by cost minimization, profit/revenue maximization, etc.).  
 
Quantitative objectives:  

• Structural adaptivity: capability of the routing models/algorithms 
to adapt to short- and long-term topology dynamics (resulting, e.g., 
from the addition or removal of different percentage of links, 
nodes, autonomous systems/network partitions, and destination 
prefixes) while minimizing the convergence time to a stable and 
consistent routing state as well as the associated processing 
capacity mobilized to reach that state together with the 
robustness/longevity of this state over time. 

• Traffic adaptivity: capability of the routing models/algorithms to 
adapt to short- and long-term traffic variability/dynamics by 
minimizing the convergence time to a stable and consistent routing 
state as well as the associated processing capacity mobilized to 
reach that state together with the robustness/longevity of this 
state over time. 

• Economic/Cost adaptivity: capability of the routing 
models/algorithms to adapt to short- and long-term routing policy 
dynamics by minimizing the convergence time to a stable and 
consistent routing state as well as the associated processing 
capacity mobilized to reach that state together with the 
robustness/longevity of this state over time  

• Note: a priori there is no requirement on how these objectives are 
to be met by the routing model/algorithm.    

3.1.5 Availability 
 
Definition: Availability is defined as the probability that the system is 
operating properly when it is requested for use, i.e., the probability that 
a system is not in a failure state or undergoing a repair action when it 
needs to be used. Availability is expressed as a function of reliability 
and maintainability. 
 

• Reliability: probability Pr that a system or component fails within a given period of time. Reliability is a function of time that 
expresses the probability at time t+1 that a system is still 
working, given that it was working at time t. Reliability represents 
the probability of components and systems to perform their required 
functions for a desired period of time without failure in specified 
environments with a desired confidence. Reliability, in itself, does 
not account for any repair actions that may take place. Reliability 
accounts for the time that it will take the component or system to 
fail while it is operating. It does not reflect how long it will 
take to get the unit under repair back into working condition. 

 
• Maintainability: probability Pm that a system or component will be retained in or restored to a specified condition within a given 

period of time. 
 
The notion of availability depends on what types of downtimes are 
considered in the performance analysis. As a result, there are two main 
classifications of availability: 
 

• Time-based classification: 
o Point (instantaneous) availability: probability that a system 

(or component) will be operational at any random time, t. 
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Unlike reliability, the instantaneous availability measure 
incorporates maintainability information. 

o Average up-time availability (mean availability): proportion 
of time during a mission or time-period that the system is 
available for use. It represents the mean value of the 
instantaneous availability function over the period T. 

o Steady state availability: limit of the instantaneous 
availability function as time approaches infinity. 

 
• Engineering classification: 
 

o Design/system availability used in system engineering is 
defined as the ratio MTBF / (MTBF + MTTR) where MTBF denotes 
the Mean time Between Failure and MTTR the Mean Time To 
Repair. The MTBF is inversely proportional to the probability 
Pr: MTBF ~ 1/Pr. The MTTR is inversely proportional to the 
probability Pm: MTTR ~ 1/Pm o Operational availability used in network engineering is 
defined as the ratio MTBM / (MTBM + MDT) where MTBM denotes 
the Mean time Between Maintenance and MDT the Mean Down Time. 
Operational availability is a measure of the uptime that is 
the total time the system was functioning between two 
experienced sources of downtime (such as administrative 
downtime, logistic downtime, etc.) during the operating cycle 
that is the overall time period of operation being 
investigated. 

 
Improving routing system availability implies thus to improve the mean time 
to repair and more generally the maintainability capabilities of the 
routing system by means of resiliency/fault-tolerance techniques. 
Resiliency is the ability of a system to reach (rapidly) and maintain an 
acceptable level of functioning and structure with one or more of its 
components malfunctioning. Note that resiliency does not refer to a "full" 
but an "acceptable" level of functioning and does not refer to the 
correction of these malfunctioning components. Resiliency mechanisms are 
characterized in terms of the level of protection they provide (e.g., full 
protection against single failures, best effort protection, traffic pre-
emption in case of failure, etc.) and the time required to activate them in 
case of topological failure. Coverage, mobilization of recovery resources, 
and activation time enable to define quantitative objectives: 

• Maximize the percentage of links (or nodes) that can be fully 
protected (i.e., for all destinations) while minimizing the recovery 
resources (protecting path length/cost). Note that some percentage 
of the possible failures may be identified as being un-protectable. 

• Maximize the percentage of destinations that can be protected for 
all link (or node) failures while minimizing the recovery resources 
(protecting path length/cost). Note that some percentage of 
destinations may be identified as being un-protectable. 

• Maximize the percentage of the total potential failure cases 
(destination x failures) that are protected while minimizing the 
recovery resources (protecting path length/cost). 

• Minimize the difference between the number of packet flowing through 
the network towards their destination before and after failure 
occurrence, i.e., maximize the percentage of packets passing through 
the network that will continue to reach their destination by using 
the protecting paths.  
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3.1.6 Performance Objectives from Algorithmic Game Theory 
 
Routing in the presence of selfish and possibly antagonistic participants 
is one of the first (see [KP99]) problems examined under the lens of 
Algorithmic Game Theory (AGT) and still remains a very active research area 
[NRTV07]. Routing on the Internet and Internet-like networks is a prominent 
example of problems within this research area and usually depends on the 
policy of the entities involved. This certainly holds for the existing 
protocols (e.g., BGP) but is also expected to be true for new protocols 
that may be developed within EULER. For example, the contents of the 
routing table of a router affect the amount of traffic this router will 
handle and, hence, under the hypothesis of rational behavior by the 
router's administrator, it is reasonable to assume that these contents are 
edited so that the traffic handled is minimized. In this sense, the 
entities involved in routing are engaged in a strategic game; each such 
entity acts as a player and aims to select a strategy (e.g., the contents 
of the routing table in our example) that minimizes her cost (or maximize 
her benefit) given the strategies of the other players. 
 
1) Existence of Equilibria 
 
Definition: Nash equilibria [Nas50] correspond to stable states in which no 
participating entity has an incentive to alter her strategy/action (e.g., 
the routing path it has chosen) assuming that the remaining participants do 
not deviate. Clearly, such states may be different than the optimal state. 
In pure Nash equilibria, all players follow pure (deterministic) 
strategies, while in mixed Nash equilibria players are allowed to use 
probabilistic strategies (i.e., probability distributions over pure 
strategies). Pure and mixed Nash equilibria correspond to settings where 
participating entities are assumed to know in advance the strategy followed 
by other participants. A more natural setting is when initially the players 
have no knowledge of the choices made by other players and have to learn 
them by observing their behavior. In such a setting, the notions of 
correlated and coarse correlated equilibria can be viewed as 
generalizations of mixed Nash equilibria, where the players have a joint 
probability distribution instead of independent ones. Informally, in both 
settings, a mediator draws a strategy vector from a publicly known 
distribution and secretly informs each player of her suggested strategy. If 
no player has an incentive to deviate from the suggested strategy, then 
this is a correlated equilibrium [Aum74], while if no player has a pure 
strategy that he can always follow, irrespective of the outcome, and reduce 
his expected cost, then this is a coarse correlated equilibrium ([MV78], 
see also [You04]). Even though mixed Nash equilibria (and, hence, also 
correlated and coarse correlated) always exist (due to the theorem of John 
F.Nash [Nas50]), the existence of pure Nash equilibria is not always 
guaranteed. Pure and mixed Nash equilibria are solution concepts in full 
information settings, where it is assumed that players have complete 
knowledge of the game played, e.g., they are aware of the demand of other 
players. A more realistic concept is that of incomplete information (or 
Bayesian) games. Bayes-Nash equilibria [Har67] correspond to stable states 
in such settings where participating entities have "beliefs" about certain 
characteristics of other entities. 
 
