
Seventh FRAMEWORK PROGRAMME
FP7-ICT-2009-5 - ICT-2009-1.6

Future Internet experimentally-driven research

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D4.1
“Performance objectives, evaluation

criteria and metrics”

Project description
Project acronym: EULER
Project full title: Experimental UpdateLess Evolutive Routing
Grant Agreement no.: 258307
Document Properties
Number: FP7-ICT-2009-5-1.6-258307-D4.1
Title: Performance Objectives, Evaluation Criteria, and Metrics
Responsible: D.Papadimitriou (Alcatel-Lucent Bell)
Editor(s): D.Papadimitriou (Alcatal-Lucent Bell)
Reviewer(s): S.Sahhaf (IBBT)
Dissemination level: Public (PU)
Version: 1.0 - Date of preparation: April 30, 2011

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 2 / 39

D4.1 - Performance objectives, evaluation, criteria
and metrics

Executive Summary
In the context of the EULER project, several routing models and algorithms
applicable to the Internet will be developed and designed. The range of
routing paradigms that the project will investigate is relatively large; it
covers a spectrum ranging from dynamic compact routing to greedy routing
and its variants, e.g., updateful and updateless. Further, by relying on
the results of investigations performed in WP3, these paradigms are
expected to take benefit of the statistical and structural properties of
the Internet topology and better characterization of its dynamics.
Ultimately, the resulting routing paradigms would lead to distributed
routing schemes that are specialized for the Internet while taking into
account its dynamics and its continuous evolution. The aim of this document
is to provide a common set of functional and performance objectives that
each routing model and algorithm developed in the context of the EULER
project shall meet. Next this document details the performance criteria to
determine when a given routing scheme actually meets its objectives. It
also details the performance metrics that will have to be measured either
by simulation and/or by emulation in order to set the requirements on the
corresponding measurement and scenario execution tools. Next, this document
develops the experimental evaluation criteria and metrics will be exploited
to determine and measure if the emulated routing protocol components that
will be developed comply with both functional and performance objectives.
Note that in order to consider such performance evaluation by emulation as
scientifically valid, the experimental methodology shall lead to
verifiable, reliable, repeatable and reproducible experimental results.
Moreover, in order to perform verifiable and reliable experimental
comparisons between the functionality and the performance offered by the
different routing protocol components that will be emulated, we propose a
framework to perform experimental comparison of routing protocols. Finally,
this document concludes by detailing the requirements on the various tools
that will be required to conduct the different validation, and verification
phases of the routing schemes that will be developed in the context of the
EULER project as well as the evaluation and analysis of their performance.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 3 / 39

List of authors
Affiliation Author
Alcatel-Lucent Bell D.Papadimitriou
IBBT W.Tavernier, P.Audenaert
INRIA N.Hanusse, A.Lancin
RACTI I.Caragiannis
UPC D.Careglio
UPMC F.Tarissan

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 4 / 39

Table of Contents

Executive Summary .. 2
List of authors .. 3
Table of Contents .. 4
Structure of the Document .. 5
Terminology .. 6
1. Introduction .. 8
2. Functional Evaluation and Analysis 9

2.1 Routing functionality ... 10
3. Performance Evaluation and Analysis 12

3.1 Performance Objectives .. 12
3.1.1 Scalability ... 12
3.1.2 Complexity .. 12
3.1.3 Routing Quality ... 13
3.1.4 Adaptivity .. 13
3.1.5 Availability .. 14
3.1.6 Performance Objectives from Algorithmic Game Theory............ 16
3.2 Performance Criteria .. 17
3.2.1 Scalability ... 17
3.2.2 Computational Complexity....................................... 17
3.2.3 Quality ... 18
3.2.4 Adaptivity .. 18
3.2.5 Availability .. 18
3.2.6 Performance Criteria from Algorithmic Game Theory.............. 19
3.3 Performance Metrics ... 20
3.3.1 Stretch ... 20
3.3.2 Routing Table Entries Storage.................................. 20
3.3.3 Computational Complexity....................................... 20
3.3.4 Communication/Messaging.. 20
3.3.5 Convergence ... 21
3.3.6 Repair Coverage ... 21
3.3.7 Multicast support ... 21
3.3.8 Effects on traffic spatio-temporal properties.................. 22
3.3.9 Game Theoretic Metrics... 23
3.4 Performance Comparison .. 24
3.4.1 Dataset ... 24
3.4.2 Models .. 24
3.4.3 Traces Analysis ... 25

4. Experimental Analysis .. 26
4.1 Experimental Evaluation ... 26
4.1.1 Objectives .. 26
4.1.2 Criteria .. 27
4.1.3 Metrics ... 28
4.2 Experimental Comparison ... 30
4.2.1 Comparison Objectives.. 30
4.2.2 Comparison Criteria and Metrics................................ 31
4.3 Experimental Observation .. 34
4.3.1 Node-based properties.. 34
4.3.2 Distance-oriented properties................................... 35

5. Conclusion ... 36
References .. 39

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 5 / 39

Structure of the Document
This document is organized in three main sections. The first section
(Section 2) details the objectives that the EULER project will realize in
terms of functional evaluation and analysis. The second section (Section 3)
considers the objectives in terms of the performance evaluation and
analysis. The last section (Section 4), the objectives are explained in
relation to experimental analysis (evaluation and comparison). Each of
these parts details four elements: objectives, criteria, metrics, and
comparison (when applicable). The performance evaluation and analysis will
be conducted as part of task T2.2 (by means of formal verification methods)
and as part of task T3.3 (by means of simulation using the simulation tools
that task T4.2 will develop). The experimental evaluation and analysis will
be conducted as part of task T4.3 by means of routing protocol component
emulation and the measurement tools that task T4.2 will develop.

The relationships between these tasks and the specification of the routing
system architecture, the routing model(s), and the design of the
corresponding algorithms (as part of the task T2.2 of WP2) are depicted in
Fig.1-3.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 6 / 39

Terminology
The following terms are used throughout this document:

Architecture: the architecture of a distributed computational system is
formally described by a set of function, objects/information, and state
together with their behavior, structure, composition, relationships, and
spatio-temporal distribution which characterize its domain of
applicability. The specification of the associated functional,
object/informational, and state models leads to an architectural model
comprising a set of components (procedures, data structures, state
machines, etc.), the description of their respective behavior and structure
as well as the characterization of their interactions (messages, calls,
etc.) describing their connection(s)/relation(s).

(Design) Principles: suggests normative rules/guidelines on how a
designer/an architect can best structure the various architectural
components. Design principles also describe the fundamental and time
invariant laws underlying the working of an engineered artifact.

Pattern or scheme: refers to a set of models that are based on the same
"principles" and thereby sharing the same essential and global
characteristics as well as structuring/cohesive elements.

Model: a model is formally defined as a systematic and logical description
of complex system by means of a simplified abstract representation. In the
present context the routing model comprises the procedural model together
with its associated data model, state machine model, and the data
communication model which characterizes the interactions and interfaces
(i.e. messages, calls, events, etc.) between the elements of the model
(i.e. procedures, data structures, state machines).

Function: characteristic action (verb) a system performs to transform
available inputs to the desired outputs.

Procedure: method to perform a given task/action specified as a sequence of
discrete steps (each step being a finite instruction or operation, finite
meaning represented by a finite number of symbols) which have to be
executed in a regular definite sequence in order to always obtain the same
result under the same conditions. Note that in the routing system modeling
context, procedures are devised as sequences of operations that the routing
function is conjectured to perform as it processes routing information.

Algorithm: consists of sequences of steps (operations, instructions,
statements) for transforming inputs (pre-conditions) to outputs (post-
conditions). An algorithm provides the description of the effective
computational procedures composing the procedural model. The pre-conditions
(of the algorithm) provide the description of the inputs, including their
types as well as any relationships or properties that they must satisfy
before execution. The post-conditions (of the algorithm) provide the
description of the outputs, including all relationships and properties that
must be satisfied (after execution).

Protocol: a set of procedures (together with their associated data
structures and state machines) and message/data format.