Quantitative objectives: To study the impact of the policy of AS 
administrators and whether the corresponding policy-induced games exhibit 
stable states (and of which type). 
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2) Time to Equilibrium 
 
Definition: Consider an arbitrary initial state. If all players are 
satisfied and have no incentive to deviate, then this state corresponds to 
equilibrium, otherwise certain players will prefer to change their 
strategy. Thus, the system reaches a new state, and, similarly, this 
process may continue forever (in the case of loops) or may reach 
equilibrium. If this process is guaranteed to reach an equilibrium starting 
from any initial state, then the game satisfies a convergence property. 
Since at any moment more than one player may wish to deviate, no 
assumptions are made with respect to the order or priority of 
moves/deviations. 
 
Quantitative objectives: the number of rounds (alternatively, moves) 
required to reach equilibrium. 
 
3) Efficiency of Equilibria 
 
Definition: the inherent selfishness of participating entities may lead to 
stable states that differ from what would be optimal from a designer's 
point of view. The notion of efficiency captures the degradation of the 
system performance due to this selfishness. 
 
Quantitative objectives: the ratio of the equilibrium cost over the optimal 
cost. 
 
3.2 Performance Criteria  
 
This section details the performance criteria that will be considered for 
determining whether a given routing model or scheme/algorithm actually 
meets its performance objectives or not. 
3.2.1 Scalability 
 
The scalability of a system is measured by the rate x state x size of input 
that the system can sustain when running using a given number of resource 
units (for processing and storage). In the distributed routing context, 
scalability is measured by i) the memory space consumed to store the 
routing information, ii) the memory space consumed to store the resulting 
routing table entries, and iii) sustainable rate of communication messages 
(that result in re-computation and/or replacement of the routing table 
entries). 
 
Criteria: the memory space required to store the routing table entries 
should scale better than n, the number of (abstract) nodes (and be 
preferably of the order of log n, i.e., the routing scheme should produce 
sub-linear routing table size. The routing state update rate is dependent 
on routing scheme response to external events (reachability, topology 
and/or traffic variations) and also on routing scheme specifics. 
3.2.2 Computational Complexity 
 
The computational complexity of a routing algorithm is measured by the 
complexity in time and space/resource. 
 
Criteria: the number of operations/execution steps (expressing the 
computational time) needed to (re-)compute a (set of) routing table entries 
should be sublinear in the input size. This size of the input depends on 
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the topology properties such as the number of nodes/links, the number of 
paths/prefixes, network diameter, etc. 
3.2.3 Quality 
The quality of a routing system and thus the routing model/algorithm that 
sustains it, is measured by 

• The stretch of the routes produced by the routing algorithm in 
stationary and non-stationary/variable conditions (in case of 
routing information or protocol operation change) 

• The stability of the individual routing entries and routing table 
(the number of routing table updates before and after routing 
information or protocol operation change) 

• The convergence time of the individual routing states 
 
Criteria are respectively the following 

• The routing path length/cost should be as close as possible to the 
shortest routing path length/cost (both in stationary and non-
stationary conditions). Ideally after reaching a fraction above 
stretch 1, a substantial amount of the routing paths produced by the 
routing schemes and nodes should be covered). 

• Upon local routing state change, decrease number/rate of 
communication/routing update message (or variation of their 
attributes) to downstream neighbors and decrease variation of local 
routing state upon reception of such message(s). 

• Decrease the number of operations/execution steps (thus the 
convergence time) needed to reach a new stable and consistent 
routing state (compared to BGP behavior for the same topology and 
the same reachable prefix); in absolute terms, convergence to such 
stable state should be reached in polynomial (preferably linear) 
time. 

3.2.4 Adaptivity 
 
Being topology- traffic- or cost-driven, adaptivity is measured by the 
convergence time to a stable and consistent routing state as well as the 
associated processing capacity mobilized to reach that state together with 
the robustness/longevity of this state over time.  
 
Criteria: when converging to a short-live state, the routing algorithm 
shall only require updating the affected routing state(s) and the updates 
performed within the time interval needed for the updated routing and/or 
topology information units to reach the concerned nodes. On the other hand, 
when converging to a long-live state, the routing algorithm may require 
updating not directly affected routing state(s) and may have to perform 
these updates during a larger time interval than the one needed for the 
updated routing and/or topology information units to reach the directly 
concerned nodes. In the latter, the routing algorithm must provide the 
means to converge to a new stable and consistent long-live routing state 
before the next internal or external event occurs. 
3.2.5 Availability 
 
The routing system availability is measured by the ratio MTBF / (MTBF + 
MTTR) where MTBF is the Mean time between failure and MTTR the Mean Time To 
Repair of the routing table entries and associated forwarding paths.  
 
Criteria: the MTTR of forwarding paths resulting from links/nodes failure 
must be short enough (while minimizing the mobilization of protecting 
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resources) so that the difference between the number of packet flowing 
through the network towards their destination before and after failure 
occurrence is negligible and can be recovered by upper layers. Moreover, 
the coverage (percentage of links/nodes that can be fully protected for all 
destinations, percentage of that can be protected for all link/node 
failures) should be optimized against the recovery resources mobilized. 
3.2.6 Performance Criteria from Algorithmic Game Theory 
 
1. Potential functions 
 
Definition: A potential function takes as input a state of the game and 
returns a number. More importantly, a potential function entails the 
incentive of all participating entities to deviate from the current state; 
this leads to the concept of potential games [MS96]. The potential function 
is a useful tool to analyze equilibrium properties of games and the set of 
pure Nash equilibria can be found by simply locating the local optima of 
the potential function. 
 
Criteria: Existence of potential functions. Preferably, the potential 
functions should be computable in polynomial time. 
 
2. Price of anarchy  
 
Definition: The price of anarchy ([KP99, see also [Pap01]) for a class of 
equilibria corresponds to the worst-case efficiency of equilibria of the 
given class. In other words, it denotes the worst-case deterioration of the 
system performance due to selfish behavior and lack of coordination. The 
price of anarchy is measured by the ratio of the worst equilibrium cost 
over the optimal cost. 
 
Criteria: Low (e.g., constant) price of anarchy. 
 
3. Price of stability 
 
Definition: The price of stability [ADK04+] for a class of equilibria 
corresponds to the best-case efficiency of equilibria of the given class. 
In other words, it denotes the best-case deterioration of the system 
performance due to selfish behavior and denotes the best efficiency that 
can be attained by a coordinator/designer that is able to propose stable 
states to the participating entities (e.g., specific paths for routing). 
The price of stability is measured by the ratio of the best equilibrium 
cost over the optimal cost. 
 
Criteria: Low (e.g., close to 1) price of stability. 
 
4. Time to Equilibrium 
 
Definition: the process of reaching a state corresponding to an equilibrium 
starting from arbitrary initial states. Since at any moment more than one 
player may wish to deviate, no assumptions are made with respect to the 
order or priority of moves. The time to equilibrium is measured by the 
number of rounds/moves required in order to reach equilibrium. 
 
Criteria: Convergence to equilibria in polynomial (preferably linear) time. 
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3.3 Performance Metrics 
 
Performance metrics identified for the measurement of the routing scheme/ 
algorithm performance are: 
3.3.1 Stretch 
 
We distinguish between the multiplicative and additive stretch of the 
routing paths produced by a routing scheme: 
 

• Multiplicative stretch (of a routing scheme) is defined as the ratio 
between the cost/length of the routing path(s) as produced by the 
routing scheme and the minimum path cost/length for the same source-
destination pair. Intuitively, the stretch of a routing scheme 
provides a quality measure of the path cost/length increase it 
produces, compared to the shortest paths. Shortest path routing 
schemes either AS-path length based (path vector routing) or cost-
metric based (link-state routing) are stretch-1. This metric is 
interesting to measure because compact routing schemes that produce 
reduced routing tables, are not always able to choose the minimum 
cost/length path for a given destination. On the other hand, the 
routing scheme should favor computation and/or selection of routes 
whose stretch remains closer to 1. 

 
• Additive stretch (of a routing scheme) is defined as the difference 

in number cost/length between the routing path(s) as produced by the 
routing scheme and the minimum path cost/length for the same source-
destination pair. 

3.3.2 Routing Table Entries Storage   
 
This metric measure the storage capacity required to store the routing 
table entries (it thus measures the number of entries and their respective 
size): 
 

• Number of (local) routing table entries, equivalently the number of 
active routing states 

 
• Size of the locally stored routing table entries expressed in terms 

of memory-bit space consumed to store these entries 
3.3.3 Computational Complexity 
 
Computational complexity measures the computational resources required for 
the (re-)computation of routing table entries in terms of time and space: 
 

• Time complexity: number of operations/execution steps (expressing 
the computational time) needed to (re-)compute a (set of) routing 
table entries as a function of the input size. 

 
• Space complexity: amount/size of memory in bits or bytes needed to 

(re-)compute a (set of) routing table entries.   
3.3.4 Communication/Messaging 
 
The communication cost and complexity can be measured by means of:  
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• Number of (routing and/or topology update) messages exchanged 
between nodes to maintain a coherent and timely non-local knowledge 
about network topology and/or reachability such that each node can 
(re-)compute a consistent (set of) routing table entries 

 
• Size of communication (routing and/or topology update) messages 

 
• Sustainable rate of communication (routing and/or topology update) 

messages 
3.3.5 Convergence 
 
Upon occurrence of an instability event, e.g. routing topology change or 
protocol change, this metric measures the number of operations/execution 
steps (expressing the convergence time) needed to reach a new routing state 
(resulting from the re-computation and/or re-selection of new routing 
paths) that is consistent (do not result in any forwarding loop) and 
globally stable (do not lead to any subsequent re-computation). 
3.3.6 Repair Coverage 
 
This metric applies specifically to fault-tolerant routing schemes by means 
of repair paths (a.k.a. alternate or backup paths) that are pre-computed in 
anticipation of topological failure and made available for invocation with 
minimal delay. The repair coverage provides a simple comparison metric for 
measuring and comparing fault tolerant routing schemes. 

• The percentage of links (or nodes) that can be fully protected 
(i.e., for all destinations). Note that some percentage of the 
possible failures may be identified as being un-protectable. 

• The percentage of destinations that can be protected for all link 
(or node) failures. Note that some percentage of destinations may be 
identified as being un-protectable. 

• The percentage of the total potential failure cases (destination x 
failures) that are protected. 

• The percentage of packets normally passing through the network that 
will continue to reach their destination by using the pre-computed 
repair paths. 

3.3.7 Multicast support 
 
This section details a set of specific metrics of interest for the 
evaluation of the performance of multicast routing schemes. Indeed, the 
performance evaluation of multicast routing schemes requires either 
different definitions or additional metrics with respect to (unicast) 
routing schemes.  
 

• Stretch: in the particular case of multicast routing algorithms, the 
stretch metric is obtained as the maximum ratio over all sets of 
nodes between the cost of the point-to-multipoint routing path (that 
defines the multicast tree) as obtained by the proposed scheme and 
the cost of a minimum-cost tree, i.e. the Steiner Tree (ST), between 
the same set of destination nodes. 

 
• Tree cost: is defined as the sum of the edge cost composing the 

point-to-multipoint routing path. The number of tree nodes and tree 
levels as well as the number and degree of the branching nodes may 
complement this metric. 
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• Storage (memory space): the memory space required to store the 

various routing table entries required for the multicast routing 
algorithm to properly operate or the routing table entries produced 
by the multicast routing algorithms: 

o Unicast Routing Information Base (URIB): the URIB stores the 
unicast routes to the possible destination nodes in the 
network. For multicast routing schemes relying on the unicast 
routing topology, this table includes the entry pointing to 
the source of multicast traffic in any-source multicast (ASM) 
or source-specific multicast (SSM).  

o Multicast Routing Information Base (MRIB): when relying on the 
underlying unicast routing, the multicast routing scheme makes 
use of the MRIB derived from the URIB. The MRIB is used to 
route the multicast control messages: each entry stored in the 
MRIB is used to determine the next-hop neighbor to which any 
Join/Prune message is to be sent to join/leave a multicast 
group <*,G> in ASM or multicast source - multicast group pair 
<S,G> in SSM. 

o Tree Information Base (TIB): the TIB is the multicast routing 
table, built from every Join/Prune message received. It holds 
the state of the multicast distribution trees at a router. The 
entries in the TIB are used to forward multicast traffic 
though forwarding operations by direct TIB lookup is 
inefficient (due to the indirection such operation implies). 
Henceforth, multicast forwarding in high-performance routers 
is performed directly along the forwarding path by means of 
Multicast Forwarding Information Base (MFIB) constructed from 
the information stored in the TIB.  

 
• Computational complexity: measures the computational resources 

required for the (re-)computation of multicast routing table entries 
in terms of time and space, e.g., due to a join/leave message 

o Time complexity: quantifies the number of operations/execution 
steps needed to (re-)compute a (set of) routing table entries 
as a function of the input size. 

o Space complexity: the amount/size of memory in bits or bytes 
needed to (re-)compute a (set of) multicast routing table 
entries.  