Functional analysis: In the early design phase, functional analysis refers
to the systematic process of identifying, describing, and relating the

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 7 / 39

functions a system must perform (thus the functions that need to be
included in the system) in order to meet its objectives. Functional
analysis does not address how these functions will be performed. Functional
analysis deals with i) the top-level functions that need to be performed by
the system (identification), ii) where these functions need to be performed
(distribution/space); iii) how often they need to be performed (time); iv)
under what operational concept and environmental conditions. In the later
design phase, functional analysis proceeds to lower levels of the system
decomposition by defining the system functional design, its inputs/outputs,
and its various interfaces. It then refers to a methodology part of the
design process that systematically describes the automated processing that
a complex system must perform to transform available inputs to the desired
outputs.

Performance analysis: consists in measuring (by means of well specified
metrics), evaluating, and understanding system performance to decide (based
on well defined criteria) if designed system meets its performance
objectives.

Sensitivity analysis: attempts to identify how responsive the results of an
experimental model are to changes in its parameters: this is an important
tool for achieving confidence in experimentation and making its results
credible. The general goal of Sensitivity Analysis is to characterize,
qualitatively or quantitatively, what impact on a system a particular
variable will have if it differs from what was previously assumed. In other
words, by using Sensitivity Analysis, the analyst/the modeler can determine
how changes in one or several parameters will impact the target variable.

Scientific validity: includes verifiability, reliability, repeatability and
reproducibility. See definitions here below.

Verifiability: an experiment is verifiable if the outcomes can be verified
against a formal model, meaning they match models that describe the outcome
as a function of the experiment input parameter. In the case of functional
analysis, experiment flow and outcome match a prescribed list of actions
and/or output.

Reliability: reliability means that the experiment and outcome are valid
for a certain time run. As a minimum requirement, this means that the
components of the experiment remain functional (i.e., do not crash or break
down) during this time period. Furthermore, results and outcomes are
reliable if they remain consistent during that time period (within a
certain well-defined range).

Repeatability: the term repeatability is used when repeating the experiment
within the same experimental scenario, i.e., same platform, experimental
facility, input parameters, etc. The experiment is repeatable when
different runs of the experiment (repetitions) yield the same outcome and
results. Correct experimental methodology and usage of models, algorithms
and output data processing is required in order to guarantee repeatability.

Reproducibility: an experiment is reproducible when the same experiment can
be reproduced in different experimental setups, e.g., different platforms,
different experimental facilities. Typically, reproducibility comes into
play when a third party performs the same experiment in order to verify
scientific validity of the outcome and results of the experimental
scenario.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 8 / 39

1. Introduction

In the context of the EULER project, several routing models and algorithms
applicable to the Internet will be developed and designed. The range of
routing paradigms that the project will investigate is relatively large; it
covers a spectrum ranging from dynamic compact routing to greedy routing
and its variants, e.g., updateful and updateless. Further, by relying on
the results of investigations performed in WP3, these paradigms are
expected to take benefit of the statistical and structural properties of
the Internet topology and better characterization of its dynamics.
Ultimately, the resulting routing paradigms would lead to distributed
routing schemes that are specialized for the Internet while taking into
account its dynamics and its continuous evolution.

The aim of this document is to provide a common set of functional and
performance objectives that each routing model and algorithm developed in
the context of the EULER project shall meet. Indeed, over time sufficient
experience has been acquired to devise the functionality any routing scheme
should deliver and the performance objectives it is required to meet. Next
this document details the performance criteria to determine when a given
routing scheme actually meets its objectives. It also details the
performance metrics that will have to be measured either by simulation
and/or by emulation in order to set the requirements on the corresponding
measurement tools. Indeed, simulation and emulation experiments serve
different purposes but are also subject to different constraints. For
instance, executing emulated routing protocol components on experimental
facilities requires accounting for the physical limits of the facility in
terms of, e.g., number of nodes, processing/CPU and memory available at
each node, and number of links. Experimental evaluation criteria and
metrics will be used to determine and measure if the emulated routing
protocol components that will be developed comply with both functional and
performance objectives. These experimental evaluation criteria and metrics
drive an important part of the experimental work that will be conducted as
part of this experimental project. Moreover, in order to perform fair and
reliable experimental comparisons between the functionality and performance
offered by the different routing protocol components that will be emulated,
a section of this document is dedicated to the experimental comparison of
different routing protocols.

Finally, we conclude this deliverable by documenting the requirements on
the various tools that will be required to conduct the different
validation, and verification phases of the routing schemes that will be
developed in the context of the EULER project as well as the evaluation and
analysis of their performance.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 9 / 39

2. Functional Evaluation and Analysis

In the early design phase, functional analysis refers to the systematic
process of identifying, describing, and relating the functions a system
must perform (thus the functions that need to be included in the system) in
order to meet its objectives. It does not address how these functions will
be performed. Functional analysis deals with i) the top-level functions
that need to be performed by the system (identification), ii) where these
functions need to be performed (distribution/space); iii) how often they
need to be performed (time); iv) under what operational concept and
environmental conditions.

The basic idea of functional analysis is that the system is viewed as
computing a function (or, more generally, as solving an information
processing problem). Following the definition provided by [Buede2000], a
function is a transformation process that changes inputs into outputs. The
system itself is modeled as a single, top-level function that can be
decomposed into a hierarchy of subfunctions. The top-level function is
partitioned into a set of subfunctions that use the same inputs and produce
the same outputs as the top-level function. Functional analysis assumes
that processing can be explained by iteratively decomposing the top-level
complex function into a set of simpler functions (subfunctions) that are
computed by an organized sub-system. Each of these subfunctions can then be
partitioned further. The decomposition process continues until atomic
functions are attained. Atomic functions are functions that by definition
can not be further decomposed. The expectation is that when this type of
decomposition is performed, the subfunctions taken individually will be
simpler than the original functions.

Classically, there are four elements to be addressed by functional analysis
approach. The first one, the hierarchical decomposition of the top-level
function into sub-functions enables to identify the functions that need to
be performed by the routing system.

Fig.4: Hierarchical decomposition of the routing functional area

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 10 / 39

2.1 Routing functionality

Routing functionality is the combination of all functions that transform
topology and/or routing information into routing paths that populates local
routing tables. In turn, these entries steer the forwarding functionality.
Typically, these functions are combined into a single component, referred
to as the routing engine that comprises the following functions:

The FCAPS acronym denotes the set of routing system management functions
including Configuration management, Accounting/Administration, Performance
management, and Security management. Being mainly routing scheme specific
their usage will be considered on per-protocol basis.

Discovery:

• Local discovery (also referred to as neighbor discovery):
functionality enabling the acquisition/dissemination of knowledge
about the local environment (neighborhood) to local entities
including local and remote interfaces (and their properties),
incident links (and their properties), and nodes adjacent to
incident links (and their properties).

• Remote discovery (also referred to as network discovery):
functionality enabling the acquisition/dissemination of knowledge
about the non-local environment from/to remote entities including
remote links/nodes, paths and/or distances to reachable
destinations.

Structuring of topology information units and/or routing information units:

• Embedding: given metric spaces (X,dX) and (Y,dY), where dX and dY are
distance function, a mapping function f: X → Y, x → y=f(x) is called
an embedding. An embedding is called distance-preserving if for all
x, y ∈ X, dX(x,y) = dY(f(x),f(y)).

• Composition: production of combinations from topology and/or routing
information units so as to build more complex topology and/or
routing information units (called structures).

• Mining: includes all functions enabling to find (hidden)
relationships between routing and/or topology information units,
features/properties and classes in these information units.

Routing path resolution:

• Computation: function applied to (structured) routing information
units and/or (structured) topology information units to produce
routing paths which can be used to derive routing table entries.
Computation can be seen as the operation of finding the routing path
that minimizes/maximizes a (multi-)constrained (multi-)objective
function. Computation functions can be sub-divided into:

o Global computation: for instance, application of the Dijkstra
shortest-path tree algorithm on the entire link state topology

o Incremental computation: by making use of the structure of the
previously computed shortest-path tree, this approach
minimizes the changes to the topology of an existing shortest-
path tree when some link states in the network have changed

o Sequential computation: makes use of intermediate computation
steps before computing routing paths to destinations

• Selection: either by enforcing selection rules, by applying filters,
or by multi-criteria decision on a set of routing information units
(typically routing paths with associated attributes). By means of
this processing, a limited number of routing paths is selected from
which routing table entries can be derived.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 11 / 39

Additional functions part of the routing functional area include

• Transfer of routing table entries: a mechanism allowing to export
the routing table entries towards the forwarding engine component

• Trigger for renewal/update of the local routing states based on
external or internal events.