  
• Communication cost: the number of routing update messages that needs 

to be exchanged between nodes to converge after a non-local network 
topology change (e.g., a branching node failure) or a multicast tree 
change (e.g., a node joining or leaving a tree) together with their 
size. The communication cost provides a measure of the processing 
capacity required at each node to process messages. 

 
• Convergence: measures the amount of time it takes to converge (i.e., 

to re-compute the multicast tree) upon a network topology change. 
This metric becomes of paramount importance as it reflects the total 
amount of time that the network routing functionality may remain 
inoperative due to link/node failures for example. 

3.3.8 Effects on traffic spatio-temporal properties 
 
Several metrics can be defined to measure the effects on the spatio-
temporal properties of the traffic. Indeed routing table entries are used 
to derive forwarding table entries whose sequence determines the forwarding 
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path followed by the traffic. On the other hand, these metrics can be used 
to evaluate the gain of traffic engineering capabilities associated to the 
routing scheme: 
 

• End-to-end (forwarding path) bandwidth x delay product 
 
• Per destination (inverse tree)/per forwarding path (point-to-point) 

congestion 
 
• Per destination (inverse tree)/per forwarding path (point-to-point) 

throughput 
 
• Per forwarding path (point-to-point) aggregated load 
 
• Statistical multiplexing gain with respect to the spatio-temporal 

traffic distribution 
 
• Betweeness centrality (link or nodal): fraction of routing paths (as 

produced by the routing scheme) crossing a given link or a given 
node divided over the total number of paths in the network. 

3.3.9 Game Theoretic Metrics 
 
This section details game theoretic specific performance metrics that can 
be assessed by means of simulation. 
 

• Best response strategies and assessment of the quality of the 
outcomes. For any game it is possible to define a graph that 
captures the dynamics emerging by the selfish behavior of the 
players. This graph has a node for each state and a directed edge 
(with label i) connects two states if player i has incentive to 
deviate; the two states have the same strategies for all remaining 
players and differ only in the strategy of player i. For a given 
state, there may exist more than one outgoing edges per player, 
since more than one improving deviations per player may be possible. 
A best response walk on these states is defined by considering only 
outgoing edges that model a best response strategy for a given 
player. This includes determining the efficiency of outcomes, 
studying approximation of equilibria (i.e., which is the smallest 
decrease in cost that is attainable by deviations) and computing the 
time required to reach equilibria (or approximate equilibria) 
through such best response walks. 

 
• Fictitious play is an instance of model-based learning, in which the 

learner explicitly maintains beliefs about the strategy of other 
participating entities. Then, the learner plays a best response to 
the assessed strategy of the other entities, observes the actual 
play and updates her beliefs accordingly. This could include 
studying whether it is possible for a malicious entity to learn the 
routing pattern and harm routing. 

 
• It is also interesting to study how much the change in a player’s 

strategy can affect the whole system. This is closely related to 
dynamic properties of networks. 
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3.4 Performance Comparison 
 
The goal of this section is to specify a framework enabling to perform by 
simulation fair comparisons between different routing models and algorithms 
by means of reproducible scenarios. This framework should guarantee the 
reproducibility and reliability of the simulation experiments and to get 
relevant comparison between different routing models and algorithms.  
 
Such performance comparison involves the combination of the choice of: 

• A dataset that is the network on which we run an experiment 
• A routing scheme 
• A network dynamics model 
• A model of the routing requests 
• An execution model 

Then we analyze the traces that are assumed to be stored. 
3.4.1 Dataset 
 
Different types of dataset can be considered 

• Real data: as provided for instance by CAIDA  
• Synthetic data: synthetic networks of different size. Some networks 

have to mimic real-life networks (scale-free graphs) and we also 
have to consider very different topologies (dense/sparse graphs, 
etc.) in order to characterize each individual routing scheme. 

 
Concerning the size of the dataset it is important to compare networks of 
same size. Ideally, the order of magnitude of the number of nodes goes from 
10K to 100K nodes. Note that the smallest CAIDA map has 16K nodes and the 
largest around 35K nodes.  
3.4.2 Models 
 
Once selected, we have to specify the topology dynamics models, the 
workload model, and the execution model. Each of them are detailed in the 
below paragraphs. 
 
1. Topology dynamics model  
 
Also referred to as "dynamic network or topology model", such model defines 
how the underlying topology changes/evolves over time. More precisely, the 
following types of models are considered:  

• Evolving model without constraint: online insertion and/or 
suppression of links and/or nodes. In this model, if G(t) represents 
the graph of the network topology at time t then G(0) and G(t) can 
be quite different.  

• Failure model: G(t) is a subgraph of G(0). In practice, we consider 
that few nodes/links are removed from G(0). This model [KB2010] was 
recently considered in several studies dealing with shortest paths 
computations whenever some errors are detected in the network. For 
instance: how to design a data structure capable to report an s-
approximate shortest path between node u and v upon failure of node 
z (that sits along the path from u to v).    

 
In both models, the event list should be stored before the beginning of 
each experiment. Note that we can afford any model of events generation: 
the so-called "edge Markovian" process model, set of links chosen with 
respect to a given distribution, etc. 
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2. Workload model  
 
The workload model determines the set of new routing queries at the 
beginning of each step of the execution. This set is essential whenever we 
aim to measure and to analyze the load and resulting congestion at each 
node. Importantly, all the choices should be stored in order to make a fair 
comparison.  
 
Given a distribution (probability to choose to given target), each node 
runs a list of routing queries. For instance, the uniform distribution 
corresponds to routing towards all nodes. It is possible that a node 
instantaneously runs several routing queries towards the same node and 
decides to run no new routing. More formally, for any time step t and every 
node u, the query workload Qu(t)={v1,v2,...,vi} determines the set of 
routing queries, i.e., node u asks to run a routing from u to v1, v2, ..., vi. In order to make a clear comparison between different routing schemes with exactly the same setting, the set of routing queries should be 
computed and then stored. For an experiment, one of the inputs will be the 
pre-computed workload.  
  
3. Execution model 
 
The routing scheme and the network are modeled as a synchronous distributed 
system. At each time step t, each entity (link/node) of the network can 
potentially change its current state (activation, deletion, etc.) in order 
to define the graph G(t). Note that some messages (being data traffic 
and/or routing updates) can be lost during this phase whenever a node is 
deleted.  
 
Then each node executes the following sequence: 

• FORWARD the requests received in the previous time step: forward 
routing, discovery messages, control messages, etc. depending on the 
routing scheme. 

• RUN new routing requests: this depends on the workload model.  
• SEND new control messages: this depends on the routing scheme.  

3.4.3 Traces Analysis  
 
Within an experiment, the set of routing paths should be stored and can be 
analyzed with respect to the performance measures. However, we can consider 
two levels of analysis: 

• First glance analysis: for each performance measure, the average and 
the distribution is computed 

• Deeper analysis: the goal is to find some correlations between the 
performance measures and some local/global characteristics of the 
network. For instance, are the most central nodes the most used in 
the routing paths? This would not be too long to compute it. 
However, if we want to determine the most frequent paths, this task 
corresponds to the problem of computing the frequent item sets in 
data mining. Because the exponential number of potential combination 
of graph parameters and the performance measures, it is recommended 
to first do a first glance analysis and then to carefully select the 
combinations of attributes to analyze.  
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4. Experimental Analysis 
 
Experimentation by emulation/prototyping of the (protocol) components of 
the routing scheme(s) designed in WP2 (task T2.2) will be performed as 
integral part of the WP4 activity. For this purpose, the iLab.t 
experimental facility and, where possible and suitable, larger experimental 
facilities such as OneLab2/PlanetLab Facility or Ofelia will be used. 
 
The present section is sub-divided in three parts. One dedicated to the 
experimental evaluation of routing protocol components, the second to their 
comparison and the last one to observation experiments. 
 
4.1 Experimental Evaluation 
 
This section specifies the experimental evaluation framework in order to 
evaluate the performance of the considered routing protocol components. 
This framework should guarantee the reproducibility, reliability and 
verifiability of the emulation-based experiment in order to get relevant 
results. 
 
Here below we present the detailed description of the experimental 
evaluation objectives, evaluation criteria, and associated metrics for the 
routing protocols to be experimented. It is to be noted that some of the 
functional and performance analysis objectives described in the previous 
sections are also considered here for experimental analysis purposes 
(simply because the experimental methodology can also be considered for 
performing functional and performance analysis). However, the experimental 
evaluation criteria and metrics are different since the methodology is 
basically different. On the one hand, the network size is different; while 
a simulated scenario can (easily) simulate a routing model in a 10k-nodes 
network (or even larger networks), only smaller networks can be emulated in 
the experimental platform (e.g., of the order of 100 nodes). On the other 
hand, certain measures can be performed on emulation platforms that are not 
(or more difficult) to realize with simulators such as metrics that involve 
traffic, e.g., traffic aggregation effects, system resource consumption, 
forwarding packet delay. Hence, experimental analysis will cover objectives 
that can not be realized with routing model simulation. 
 
It is worth mentioning that the purpose of experimental analysis of routing 
protocols is not to measure the performance of the forwarding plane as such 
but the resulting effects of the routing protocols on the data traffic. 
That is, the effects on spatio-temporal distribution of traffic and its 
properties from the locally computed routing paths. 
4.1.1 Objectives 
 
Overall, the goal of experimental evaluation is to evaluate by means of 
emulation experiments, the routing protocol components derived from WP2 
design task (Task T2.2). This evaluation will be conducted to determine if 
the targeted functional and performance objectives specified in Section 2.1 
and 3.1 are met.  
 
Taking into account the physical constraints of an emulation environment 
(in terms of resources e.g. number of nodes, CPU/memory per node) as 
provided by the IBBT's ilab.t experimental facility, this section 
translates the performance objectives measurable by emulation. 
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• Scalability: the scalability of a routing scheme (ability to cope 
with larger networks) up to the order of 109 can only be experimented 
in a simulation environment. Indeed no experimental facility 
provides the means to emulate the spatial distribution of 
destination networks as currently observed on the Internet; hence, 
there is no foreseeable mean by which one could experiment by 
emulation even larger distributions. However, it is the objective to 
measure scalability of the routing protocol components in isolated 
parts of the network in interaction with a larger part of network 
being simulated. 

 
• Computational complexity: the objective is to determine the 

computational complexity of the routing path computation component 
on an individual network node or part of the network in interaction 
with a larger part of network being simulated. 

 
• Routing quality: using a network comprising hundreds of emulated 

nodes, the objective is to measure the quality of a routing protocol 
as determined by 

o The cost/length of routing paths as produced by the routing 
protocol in stationary and non-stationary/ variable conditions 
(in case of routing information or protocol operation change). 

o The stability of the individual routing entries as produced by 
the routing protocol (the number of routing table updates 
before and after routing information or protocol operation 
change). 

o The convergence time of the individual routing table entries 
and the entire routing table of the node being experimented. 

 
• Adaptivity: using a network comprising hundreds of emulated nodes, 

the objective is to measure the effects of 
o Short- and long-term topology dynamics on the local and global 

convergence time to a stable and consistent routing protocol 
state. 

o Short- and long-term traffic variability/dynamics on the local 
and global convergence time to a stable and consistent routing 
protocol state. 

o Short- and long-term routing policy dynamics on the local and 
global convergence time to a stable and consistent routing 
protocol state. 

  
• Availability: using a network comprising hundreds of emulated nodes, 

the objective is to measure the properties of the resiliency/fault-
tolerance mechanisms provided by the routing protocol in terms of:  

o Coverage (percentage of links/nodes that can be fully 
protected for all destinations, percentage of that can be 
protected for all link/node failures).  

o Mobilization of recovery resources, i.e., the amount of pre-
provisioned resources (thus before failure occurrence) in 
order to ensure this repair coverage. 

o Time to repair of routing paths under different network 
running conditions/failure events (including the detection, 
the notification, and the activation time). 

4.1.2 Criteria 
 
The evaluation criteria are the same as those exposed in Section 3.2 taking 
into account the experimental environment and running conditions. 
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4.1.3 Metrics 
 
The following evaluation metrics will enable to measure if the performance 
criteria (detailed in Section 4.1.2) can be met by the routing protocol and 
its components. 
 
1. General metrics for routing protocols 
 

• Routing path length: the number of nodes along the routing path from 
source to destination as produced by the routing protocol. The 
routing path length can be exactly measured both in network 
emulation. This measure allows computing the resulting stretch of a 
routing scheme. 

• Routing table size: the number of routing table entries and the 
total size (expressed in terms of memory space) required to store 
them per node. Note this number/size should be sub-linear with 
respect to the number of nodes/reachable prefixes. 

• Computational complexity (of routing paths): this metric can be 
measured by determining i) the number of CPU cycles and the memory 
space required to compute each routing path and ii) the time 
required to locally compute each routing path with respect to the 
input size. 

• Communication cost: the rate x size of routing protocol messages 
exchanged between nodes that are needed by the routing protocol to 
properly operate. Note that routing protocol messages may include 
topology information and/or routing information; both types of 
information are referred to as routing protocol information. This 
metric can be measured in emulation. 

• Connection time (node-up event): time needed for a new network node 
to connect to the existing topology (connected component of the 
topology). This time includes the local interface configuration time 
and neighbor discovery time as well as network discovery time 
(discovery of that node for the rest of the topology and discovery 
of the rest of the topology by that node). This metric can be 
measured in emulation. 

• Connectivity time: the time needed for a newly added destination to 
become reachable through the existing network topology (connected 
component of the topology). In case of routing protocol information 
push: this time includes the propagation of the routing protocol 
messages and thus the corresponding information across the network 
topology. In case of routing protocol information pull: this time 
accounts for the query/response delay (and associated resolution if 
any) of this new routing protocol information by an existing node. 