Associated functionality to the routing functional area can be classified
as follows:

• Identification: the functionality that assigns identifiers to nodes.
These names can be either topology-dependent (locators) or topology-
independent (names); a locator can take the form of a label, a
topology-dependent address or a coordinate.

• Resolution: translation (or mapping) from the name of the
destination to its associated locator.

• Location: the functionality allowing destinations to be located by
means of the resolution function.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 12 / 39

3. Performance Evaluation and Analysis

This section describes the performance objectives, criteria and metrics to
be met by candidate routing models/algorithms. These performance criteria
and metrics will drive the performance evaluation of the routing models and
algorithms to be conducted in the context of the task 2.2 (by means of
formal methods/techniques) and task T3.3 (by means of simulation). Indeed,
tasks T2.2 and T3.3 shall be distinguished from the experimental analysis
(comprising both evaluation and comparison) of routing protocol components
that will be conducted by means of emulation/prototypes as part of task
T4.3.

This section also analyzes the fundamental and unavoidable trade-offs that
exist between some of these performance criteria and metrics. This shall be
taken into account when specifying routing procedures in context of task
T2.1 and designing the corresponding algorithms in the context of task
T2.2. For instance the memory space - routing path stretch tradeoff is at
the inception of compact routing schemes.

3.1 Performance Objectives

This section details the performance objectives that the routing algorithms
that will be designed in the context of WP2 task T2.2 shall meet. We
recognize the fundamental tradeoffs that exist between these objectives.
3.1.1 Scalability

Definition: ability of a computational system (hardware or software) to
continue to function (without making changes to the system) under
satisfactory and well specified bounds, i.e., without affecting its
performance, when its input is changed in size or volume or in their
respective rate of variation. Examples include increasing number of
nodes/AS, increasing number of links, increasing number of hosts/prefixes.

Quantitative objective: the number of reachable nodes/hosts the routing
scheme/model shall support should be of the order of 109. So, at least 3
order of magnitudes higher than the current routing protocols such as
Border Gateway Protocol (BGP) supports today (about 3.5 106). The number of
Autonomous Systems (AS), which is approximately of the order of 3.5 104,
should be able to scale up to 3.5 107. In proportion, each AS containing in
average 10 nodes, the number of nodes to be supported should be of the
order of 108.
3.1.2 Complexity

Definition: by complexity we refer here to the computational complexity and
algorithmic complexity of the routing algorithm.

• Computational complexity: a measure of the computational resources
needed to solve computational problems. Computational resources are
measured in terms of either time (i.e., number of elementary
computational steps per second) or space (i.e., size of memory
usually measured in bits or bytes) or some combination of the two.

• Kolmogorov complexity (a.k.a. program-size complexity) a measure of
complexity that quantifies how complex a system is in terms of the
length of the shortest computer program, or set of algorithms, need
to completely describe the system. In other terms, this measure of
complexity qualifies how small a model of a given system is

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 13 / 39

necessary and sufficient to capture the essential patterns of that
system. Formally, the Kolmogorov complexity of a string x is the
length of the smallest program p that outputs x, relative to some
model of computation. That is, Cf(x) = minp {|p| : f(p) = x} for some computer f; Cf(x) is the minimal length of a program for f (without additional input) to compute the output x. This definition can be
extended to account for the input string y by defining the
conditional Kolmogorov complexity of a string x, relative to a
string y and a model of computation f as Cf(x|y) = min{|p| : Cf(p,y) = x}. Cf(x|y) is the size of the minimal program for x when started with input y.

Quantitative objective: the computation complexity (both in time and space)
should grow sublinearly with the number of reachable nodes/prefixes.
3.1.3 Routing Quality

Definition: the quality of the routing paths as produced by the routing
algorithm (both in stationary and non-stationary conditions) as determined
by their stretch, stability, and convergence properties

Quantitative objectives related to routing quality cover:

• Path cost/length: Minimize the ratio between the cost/length of the
routing path(s) as produced by the routing scheme and the minimum
path cost/length for the same source-destination pair. Note that
resilient/fault-tolerant schemes may further deteriorate this ratio
(in particular, for pre-provisioned schemes enforcing the
disjointness of protected/ protecting routing path pairs before
failure occurrence).

• Stability: the stability properties of the individual routing
entries and routing table should be such that they minimize
perturbation resulting from i) the exploration of the routing state
space (compared to the BGP uninformed path exploration intrinsic to
shortest-path vector algorithm) and ii) the routing policies
interactions (compared to BGP routing policy interactions that can
lead to non-deterministic and unintended but stable routing states,
and "dispute wheels", i.e., non-deterministic and unintended but
unstable states).

• Convergence: upon occurrence of an instability event, e.g., physical
topology change, routing topology change or protocol change, the
convergence properties of the routing system should minimize the
number of operations/execution steps (expressing the convergence
time) needed to reach a new routing state. This new routing state
results from the local re-computation and/or re-selection of new
routing paths. The properties of this new state shall verify are i)
consistency (do not result in any forwarding loop due to this event)
and ii) globally stable (do not lead to any subsequent re-
computation of routing table entries due to this event).

3.1.4 Adaptivity

Definition: the capacity of the routing system to adapt/react in a timely
and cost-effective manner when internal or external events occur that
affects its value delivery. Adaptivity to topology changes (due to network
engineering e.g. add/remove link or node or network failures) is referred
to as structural adaptivity. Next, adaptivity is also concerned with the
spatio-temporal variability of the traffic (leading to traffic engineering
decisions and/or network engineering decisions) and with its ability to

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 14 / 39

support arbitrary non-technical constraints and/or decisions/rules (driven
by cost minimization, profit/revenue maximization, etc.).

Quantitative objectives:

• Structural adaptivity: capability of the routing models/algorithms
to adapt to short- and long-term topology dynamics (resulting, e.g.,
from the addition or removal of different percentage of links,
nodes, autonomous systems/network partitions, and destination
prefixes) while minimizing the convergence time to a stable and
consistent routing state as well as the associated processing
capacity mobilized to reach that state together with the
robustness/longevity of this state over time.

• Traffic adaptivity: capability of the routing models/algorithms to
adapt to short- and long-term traffic variability/dynamics by
minimizing the convergence time to a stable and consistent routing
state as well as the associated processing capacity mobilized to
reach that state together with the robustness/longevity of this
state over time.

• Economic/Cost adaptivity: capability of the routing
models/algorithms to adapt to short- and long-term routing policy
dynamics by minimizing the convergence time to a stable and
consistent routing state as well as the associated processing
capacity mobilized to reach that state together with the
robustness/longevity of this state over time

• Note: a priori there is no requirement on how these objectives are
to be met by the routing model/algorithm.

3.1.5 Availability

Definition: Availability is defined as the probability that the system is
operating properly when it is requested for use, i.e., the probability that
a system is not in a failure state or undergoing a repair action when it
needs to be used. Availability is expressed as a function of reliability
and maintainability.

• Reliability: probability Pr that a system or component fails within a given period of time. Reliability is a function of time that
expresses the probability at time t+1 that a system is still
working, given that it was working at time t. Reliability represents
the probability of components and systems to perform their required
functions for a desired period of time without failure in specified
environments with a desired confidence. Reliability, in itself, does
not account for any repair actions that may take place. Reliability
accounts for the time that it will take the component or system to
fail while it is operating. It does not reflect how long it will
take to get the unit under repair back into working condition.

• Maintainability: probability Pm that a system or component will be retained in or restored to a specified condition within a given

period of time.

The notion of availability depends on what types of downtimes are
considered in the performance analysis. As a result, there are two main
classifications of availability:

• Time-based classification:
o Point (instantaneous) availability: probability that a system

(or component) will be operational at any random time, t.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 15 / 39

Unlike reliability, the instantaneous availability measure
incorporates maintainability information.

o Average up-time availability (mean availability): proportion
of time during a mission or time-period that the system is
available for use. It represents the mean value of the
instantaneous availability function over the period T.

o Steady state availability: limit of the instantaneous
availability function as time approaches infinity.

• Engineering classification:

o Design/system availability used in system engineering is
defined as the ratio MTBF / (MTBF + MTTR) where MTBF denotes
the Mean time Between Failure and MTTR the Mean Time To
Repair. The MTBF is inversely proportional to the probability
Pr: MTBF ~ 1/Pr. The MTTR is inversely proportional to the
probability Pm: MTTR ~ 1/Pm o Operational availability used in network engineering is
defined as the ratio MTBM / (MTBM + MDT) where MTBM denotes
the Mean time Between Maintenance and MDT the Mean Down Time.
Operational availability is a measure of the uptime that is
the total time the system was functioning between two
experienced sources of downtime (such as administrative
downtime, logistic downtime, etc.) during the operating cycle
that is the overall time period of operation being
investigated.

Improving routing system availability implies thus to improve the mean time
to repair and more generally the maintainability capabilities of the
routing system by means of resiliency/fault-tolerance techniques.
Resiliency is the ability of a system to reach (rapidly) and maintain an
acceptable level of functioning and structure with one or more of its
components malfunctioning. Note that resiliency does not refer to a "full"
but an "acceptable" level of functioning and does not refer to the
correction of these malfunctioning components. Resiliency mechanisms are
characterized in terms of the level of protection they provide (e.g., full
protection against single failures, best effort protection, traffic pre-
emption in case of failure, etc.) and the time required to activate them in
case of topological failure. Coverage, mobilization of recovery resources,
and activation time enable to define quantitative objectives:

• Maximize the percentage of links (or nodes) that can be fully
protected (i.e., for all destinations) while minimizing the recovery
resources (protecting path length/cost). Note that some percentage
of the possible failures may be identified as being un-protectable.

• Maximize the percentage of destinations that can be protected for
all link (or node) failures while minimizing the recovery resources
(protecting path length/cost). Note that some percentage of
destinations may be identified as being un-protectable.

• Maximize the percentage of the total potential failure cases
(destination x failures) that are protected while minimizing the
recovery resources (protecting path length/cost).

• Minimize the difference between the number of packet flowing through
the network towards their destination before and after failure
occurrence, i.e., maximize the percentage of packets passing through
the network that will continue to reach their destination by using
the protecting paths.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 16 / 39

3.1.6 Performance Objectives from Algorithmic Game Theory

Routing in the presence of selfish and possibly antagonistic participants
is one of the first (see [KP99]) problems examined under the lens of
Algorithmic Game Theory (AGT) and still remains a very active research area
[NRTV07]. Routing on the Internet and Internet-like networks is a prominent
example of problems within this research area and usually depends on the
policy of the entities involved. This certainly holds for the existing
protocols (e.g., BGP) but is also expected to be true for new protocols
that may be developed within EULER. For example, the contents of the
routing table of a router affect the amount of traffic this router will
handle and, hence, under the hypothesis of rational behavior by the
router's administrator, it is reasonable to assume that these contents are
edited so that the traffic handled is minimized. In this sense, the
entities involved in routing are engaged in a strategic game; each such
entity acts as a player and aims to select a strategy (e.g., the contents
of the routing table in our example) that minimizes her cost (or maximize
her benefit) given the strategies of the other players.

1) Existence of Equilibria

Definition: Nash equilibria [Nas50] correspond to stable states in which no
participating entity has an incentive to alter her strategy/action (e.g.,
the routing path it has chosen) assuming that the remaining participants do
not deviate. Clearly, such states may be different than the optimal state.
In pure Nash equilibria, all players follow pure (deterministic)
strategies, while in mixed Nash equilibria players are allowed to use
probabilistic strategies (i.e., probability distributions over pure
strategies). Pure and mixed Nash equilibria correspond to settings where
participating entities are assumed to know in advance the strategy followed
by other participants. A more natural setting is when initially the players
have no knowledge of the choices made by other players and have to learn
them by observing their behavior. In such a setting, the notions of
correlated and coarse correlated equilibria can be viewed as
generalizations of mixed Nash equilibria, where the players have a joint
probability distribution instead of independent ones. Informally, in both
settings, a mediator draws a strategy vector from a publicly known
distribution and secretly informs each player of her suggested strategy. If
no player has an incentive to deviate from the suggested strategy, then
this is a correlated equilibrium [Aum74], while if no player has a pure
strategy that he can always follow, irrespective of the outcome, and reduce
his expected cost, then this is a coarse correlated equilibrium ([MV78],
see also [You04]). Even though mixed Nash equilibria (and, hence, also
correlated and coarse correlated) always exist (due to the theorem of John
F.Nash [Nas50]), the existence of pure Nash equilibria is not always
guaranteed. Pure and mixed Nash equilibria are solution concepts in full
information settings, where it is assumed that players have complete
knowledge of the game played, e.g., they are aware of the demand of other
players. A more realistic concept is that of incomplete information (or
Bayesian) games. Bayes-Nash equilibria [Har67] correspond to stable states
in such settings where participating entities have "beliefs" about certain
characteristics of other entities.

Quantitative objectives: To study the impact of the policy of AS
administrators and whether the corresponding policy-induced games exhibit
stable states (and of which type).

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 17 / 39

2) Time to Equilibrium

Definition: Consider an arbitrary initial state. If all players are
satisfied and have no incentive to deviate, then this state corresponds to
equilibrium, otherwise certain players will prefer to change their
strategy. Thus, the system reaches a new state, and, similarly, this
process may continue forever (in the case of loops) or may reach
equilibrium. If this process is guaranteed to reach an equilibrium starting
from any initial state, then the game satisfies a convergence property.
Since at any moment more than one player may wish to deviate, no
assumptions are made with respect to the order or priority of
moves/deviations.

Quantitative objectives: the number of rounds (alternatively, moves)
required to reach equilibrium.

3) Efficiency of Equilibria

Definition: the inherent selfishness of participating entities may lead to
stable states that differ from what would be optimal from a designer's
point of view. The notion of efficiency captures the degradation of the
system performance due to this selfishness.

Quantitative objectives: the ratio of the equilibrium cost over the optimal
cost.

3.2 Performance Criteria

This section details the performance criteria that will be considered for
determining whether a given routing model or scheme/algorithm actually
meets its performance objectives or not.
3.2.1 Scalability

The scalability of a system is measured by the rate x state x size of input
that the system can sustain when running using a given number of resource
units (for processing and storage). In the distributed routing context,
scalability is measured by i) the memory space consumed to store the
routing information, ii) the memory space consumed to store the resulting
routing table entries, and iii) sustainable rate of communication messages
(that result in re-computation and/or replacement of the routing table
entries).

Criteria: the memory space required to store the routing table entries
should scale better than n, the number of (abstract) nodes (and be
preferably of the order of log n, i.e., the routing scheme should produce
sub-linear routing table size. The routing state update rate is dependent
on routing scheme response to external events (reachability, topology
and/or traffic variations) and also on routing scheme specifics.
3.2.2 Computational Complexity

The computational complexity of a routing algorithm is measured by the
complexity in time and space/resource.

Criteria: the number of operations/execution steps (expressing the
computational time) needed to (re-)compute a (set of) routing table entries
should be sublinear in the input size. This size of the input depends on

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 18 / 39

the topology properties such as the number of nodes/links, the number of
paths/prefixes, network diameter, etc.
3.2.3 Quality
The quality of a routing system and thus the routing model/algorithm that
sustains it, is measured by

• The stretch of the routes produced by the routing algorithm in
stationary and non-stationary/variable conditions (in case of
routing information or protocol operation change)

• The stability of the individual routing entries and routing table
(the number of routing table updates before and after routing
information or protocol operation change)

• The convergence time of the individual routing states

Criteria are respectively the following

• The routing path length/cost should be as close as possible to the
shortest routing path length/cost (both in stationary and non-
stationary conditions). Ideally after reaching a fraction above
stretch 1, a substantial amount of the routing paths produced by the
routing schemes and nodes should be covered).

• Upon local routing state change, decrease number/rate of
communication/routing update message (or variation of their
attributes) to downstream neighbors and decrease variation of local
routing state upon reception of such message(s).

• Decrease the number of operations/execution steps (thus the
convergence time) needed to reach a new stable and consistent
routing state (compared to BGP behavior for the same topology and
the same reachable prefix); in absolute terms, convergence to such
stable state should be reached in polynomial (preferably linear)
time.

3.2.4 Adaptivity

Being topology- traffic- or cost-driven, adaptivity is measured by the
convergence time to a stable and consistent routing state as well as the
associated processing capacity mobilized to reach that state together with
the robustness/longevity of this state over time.