• Recovery time: upon network failure (link/node failure), routing 
states need to automatically reconverge. The time between failure 
occurrence and failure recovery results into several destinations 
becoming unreachable (loss of connectivity) until reconvergence of 
the routing states on the new topology. This is an indirect way to 
deduce the convergence time of routing protocol states. This metric 
can be measured in emulation. 

• Configuration time: number of actions to perform off-line 
configuration of newly added elements into the topology being 
network partition(s), node(s), link(s), or destination(s). The 
associated operations can be modeled in emulation. 

 
The below metrics refers to forwarding plane measures. The purpose is not 
to measure the performance of the forwarding plane as such but the 
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resulting effects on spatio-temporal distribution of traffic and its 
properties from the locally computed routing paths: 

• Forwarding table size: the number of forwarding table entries and 
their total size per node (that should be sublinear with respect to 
the number of nodes/reachable prefixes). 

• Forwarding delay: the time needed to determine the outgoing 
interface/port of a packet from its incoming attributes (including 
destination coordinates, destination address, label, etc.) using the 
local forwarding table. This metric is of particular importance for 
routing protocols that assume more than one lookup/online 
computation operation to forward packets. 

• Throughput: average rate of successful message delivery over a 
network path. This metric can be approximated in emulation. 

• Delay: the time between sending a packet from a source node, and the 
arrival of the packet at the destination node (in ms). The delay can 
be approximated in emulation (half round-trip time). 

• Jitter: the difference in end-to-end delay between selected packets 
in a sequence of data packets flowing from the source to the 
destination. This metric can be measured in emulation. 

• Packet loss: this occurs when one or more packets of data travelling 
across a network fail to reach their destination. This metric can be 
measured in emulation. 

 
2. Specific metrics for multicast routing protocols 
 
In addition to the above metrics considered for general (unicast) routing 
protocols, the following metrics are related with the experimental 
evaluation of the multicast routing protocol: 

• Tree cost: is defined as the sum of the edge cost composing the 
point-to-multipoint routing path from the source of multicast 
traffic (root) to the set of destination nodes (leaves). This metric 
can be exactly measured in network emulation. It allows computing 
the resulting stretch of a multicast routing scheme. Note that the 
number of tree nodes and levels as well as the number and degree of 
the branching nodes may complement this metric. 

• Communication cost: the rate x size of routing protocol messages 
exchanged between nodes as needed by routing protocol mechanisms to 
operate. In multicast routing, this includes the messages to 
join/leave a tree. This metric can be measured in emulation. 

• Multicast update time: includes the time for a node to join a 
multicast tree and the time for a node part of a multicast tree to 
leave it. This metric can be measured in emulation. 

• Routing table size: the number of multicast routing table entries 
and their total size per node. Note that in multicast routing, 
additional routing tables (introduced in the previous section) can 
be required if the multicast routing scheme relies on the underlying 
unicast routing topology. This metric can be measured in emulation. 

• Routing path computation complexity (in time): time needed to 
compute the least cost path between a joining node and the tree. 

• Multicast forwarding table size: the number of multicast forwarding 
table entries (that should be sublinear with respect to the number 
of nodes/reachable prefixes) 

• Multicast forwarding delay: the time needed to forward an incoming 
multicast packet to the outgoing interfaces leading to the leaf 
nodes part of the multicast tree. 

 



FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing 

Deliverable 4.1                                                        Page 30 / 39 

4.2 Experimental Comparison  
 
The goal of this section is to specify an experimental comparison framework 
in order to perform a fair comparison between routing protocol components. 
This framework should guarantee the reproducibility and reliability of the 
emulation-based experiment in order to get relevant comparison.  
 
In particular, the goal is to measure the various performance metrics gain 
with enabling certain functionality/capability (including additional 
routing metrics, additional functionality, etc.). Indeed, experimental 
comparison doesn't (only) consist in measuring the same metrics for the 
different protocol components running in the same (finite) conditions and 
environment. It also aims to compare the "gain" of certain capabilities and 
functionality part of/added to routing protocols but not in others knowing 
also that the experimental environment induces certain limits of the scale 
of the experiment itself. As such it can be considered as a differential 
comparison assuming that each protocol provides what it is designed for 
(functional reliability). 
 
For instance, measuring the link load distribution resulting from the 
routing path computed and selected by each protocol opens the following 
question: how to compare a protocol that has no traffic engineering 
capability against a protocol that provides such capability without biasing 
the conclusion? Indeed traffic-engineering implies additional computation 
at setup time but lesser at recovery time (since routes are spatially 
distributed) whereas shortest-path routing implies lesser computational 
cycle at setup time but may imply more computation if the failure is 
affecting a "central" node or link of the topology.  
 
The experimental running conditions are also important to consider. Indeed, 
knowing that the number of routing paths is finite in an emulation 
environment the effects of hyper-aggregation might not be necessarily 
observable if the number of routing entries is limited by processing 
capability of such central node. On the other hand, the benefits of traffic 
engineering wouldn't be observable too.  
4.2.1 Comparison Objectives 
 
Different routing schemes rely on different protocol components to 
accomplish the functionality described in Section 2.1. Therefore, the 
evaluation of the realization of a given performance objective by one 
scheme requires different experimental evaluation methods compared to the 
evaluation to be performed for another routing protocol. The goal of this 
section is to detail the experimental objectives that can be realized in an 
emulation environment when comparing routing protocol performances with 
respect to the functionality they have to accomplish. 
 

• Scalability: the comparison of the scaling behavior of different 
routing protocols will be performed by evaluating their ability to 
continue to function under satisfactory and well specified bounds. 
(i.e., without affecting its performance). The following set of  
varying parameters will be considered for this purpose: 

o Various topologies showing different properties including the 
number of nodes, the minimum/maximum/average degree, the 
clustering coefficient, the diameter (length of the longest 
shortest path), and other specific topological properties. 

o Variable number of nodes/AS, number of links, number of 
hosts/destination prefixes. 
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o Various network traffic spatio-temporal distributions (by 
means of traffic generators) that are representative of the 
Internet traffic properties. 

For all routing protocols, a performance profile will be determined 
for best, worst and reference scenario in an emulated network.   

 
• Computational complexity: the computational complexity of different 

routing protocols running in an emulation environment will be 
compared when they perform the following functions i) local and 
network discovery, ii) topology-/routing-information structuring, 
and ii) routing path resolution.  
For all routing protocols, a complexity profile will be determined 
for best, worst and reference scenario in an emulated network. 

 
• Routing quality: the routing quality properties of the different 

routing protocols will be compared against i) a set of topologies 
representative of the Internet topology, and ii) different spatio-
temporal traffic distributions and traffic mixes. For all routing 
protocols, a quality profile will be determined for best, worst and 
reference scenario in an emulated network.    