Criteria: when converging to a short-live state, the routing algorithm
shall only require updating the affected routing state(s) and the updates
performed within the time interval needed for the updated routing and/or
topology information units to reach the concerned nodes. On the other hand,
when converging to a long-live state, the routing algorithm may require
updating not directly affected routing state(s) and may have to perform
these updates during a larger time interval than the one needed for the
updated routing and/or topology information units to reach the directly
concerned nodes. In the latter, the routing algorithm must provide the
means to converge to a new stable and consistent long-live routing state
before the next internal or external event occurs.
3.2.5 Availability

The routing system availability is measured by the ratio MTBF / (MTBF +
MTTR) where MTBF is the Mean time between failure and MTTR the Mean Time To
Repair of the routing table entries and associated forwarding paths.

Criteria: the MTTR of forwarding paths resulting from links/nodes failure
must be short enough (while minimizing the mobilization of protecting

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 19 / 39

resources) so that the difference between the number of packet flowing
through the network towards their destination before and after failure
occurrence is negligible and can be recovered by upper layers. Moreover,
the coverage (percentage of links/nodes that can be fully protected for all
destinations, percentage of that can be protected for all link/node
failures) should be optimized against the recovery resources mobilized.
3.2.6 Performance Criteria from Algorithmic Game Theory

1. Potential functions

Definition: A potential function takes as input a state of the game and
returns a number. More importantly, a potential function entails the
incentive of all participating entities to deviate from the current state;
this leads to the concept of potential games [MS96]. The potential function
is a useful tool to analyze equilibrium properties of games and the set of
pure Nash equilibria can be found by simply locating the local optima of
the potential function.

Criteria: Existence of potential functions. Preferably, the potential
functions should be computable in polynomial time.

2. Price of anarchy

Definition: The price of anarchy ([KP99, see also [Pap01]) for a class of
equilibria corresponds to the worst-case efficiency of equilibria of the
given class. In other words, it denotes the worst-case deterioration of the
system performance due to selfish behavior and lack of coordination. The
price of anarchy is measured by the ratio of the worst equilibrium cost
over the optimal cost.

Criteria: Low (e.g., constant) price of anarchy.

3. Price of stability

Definition: The price of stability [ADK04+] for a class of equilibria
corresponds to the best-case efficiency of equilibria of the given class.
In other words, it denotes the best-case deterioration of the system
performance due to selfish behavior and denotes the best efficiency that
can be attained by a coordinator/designer that is able to propose stable
states to the participating entities (e.g., specific paths for routing).
The price of stability is measured by the ratio of the best equilibrium
cost over the optimal cost.

Criteria: Low (e.g., close to 1) price of stability.

4. Time to Equilibrium

Definition: the process of reaching a state corresponding to an equilibrium
starting from arbitrary initial states. Since at any moment more than one
player may wish to deviate, no assumptions are made with respect to the
order or priority of moves. The time to equilibrium is measured by the
number of rounds/moves required in order to reach equilibrium.

Criteria: Convergence to equilibria in polynomial (preferably linear) time.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 20 / 39

3.3 Performance Metrics

Performance metrics identified for the measurement of the routing scheme/
algorithm performance are:
3.3.1 Stretch

We distinguish between the multiplicative and additive stretch of the
routing paths produced by a routing scheme:

• Multiplicative stretch (of a routing scheme) is defined as the ratio
between the cost/length of the routing path(s) as produced by the
routing scheme and the minimum path cost/length for the same source-
destination pair. Intuitively, the stretch of a routing scheme
provides a quality measure of the path cost/length increase it
produces, compared to the shortest paths. Shortest path routing
schemes either AS-path length based (path vector routing) or cost-
metric based (link-state routing) are stretch-1. This metric is
interesting to measure because compact routing schemes that produce
reduced routing tables, are not always able to choose the minimum
cost/length path for a given destination. On the other hand, the
routing scheme should favor computation and/or selection of routes
whose stretch remains closer to 1.

• Additive stretch (of a routing scheme) is defined as the difference

in number cost/length between the routing path(s) as produced by the
routing scheme and the minimum path cost/length for the same source-
destination pair.

3.3.2 Routing Table Entries Storage

This metric measure the storage capacity required to store the routing
table entries (it thus measures the number of entries and their respective
size):

• Number of (local) routing table entries, equivalently the number of
active routing states

• Size of the locally stored routing table entries expressed in terms

of memory-bit space consumed to store these entries
3.3.3 Computational Complexity

Computational complexity measures the computational resources required for
the (re-)computation of routing table entries in terms of time and space:

• Time complexity: number of operations/execution steps (expressing
the computational time) needed to (re-)compute a (set of) routing
table entries as a function of the input size.

• Space complexity: amount/size of memory in bits or bytes needed to

(re-)compute a (set of) routing table entries.
3.3.4 Communication/Messaging

The communication cost and complexity can be measured by means of:

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 21 / 39

• Number of (routing and/or topology update) messages exchanged
between nodes to maintain a coherent and timely non-local knowledge
about network topology and/or reachability such that each node can
(re-)compute a consistent (set of) routing table entries

• Size of communication (routing and/or topology update) messages

• Sustainable rate of communication (routing and/or topology update)

messages
3.3.5 Convergence

Upon occurrence of an instability event, e.g. routing topology change or
protocol change, this metric measures the number of operations/execution
steps (expressing the convergence time) needed to reach a new routing state
(resulting from the re-computation and/or re-selection of new routing
paths) that is consistent (do not result in any forwarding loop) and
globally stable (do not lead to any subsequent re-computation).
3.3.6 Repair Coverage

This metric applies specifically to fault-tolerant routing schemes by means
of repair paths (a.k.a. alternate or backup paths) that are pre-computed in
anticipation of topological failure and made available for invocation with
minimal delay. The repair coverage provides a simple comparison metric for
measuring and comparing fault tolerant routing schemes.

• The percentage of links (or nodes) that can be fully protected
(i.e., for all destinations). Note that some percentage of the
possible failures may be identified as being un-protectable.

• The percentage of destinations that can be protected for all link
(or node) failures. Note that some percentage of destinations may be
identified as being un-protectable.

• The percentage of the total potential failure cases (destination x
failures) that are protected.

• The percentage of packets normally passing through the network that
will continue to reach their destination by using the pre-computed
repair paths.

3.3.7 Multicast support

This section details a set of specific metrics of interest for the
evaluation of the performance of multicast routing schemes. Indeed, the
performance evaluation of multicast routing schemes requires either
different definitions or additional metrics with respect to (unicast)
routing schemes.

• Stretch: in the particular case of multicast routing algorithms, the
stretch metric is obtained as the maximum ratio over all sets of
nodes between the cost of the point-to-multipoint routing path (that
defines the multicast tree) as obtained by the proposed scheme and
the cost of a minimum-cost tree, i.e. the Steiner Tree (ST), between
the same set of destination nodes.

• Tree cost: is defined as the sum of the edge cost composing the

point-to-multipoint routing path. The number of tree nodes and tree
levels as well as the number and degree of the branching nodes may
complement this metric.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 22 / 39

• Storage (memory space): the memory space required to store the

various routing table entries required for the multicast routing
algorithm to properly operate or the routing table entries produced
by the multicast routing algorithms:

o Unicast Routing Information Base (URIB): the URIB stores the
unicast routes to the possible destination nodes in the
network. For multicast routing schemes relying on the unicast
routing topology, this table includes the entry pointing to
the source of multicast traffic in any-source multicast (ASM)
or source-specific multicast (SSM).

o Multicast Routing Information Base (MRIB): when relying on the
underlying unicast routing, the multicast routing scheme makes
use of the MRIB derived from the URIB. The MRIB is used to
route the multicast control messages: each entry stored in the
MRIB is used to determine the next-hop neighbor to which any
Join/Prune message is to be sent to join/leave a multicast
group <*,G> in ASM or multicast source - multicast group pair
<S,G> in SSM.

o Tree Information Base (TIB): the TIB is the multicast routing
table, built from every Join/Prune message received. It holds
the state of the multicast distribution trees at a router. The
entries in the TIB are used to forward multicast traffic
though forwarding operations by direct TIB lookup is
inefficient (due to the indirection such operation implies).
Henceforth, multicast forwarding in high-performance routers
is performed directly along the forwarding path by means of
Multicast Forwarding Information Base (MFIB) constructed from
the information stored in the TIB.