 
• Adaptivity: the adaptivity properties (with respect to the topology 

dynamics and traffic dynamics) of the routing protocols will be 
compared by measuring their capability to adapt 

o The routing table entries produced when dealing with the 
addition/removal of different percentage of links, nodes, 
autonomous systems/network partitions, and destination 
prefixes,  

o The routing paths properties (in terms of, e.g., bandwidth x 
delay product) against variable spatio-temporal traffic 
distributions.  

o Concerning adaptation to policy dynamics, specific scenarios 
shall be developed to determine the ability of the routing 
protocol to avoid instabilities resulting from policy 
interactions as observed in BGP such as "wedgies", i.e., non-
deterministic and unintended but stable routing states, and 
“dispute wheels”, i.e. non-deterministic and unintended but 
unstable states.  

For all routing protocols, an adaptivity profile will be made for 
best, worst and reference scenario in an emulated network.  

  
• Availability: the objective is to compare the characteristic 

properties of the resiliency / fault-tolerance mechanisms provided 
by different routing protocols in terms of their 

o Coverage (percentage of links/nodes that can be fully 
protected for all destinations, percentage of destinations 
that can be protected for all link/node failures). 

o Mobilization of recovery resources for this coverage. 
o Time to repair their routing paths under different network 

running conditions/failure events (including the detection, 
the notification, and the activation time). 

4.2.2 Comparison Criteria and Metrics 
 
This section details the experimental comparison criteria that will be 
considered to verify whether one routing scheme performs better in an 
experiment than another, according to a specific experimental objective 
detailed in Section 4.2.1. This section also details the experimental 
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comparison metrics that will provide the measures in order to perform a 
systematic comparison. Note that except when explicitly mentioned the 
running conditions and experimental environment are assumed to be identical 
throughout the various executions required to perform such comparisons. 
 

• Scalability: routing protocol's scalability will be qualified as 
better than another one’s, if its scaling (as measured by the 
sustainable rate of routing state updates, number of routing states 
and the memory space required to store them) perform better in the 
reference scenario of the other. Indeed, suppose two routing 
protocols, each of them will show best case scaling performance on 
reference scenario that can be different. Thus, comparison shall be 
performed by running one protocol using the scenario for which the 
other performs the best and the reference scenario for which it 
performs the worst (and vice versa). The protocol that will show the 
least performance degradation and the best performance improvement 
on the other's reference will be qualified as scaling better. 

 
• Computational complexity: the computational complexity of a routing 

protocol qualifies as lower than another one’s (when performing the 
functionality described in Section 2.1) in case its complexity both 
in time and resources is lower than the one obtained for the 
reference scenario.  

o Time complexity measures used for comparison include i) the 
number of computational steps/operations required to compute 
routing table entries with respect to the input size, ii) the 
number of computational steps/operations needed for each 
routing state to converge to a stable state.  

o Space complexity measures used for comparison include i) the 
memory space required to store the resulting routing table 
entries, ii) the memory space required to store the routing 
state updates. 

 
• Routing quality: the routing quality properties (cost/length/cost of 

the routing path, the stability of its routing states, and their 
convergence properties) of a routing protocol will be qualified as 
better than another one’s, in case:  

o The lengths/costs of the routing paths that it produces are 
all closer to the shortest routing path lengths/costs (as 
measured by the stretch) in all scenarios.  

o Upon occurrence of an instability event, e.g., topology change 
or protocol change, the number of routing state updates and 
the number and rate of the topology-/routing- update messages 
exchanged is minimal. 

o The number of operations/execution steps (thus the convergence 
time) needed to reach a new stable and consistent routing 
state is minimal. 

  
• Adaptivity: the capability of a routing protocol to adapt to 

topology dynamics (resulting from addition/removal of different 
percentage of links, nodes, autonomous systems/network partitions, 
and destination prefixes), traffic variability (that induces 
variability in the properties of the routing paths), and policy 
dynamics will be qualified as better than another one's if the 
following conditions are met:  

o Its convergence time to a stable and consistent routing state 
is shorter, 

o The processing capacity mobilized to reach that state is 
lesser, and 
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o The robustness of this new state over time is longer.    
 
• Availability: the characteristic properties of the resiliency 

/fault-tolerance mechanisms provided by different routing protocols 
will be qualified as better than another one's if the following 
conditions are met: 

o Its coverage (percentage of links/nodes that can be fully 
protected for all destinations, percentage of destinations 
that can be protected for all link/node failures) is higher,  

o Its mobilization of recovery resources for this coverage is 
lesser, and 

o The time to repair its routing paths under different network 
running conditions/failure events (including the detection, 
the notification, and the activation time) is lower. 
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4.3 Experimental Observation 
 
In the work related to WP3 Task 3.2, we observed the properties of routing 
trees captured by ego-centered measurements with tracertee from PlanetLab 
monitors, and their dynamics captured by radar measurements (iterated ego-
centered measurements) [LMOradar].  
 
This work led to the identification of key features that should be 
reproduced in measurement-based models of the Internet, of routing and of 
their dynamics [HLMevent], and will be used as criteria for assessment of 
future routing protocols and emulated environments. We summarize them 
briefly below. 
4.3.1 Node-based properties 
The first salient trait of ego-centered measurements is that the number of 
nodes (and links) in successive ego-centered measurements is very stable: 
it slightly oscillates around a mean value, with no notable change. The 
mean value itself may change during time, leading to different regimes, but 
it remains stable for wide periods. Fig.5 shows a typical example. 
 

 

 Fig.5: umber of distinct IP addresses seen at each round (blue) and during ten consecutive 
rounds(red) 

 
This does not mean that the nodes observed in each ego-centered view are 
always the same, though, as demonstrated by the plot of the number of 
distinct nodes in consecutive rounds of measurements (see Fig.5) and the 
plot of the number of distinct nodes observed since the beginning of the 
measurement (see Fig.6). 
 
This stability of the number of nodes of routing trees certainly is an 
important and desirable feature for protocol design. The growth of the 
total number of observed nodes with iterated measurements seems to be due 
to routing dynamics, and will be used as a lower bound for performances of 
future protocols, as current ones succeed in reaching this level of 
stability. 
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 Fig.6: umber of distinct IP addresses seen since the beginning of the measure (in black) and 
the number of IP addresses which were present at all rounds (in blue) 

4.3.2 Distance-oriented properties 
A key feature of the dynamics is the appearance of new links in the 
topology and their discovery (apparent appearance) by ego-centered 
measurements. In typical radar measurements, this may be quantified by 
computing the distribution of the distances between two nodes immediately 
before a link is discovered between them (a link which was previously not 
there or that we had not discovered). This distribution clearly shows that 
appearing links are between nodes at small distances from each other (and 
uneven distances are overrepresented because of the presence of diamonds). 
This is not surprising, but some appearing links are also between nodes 
which were previously very far from each other (up to 30 hops). 

Such features show that routing changes mostly are local (probably due to 
load balancing), which will be an important criteria for performance of new 
routing protocols. However, non-local changes also occur, and, again, real-
world observations provide indications of performances attained by current 
protocols to this regard. 
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5. Conclusion 
 
We conclude this deliverable by documenting the requirements on the various 
tools that will be required to conduct the different validation, and 
verification phase of the routing schemes that will be developed in the 
context of the EULER project as well as the evaluation and analysis of 
their performance.  
 