• Computational complexity: measures the computational resources

required for the (re-)computation of multicast routing table entries
in terms of time and space, e.g., due to a join/leave message

o Time complexity: quantifies the number of operations/execution
steps needed to (re-)compute a (set of) routing table entries
as a function of the input size.

o Space complexity: the amount/size of memory in bits or bytes
needed to (re-)compute a (set of) multicast routing table
entries.

• Communication cost: the number of routing update messages that needs

to be exchanged between nodes to converge after a non-local network
topology change (e.g., a branching node failure) or a multicast tree
change (e.g., a node joining or leaving a tree) together with their
size. The communication cost provides a measure of the processing
capacity required at each node to process messages.

• Convergence: measures the amount of time it takes to converge (i.e.,

to re-compute the multicast tree) upon a network topology change.
This metric becomes of paramount importance as it reflects the total
amount of time that the network routing functionality may remain
inoperative due to link/node failures for example.

3.3.8 Effects on traffic spatio-temporal properties

Several metrics can be defined to measure the effects on the spatio-
temporal properties of the traffic. Indeed routing table entries are used
to derive forwarding table entries whose sequence determines the forwarding

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 23 / 39

path followed by the traffic. On the other hand, these metrics can be used
to evaluate the gain of traffic engineering capabilities associated to the
routing scheme:

• End-to-end (forwarding path) bandwidth x delay product

• Per destination (inverse tree)/per forwarding path (point-to-point)

congestion

• Per destination (inverse tree)/per forwarding path (point-to-point)

throughput

• Per forwarding path (point-to-point) aggregated load

• Statistical multiplexing gain with respect to the spatio-temporal

traffic distribution

• Betweeness centrality (link or nodal): fraction of routing paths (as

produced by the routing scheme) crossing a given link or a given
node divided over the total number of paths in the network.

3.3.9 Game Theoretic Metrics

This section details game theoretic specific performance metrics that can
be assessed by means of simulation.

• Best response strategies and assessment of the quality of the
outcomes. For any game it is possible to define a graph that
captures the dynamics emerging by the selfish behavior of the
players. This graph has a node for each state and a directed edge
(with label i) connects two states if player i has incentive to
deviate; the two states have the same strategies for all remaining
players and differ only in the strategy of player i. For a given
state, there may exist more than one outgoing edges per player,
since more than one improving deviations per player may be possible.
A best response walk on these states is defined by considering only
outgoing edges that model a best response strategy for a given
player. This includes determining the efficiency of outcomes,
studying approximation of equilibria (i.e., which is the smallest
decrease in cost that is attainable by deviations) and computing the
time required to reach equilibria (or approximate equilibria)
through such best response walks.

• Fictitious play is an instance of model-based learning, in which the

learner explicitly maintains beliefs about the strategy of other
participating entities. Then, the learner plays a best response to
the assessed strategy of the other entities, observes the actual
play and updates her beliefs accordingly. This could include
studying whether it is possible for a malicious entity to learn the
routing pattern and harm routing.

• It is also interesting to study how much the change in a player’s

strategy can affect the whole system. This is closely related to
dynamic properties of networks.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 24 / 39

3.4 Performance Comparison

The goal of this section is to specify a framework enabling to perform by
simulation fair comparisons between different routing models and algorithms
by means of reproducible scenarios. This framework should guarantee the
reproducibility and reliability of the simulation experiments and to get
relevant comparison between different routing models and algorithms.

Such performance comparison involves the combination of the choice of:

• A dataset that is the network on which we run an experiment
• A routing scheme
• A network dynamics model
• A model of the routing requests
• An execution model

Then we analyze the traces that are assumed to be stored.
3.4.1 Dataset

Different types of dataset can be considered

• Real data: as provided for instance by CAIDA
• Synthetic data: synthetic networks of different size. Some networks

have to mimic real-life networks (scale-free graphs) and we also
have to consider very different topologies (dense/sparse graphs,
etc.) in order to characterize each individual routing scheme.

Concerning the size of the dataset it is important to compare networks of
same size. Ideally, the order of magnitude of the number of nodes goes from
10K to 100K nodes. Note that the smallest CAIDA map has 16K nodes and the
largest around 35K nodes.
3.4.2 Models

Once selected, we have to specify the topology dynamics models, the
workload model, and the execution model. Each of them are detailed in the
below paragraphs.

1. Topology dynamics model

Also referred to as "dynamic network or topology model", such model defines
how the underlying topology changes/evolves over time. More precisely, the
following types of models are considered:

• Evolving model without constraint: online insertion and/or
suppression of links and/or nodes. In this model, if G(t) represents
the graph of the network topology at time t then G(0) and G(t) can
be quite different.

• Failure model: G(t) is a subgraph of G(0). In practice, we consider
that few nodes/links are removed from G(0). This model [KB2010] was
recently considered in several studies dealing with shortest paths
computations whenever some errors are detected in the network. For
instance: how to design a data structure capable to report an s-
approximate shortest path between node u and v upon failure of node
z (that sits along the path from u to v).

In both models, the event list should be stored before the beginning of
each experiment. Note that we can afford any model of events generation:
the so-called "edge Markovian" process model, set of links chosen with
respect to a given distribution, etc.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 25 / 39

2. Workload model

The workload model determines the set of new routing queries at the
beginning of each step of the execution. This set is essential whenever we
aim to measure and to analyze the load and resulting congestion at each
node. Importantly, all the choices should be stored in order to make a fair
comparison.

Given a distribution (probability to choose to given target), each node
runs a list of routing queries. For instance, the uniform distribution
corresponds to routing towards all nodes. It is possible that a node
instantaneously runs several routing queries towards the same node and
decides to run no new routing. More formally, for any time step t and every
node u, the query workload Qu(t)={v1,v2,...,vi} determines the set of
routing queries, i.e., node u asks to run a routing from u to v1, v2, ..., vi. In order to make a clear comparison between different routing schemes with exactly the same setting, the set of routing queries should be
computed and then stored. For an experiment, one of the inputs will be the
pre-computed workload.

3. Execution model

The routing scheme and the network are modeled as a synchronous distributed
system. At each time step t, each entity (link/node) of the network can
potentially change its current state (activation, deletion, etc.) in order
to define the graph G(t). Note that some messages (being data traffic
and/or routing updates) can be lost during this phase whenever a node is
deleted.

Then each node executes the following sequence:

• FORWARD the requests received in the previous time step: forward
routing, discovery messages, control messages, etc. depending on the
routing scheme.

• RUN new routing requests: this depends on the workload model.
• SEND new control messages: this depends on the routing scheme.

3.4.3 Traces Analysis

Within an experiment, the set of routing paths should be stored and can be
analyzed with respect to the performance measures. However, we can consider
two levels of analysis:

• First glance analysis: for each performance measure, the average and
the distribution is computed

• Deeper analysis: the goal is to find some correlations between the
performance measures and some local/global characteristics of the
network. For instance, are the most central nodes the most used in
the routing paths? This would not be too long to compute it.
However, if we want to determine the most frequent paths, this task
corresponds to the problem of computing the frequent item sets in
data mining. Because the exponential number of potential combination
of graph parameters and the performance measures, it is recommended
to first do a first glance analysis and then to carefully select the
combinations of attributes to analyze.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 26 / 39

4. Experimental Analysis

Experimentation by emulation/prototyping of the (protocol) components of
the routing scheme(s) designed in WP2 (task T2.2) will be performed as
integral part of the WP4 activity. For this purpose, the iLab.t
experimental facility and, where possible and suitable, larger experimental
facilities such as OneLab2/PlanetLab Facility or Ofelia will be used.

The present section is sub-divided in three parts. One dedicated to the
experimental evaluation of routing protocol components, the second to their
comparison and the last one to observation experiments.

4.1 Experimental Evaluation

This section specifies the experimental evaluation framework in order to
evaluate the performance of the considered routing protocol components.
This framework should guarantee the reproducibility, reliability and
verifiability of the emulation-based experiment in order to get relevant
results.

Here below we present the detailed description of the experimental
evaluation objectives, evaluation criteria, and associated metrics for the
routing protocols to be experimented. It is to be noted that some of the
functional and performance analysis objectives described in the previous
sections are also considered here for experimental analysis purposes
(simply because the experimental methodology can also be considered for
performing functional and performance analysis). However, the experimental
evaluation criteria and metrics are different since the methodology is
basically different. On the one hand, the network size is different; while
a simulated scenario can (easily) simulate a routing model in a 10k-nodes
network (or even larger networks), only smaller networks can be emulated in
the experimental platform (e.g., of the order of 100 nodes). On the other
hand, certain measures can be performed on emulation platforms that are not
(or more difficult) to realize with simulators such as metrics that involve
traffic, e.g., traffic aggregation effects, system resource consumption,
forwarding packet delay. Hence, experimental analysis will cover objectives
that can not be realized with routing model simulation.

It is worth mentioning that the purpose of experimental analysis of routing
protocols is not to measure the performance of the forwarding plane as such
but the resulting effects of the routing protocols on the data traffic.
That is, the effects on spatio-temporal distribution of traffic and its
properties from the locally computed routing paths.
4.1.1 Objectives

Overall, the goal of experimental evaluation is to evaluate by means of
emulation experiments, the routing protocol components derived from WP2
design task (Task T2.2). This evaluation will be conducted to determine if
the targeted functional and performance objectives specified in Section 2.1
and 3.1 are met.

Taking into account the physical constraints of an emulation environment
(in terms of resources e.g. number of nodes, CPU/memory per node) as
provided by the IBBT's ilab.t experimental facility, this section
translates the performance objectives measurable by emulation.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 27 / 39

• Scalability: the scalability of a routing scheme (ability to cope
with larger networks) up to the order of 109 can only be experimented
in a simulation environment. Indeed no experimental facility
provides the means to emulate the spatial distribution of
destination networks as currently observed on the Internet; hence,
there is no foreseeable mean by which one could experiment by
emulation even larger distributions. However, it is the objective to
measure scalability of the routing protocol components in isolated
parts of the network in interaction with a larger part of network
being simulated.

• Computational complexity: the objective is to determine the

computational complexity of the routing path computation component
on an individual network node or part of the network in interaction
with a larger part of network being simulated.

• Routing quality: using a network comprising hundreds of emulated

nodes, the objective is to measure the quality of a routing protocol
as determined by

o The cost/length of routing paths as produced by the routing
protocol in stationary and non-stationary/ variable conditions
(in case of routing information or protocol operation change).

o The stability of the individual routing entries as produced by
the routing protocol (the number of routing table updates
before and after routing information or protocol operation
change).

o The convergence time of the individual routing table entries
and the entire routing table of the node being experimented.

• Adaptivity: using a network comprising hundreds of emulated nodes,

the objective is to measure the effects of
o Short- and long-term topology dynamics on the local and global

convergence time to a stable and consistent routing protocol
state.

o Short- and long-term traffic variability/dynamics on the local
and global convergence time to a stable and consistent routing
protocol state.

o Short- and long-term routing policy dynamics on the local and
global convergence time to a stable and consistent routing
protocol state.

• Availability: using a network comprising hundreds of emulated nodes,

the objective is to measure the properties of the resiliency/fault-
tolerance mechanisms provided by the routing protocol in terms of:

o Coverage (percentage of links/nodes that can be fully
protected for all destinations, percentage of that can be
protected for all link/node failures).

o Mobilization of recovery resources, i.e., the amount of pre-
provisioned resources (thus before failure occurrence) in
order to ensure this repair coverage.

o Time to repair of routing paths under different network
running conditions/failure events (including the detection,
the notification, and the activation time).

4.1.2 Criteria

The evaluation criteria are the same as those exposed in Section 3.2 taking
into account the experimental environment and running conditions.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 28 / 39

4.1.3 Metrics

The following evaluation metrics will enable to measure if the performance
criteria (detailed in Section 4.1.2) can be met by the routing protocol and
its components.

1. General metrics for routing protocols

• Routing path length: the number of nodes along the routing path from
source to destination as produced by the routing protocol. The
routing path length can be exactly measured both in network
emulation. This measure allows computing the resulting stretch of a
routing scheme.

• Routing table size: the number of routing table entries and the
total size (expressed in terms of memory space) required to store
them per node. Note this number/size should be sub-linear with
respect to the number of nodes/reachable prefixes.

• Computational complexity (of routing paths): this metric can be
measured by determining i) the number of CPU cycles and the memory
space required to compute each routing path and ii) the time
required to locally compute each routing path with respect to the
input size.

• Communication cost: the rate x size of routing protocol messages
exchanged between nodes that are needed by the routing protocol to
properly operate. Note that routing protocol messages may include
topology information and/or routing information; both types of
information are referred to as routing protocol information. This
metric can be measured in emulation.

• Connection time (node-up event): time needed for a new network node
to connect to the existing topology (connected component of the
topology). This time includes the local interface configuration time
and neighbor discovery time as well as network discovery time
(discovery of that node for the rest of the topology and discovery
of the rest of the topology by that node). This metric can be
measured in emulation.

• Connectivity time: the time needed for a newly added destination to
become reachable through the existing network topology (connected
component of the topology). In case of routing protocol information
push: this time includes the propagation of the routing protocol
messages and thus the corresponding information across the network
topology. In case of routing protocol information pull: this time
accounts for the query/response delay (and associated resolution if
any) of this new routing protocol information by an existing node.

• Recovery time: upon network failure (link/node failure), routing
states need to automatically reconverge. The time between failure
occurrence and failure recovery results into several destinations
becoming unreachable (loss of connectivity) until reconvergence of
the routing states on the new topology. This is an indirect way to
deduce the convergence time of routing protocol states. This metric
can be measured in emulation.

• Configuration time: number of actions to perform off-line
configuration of newly added elements into the topology being
network partition(s), node(s), link(s), or destination(s). The
associated operations can be modeled in emulation.

The below metrics refers to forwarding plane measures. The purpose is not
to measure the performance of the forwarding plane as such but the

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 29 / 39

resulting effects on spatio-temporal distribution of traffic and its
properties from the locally computed routing paths:

• Forwarding table size: the number of forwarding table entries and
their total size per node (that should be sublinear with respect to
the number of nodes/reachable prefixes).

• Forwarding delay: the time needed to determine the outgoing
interface/port of a packet from its incoming attributes (including
destination coordinates, destination address, label, etc.) using the
local forwarding table. This metric is of particular importance for
routing protocols that assume more than one lookup/online
computation operation to forward packets.

• Throughput: average rate of successful message delivery over a
network path. This metric can be approximated in emulation.

• Delay: the time between sending a packet from a source node, and the
arrival of the packet at the destination node (in ms). The delay can
be approximated in emulation (half round-trip time).

• Jitter: the difference in end-to-end delay between selected packets
in a sequence of data packets flowing from the source to the
destination. This metric can be measured in emulation.

• Packet loss: this occurs when one or more packets of data travelling
across a network fail to reach their destination. This metric can be
measured in emulation.

2. Specific metrics for multicast routing protocols

In addition to the above metrics considered for general (unicast) routing
protocols, the following metrics are related with the experimental
evaluation of the multicast routing protocol:

• Tree cost: is defined as the sum of the edge cost composing the
point-to-multipoint routing path from the source of multicast
traffic (root) to the set of destination nodes (leaves). This metric
can be exactly measured in network emulation. It allows computing
the resulting stretch of a multicast routing scheme. Note that the
number of tree nodes and levels as well as the number and degree of
the branching nodes may complement this metric.

• Communication cost: the rate x size of routing protocol messages
exchanged between nodes as needed by routing protocol mechanisms to
operate. In multicast routing, this includes the messages to
join/leave a tree. This metric can be measured in emulation.

• Multicast update time: includes the time for a node to join a
multicast tree and the time for a node part of a multicast tree to
leave it. This metric can be measured in emulation.

• Routing table size: the number of multicast routing table entries
and their total size per node. Note that in multicast routing,
additional routing tables (introduced in the previous section) can
be required if the multicast routing scheme relies on the underlying
unicast routing topology. This metric can be measured in emulation.

• Routing path computation complexity (in time): time needed to
compute the least cost path between a joining node and the tree.