1. Tools requirements for formal verification and analysis (that will be 
conducted in Task 2.2) 
 
Formal verification aims to rigorously prove that some piece of soft- or 
hardware actually meets its requirements. Typically, this task is performed 
by formally specifying the intended behavior using mathematical notation 
and verifying that the code actually fulfills the formulas. As an aside, we 
would like to mention that we do not focus on model checking in the text 
below. The reason stems because model checking is most of the time either 
not exhaustive, or it takes too long time. Hence, performing model checking 
often boils down to extensive random testing. 
 
Thus, the work is split up in two parts: the first part describes exactly 
what the software should do by specifying its design. This seems rather 
straightforward but is actually the hardest part of the entire work. 
Indeed, most of the time, when we are designing complex systems from 
scratch, we actually do not know what we are aiming at. With hindsight, 
e.g. when designing software in a problem domain with which one has large 
experience, this is often conceived to be trivial but for new domains and 
without a priori insight this phase is typically very hard. 
 
Secondly, once the intended behavior of the program is specified, one can 
actually prove that a piece of code actually fulfills the requirements. 
Most of the time, this work is not too difficult as the specification 
should be clear by itself, such that corresponding code matches the 
specification easily. Most of the tools of common use support automatic 
code-generation from specifications, in the case that these specifications 
are constructive (also called intuition-driven). This means that one never 
uses proofs which show that some element fulfilling some condition does 
exist without actually exhibiting the element itself. 
 
Two remarks should be made at this point: both phases described here above 
typically go hand-in-hand, so that one never writes down a full 
specification without at least trying to prove some typical statements 
about it at the same time. Secondly, it is absolutely wrong to first design 
and to implement an algorithm, and only afterwards specifying it and trying 
to prove some properties about it. This is often an impossible task as one 
almost never programs in a way that lends itself to easy mathematical 
specification. In other terms, one should strive to an elegant mathematical 
formalization from the start on, instead of forcing code into such a model. 
 
To fulfill our needs we aim at selecting an appropriate formal 
specification and verification tool. Here below, we provide an overview of 
the current state-of-the-art tools. 
 

• PVS, the Prototype Verification System, is a freely available system 
of industrial strength to specify and verify soft- and hardware 
using a classical tableaux-style interface. It is very intuitive, 
both in its specification-language as well as in its prover-commands 
and -interface. It is programmed in LISP and can be fully extended 
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by your own strategies. It also allows the automatic execution of 
constructive specifications, although this feature is not officially 
supported. Everybody does it all the time, however. Please note that 
the code of the system's core is very large intricate, and allegedly 
nobody of the designers actually understands it anymore. 

 
• HOL, one of the first higher-order-logic implementations and for 

years the de-facto standard for formal verification using higher-
order-logics. The tool has grown very big and almost unmanageable, 
and most people using it do not understand the full proof-structure 
which was built up by the community anymore. This is not a problem, 
as everybody can easily let run the proof-checker which shows that 
the edifice in its entirety is still mathematically correct. 
Nevertheless, this uncomfortable situation has led part of the 
community to pursue new alleys, like HOL-Light. The system is 
programmed in Meta-Language (ML). 

 
• Isabelle is a generic framework for designing new proof tools with 

new logics, and so the instantiation we are talking about in this 
text should actually be written out fully as Isabelle/HOL. It is 
quite comparable to the mainstream HOL-system, has both its 
advantages and disadvantages, but also suffers from obscurity by 
size. Typically, it takes a long time before you actually get 
acquainted to these tools. 

 
• Perfect Developer aims at an easy-to-use, industrial proof tool for 

the masses. It does succeed to its design goals very well, although 
unfortunately the wider non-mathematically oriented community does 
not seem to value it like that. It can generate java, c# and c++ out 
of specifications. It is a commercial package, although for research 
purposes it's free of charge. 

 
• HOL-Light [HolL11] is another member of the HOL-family of proof 

tools, and aims explicitly at a clear codebase and lean 
implementations. The current version is implemented in OCaml, and 
boasts beautiful packages chock-full with nice mathematical theorems 
which are very handy while developing your own proofs. It has 
famously been used for validating the floating-point arithmetic 
procedures of INTEL-chips, and is currently used to validate the 
alleged proof of the Kepler Conjecture. As it is fully 
reprogrammable and easy-to-read, it is not difficult to get insight 
in its libraries in a short time. One can easily develop in it and 
extract executable code, and even change its underlying logic to 
another equivalent logic. 

 
As a conclusion, it is suggested to adopt HOL-Light for the task at hand. 
Nevertheless, the tool alone is not alone beatifying, as one should 
definitely start working on the specification and verification from the 
start on, before actually designing and implementing the algorithms. This 
being said, the level of specification is left up to each routing scheme. 
 
2. Tools requirements for performance evaluation and analysis (that will be 
conducted in Task 3.3) 
 
In order to evaluate the behavior (in particular, the performance) of the 
routing schemes through simulation, the following tools are required: 
 

• A generator of topologies representative of the Internet. This 
generator should be able to generate topologies satisfying a given 
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set of properties, either with a proof or with high probability. 
Multiple topology sizes are necessary: 

 
o Topologies of 10k nodes in order to observe rare events that 

might be hidden in smaller instances. 
 

o Topologies comprising of the order of 100 nodes in order to 
compare simulation and experimental results on the same 
topologies and scenario. 
 

o Topologies ranging from 100 to 10k nodes in order to evaluate 
the evolution of the performances under various scale of 
topology growth.   

 
• A set of tools to measure the properties of a given topology. This 

tool will be used for first testing if a given topology satisfies 
the properties it is claimed to satisfy, and second to evaluate the 
evolution of the topological properties under dynamic scenarios 
(addition/deletion of nodes/edges) and routing policy changes. 

 
• A dynamicity scenario generator. A dynamic scenario is a list of 

events (topology or policy changes). The tool should allow 
generation of realistic scenarios in order to evaluate the quality 
and evolution of the above mentioned metrics (e.g., convergence time 
after an edge deletion). 

 
• A dynamic routing model simulator (such as DRMSim) that given a 

routing scheme and topology allow to: 
 

o Build the routing tables starting from scratch 
 

o Load pre-computed routing tables and store computed one 
 

o Measure the performance metrics documented in this report 
 

o Perform experimentations with dynamic scenarios (the dynamic 
scenario is also an input) 

 
  The tool should thus allow comparing the behavior of various routing 

schemes under the same topology and dynamicity scenario. 
 
3. Tools requirements for emulated protocol component evaluation and 
analysis/ experimentation (that will be conducted in Task 4.3). Due to the 
dependency on the routing protocol specifics, the emulation platform, and 
the properties of the experimental facility, these requirements will be 
documented once the routing protocol components will be designed following 
task T2.2 outcomes and the experimental execution scenarios determined as 
part of task T4.2. 
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