• Multicast forwarding table size: the number of multicast forwarding
table entries (that should be sublinear with respect to the number
of nodes/reachable prefixes)

• Multicast forwarding delay: the time needed to forward an incoming
multicast packet to the outgoing interfaces leading to the leaf
nodes part of the multicast tree.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 30 / 39

4.2 Experimental Comparison

The goal of this section is to specify an experimental comparison framework
in order to perform a fair comparison between routing protocol components.
This framework should guarantee the reproducibility and reliability of the
emulation-based experiment in order to get relevant comparison.

In particular, the goal is to measure the various performance metrics gain
with enabling certain functionality/capability (including additional
routing metrics, additional functionality, etc.). Indeed, experimental
comparison doesn't (only) consist in measuring the same metrics for the
different protocol components running in the same (finite) conditions and
environment. It also aims to compare the "gain" of certain capabilities and
functionality part of/added to routing protocols but not in others knowing
also that the experimental environment induces certain limits of the scale
of the experiment itself. As such it can be considered as a differential
comparison assuming that each protocol provides what it is designed for
(functional reliability).

For instance, measuring the link load distribution resulting from the
routing path computed and selected by each protocol opens the following
question: how to compare a protocol that has no traffic engineering
capability against a protocol that provides such capability without biasing
the conclusion? Indeed traffic-engineering implies additional computation
at setup time but lesser at recovery time (since routes are spatially
distributed) whereas shortest-path routing implies lesser computational
cycle at setup time but may imply more computation if the failure is
affecting a "central" node or link of the topology.

The experimental running conditions are also important to consider. Indeed,
knowing that the number of routing paths is finite in an emulation
environment the effects of hyper-aggregation might not be necessarily
observable if the number of routing entries is limited by processing
capability of such central node. On the other hand, the benefits of traffic
engineering wouldn't be observable too.
4.2.1 Comparison Objectives

Different routing schemes rely on different protocol components to
accomplish the functionality described in Section 2.1. Therefore, the
evaluation of the realization of a given performance objective by one
scheme requires different experimental evaluation methods compared to the
evaluation to be performed for another routing protocol. The goal of this
section is to detail the experimental objectives that can be realized in an
emulation environment when comparing routing protocol performances with
respect to the functionality they have to accomplish.

• Scalability: the comparison of the scaling behavior of different
routing protocols will be performed by evaluating their ability to
continue to function under satisfactory and well specified bounds.
(i.e., without affecting its performance). The following set of
varying parameters will be considered for this purpose:

o Various topologies showing different properties including the
number of nodes, the minimum/maximum/average degree, the
clustering coefficient, the diameter (length of the longest
shortest path), and other specific topological properties.

o Variable number of nodes/AS, number of links, number of
hosts/destination prefixes.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 31 / 39

o Various network traffic spatio-temporal distributions (by
means of traffic generators) that are representative of the
Internet traffic properties.

For all routing protocols, a performance profile will be determined
for best, worst and reference scenario in an emulated network.

• Computational complexity: the computational complexity of different

routing protocols running in an emulation environment will be
compared when they perform the following functions i) local and
network discovery, ii) topology-/routing-information structuring,
and ii) routing path resolution.
For all routing protocols, a complexity profile will be determined
for best, worst and reference scenario in an emulated network.

• Routing quality: the routing quality properties of the different

routing protocols will be compared against i) a set of topologies
representative of the Internet topology, and ii) different spatio-
temporal traffic distributions and traffic mixes. For all routing
protocols, a quality profile will be determined for best, worst and
reference scenario in an emulated network.

• Adaptivity: the adaptivity properties (with respect to the topology

dynamics and traffic dynamics) of the routing protocols will be
compared by measuring their capability to adapt

o The routing table entries produced when dealing with the
addition/removal of different percentage of links, nodes,
autonomous systems/network partitions, and destination
prefixes,

o The routing paths properties (in terms of, e.g., bandwidth x
delay product) against variable spatio-temporal traffic
distributions.

o Concerning adaptation to policy dynamics, specific scenarios
shall be developed to determine the ability of the routing
protocol to avoid instabilities resulting from policy
interactions as observed in BGP such as "wedgies", i.e., non-
deterministic and unintended but stable routing states, and
“dispute wheels”, i.e. non-deterministic and unintended but
unstable states.

For all routing protocols, an adaptivity profile will be made for
best, worst and reference scenario in an emulated network.

• Availability: the objective is to compare the characteristic

properties of the resiliency / fault-tolerance mechanisms provided
by different routing protocols in terms of their

o Coverage (percentage of links/nodes that can be fully
protected for all destinations, percentage of destinations
that can be protected for all link/node failures).

o Mobilization of recovery resources for this coverage.
o Time to repair their routing paths under different network

running conditions/failure events (including the detection,
the notification, and the activation time).

4.2.2 Comparison Criteria and Metrics

This section details the experimental comparison criteria that will be
considered to verify whether one routing scheme performs better in an
experiment than another, according to a specific experimental objective
detailed in Section 4.2.1. This section also details the experimental

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 32 / 39

comparison metrics that will provide the measures in order to perform a
systematic comparison. Note that except when explicitly mentioned the
running conditions and experimental environment are assumed to be identical
throughout the various executions required to perform such comparisons.

• Scalability: routing protocol's scalability will be qualified as
better than another one’s, if its scaling (as measured by the
sustainable rate of routing state updates, number of routing states
and the memory space required to store them) perform better in the
reference scenario of the other. Indeed, suppose two routing
protocols, each of them will show best case scaling performance on
reference scenario that can be different. Thus, comparison shall be
performed by running one protocol using the scenario for which the
other performs the best and the reference scenario for which it
performs the worst (and vice versa). The protocol that will show the
least performance degradation and the best performance improvement
on the other's reference will be qualified as scaling better.

• Computational complexity: the computational complexity of a routing

protocol qualifies as lower than another one’s (when performing the
functionality described in Section 2.1) in case its complexity both
in time and resources is lower than the one obtained for the
reference scenario.

o Time complexity measures used for comparison include i) the
number of computational steps/operations required to compute
routing table entries with respect to the input size, ii) the
number of computational steps/operations needed for each
routing state to converge to a stable state.

o Space complexity measures used for comparison include i) the
memory space required to store the resulting routing table
entries, ii) the memory space required to store the routing
state updates.

• Routing quality: the routing quality properties (cost/length/cost of

the routing path, the stability of its routing states, and their
convergence properties) of a routing protocol will be qualified as
better than another one’s, in case:

o The lengths/costs of the routing paths that it produces are
all closer to the shortest routing path lengths/costs (as
measured by the stretch) in all scenarios.

o Upon occurrence of an instability event, e.g., topology change
or protocol change, the number of routing state updates and
the number and rate of the topology-/routing- update messages
exchanged is minimal.

o The number of operations/execution steps (thus the convergence
time) needed to reach a new stable and consistent routing
state is minimal.

• Adaptivity: the capability of a routing protocol to adapt to

topology dynamics (resulting from addition/removal of different
percentage of links, nodes, autonomous systems/network partitions,
and destination prefixes), traffic variability (that induces
variability in the properties of the routing paths), and policy
dynamics will be qualified as better than another one's if the
following conditions are met:

o Its convergence time to a stable and consistent routing state
is shorter,

o The processing capacity mobilized to reach that state is
lesser, and

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 33 / 39

o The robustness of this new state over time is longer.

• Availability: the characteristic properties of the resiliency

/fault-tolerance mechanisms provided by different routing protocols
will be qualified as better than another one's if the following
conditions are met:

o Its coverage (percentage of links/nodes that can be fully
protected for all destinations, percentage of destinations
that can be protected for all link/node failures) is higher,

o Its mobilization of recovery resources for this coverage is
lesser, and

o The time to repair its routing paths under different network
running conditions/failure events (including the detection,
the notification, and the activation time) is lower.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 34 / 39

4.3 Experimental Observation

In the work related to WP3 Task 3.2, we observed the properties of routing
trees captured by ego-centered measurements with tracertee from PlanetLab
monitors, and their dynamics captured by radar measurements (iterated ego-
centered measurements) [LMOradar].

This work led to the identification of key features that should be
reproduced in measurement-based models of the Internet, of routing and of
their dynamics [HLMevent], and will be used as criteria for assessment of
future routing protocols and emulated environments. We summarize them
briefly below.
4.3.1 Node-based properties
The first salient trait of ego-centered measurements is that the number of
nodes (and links) in successive ego-centered measurements is very stable:
it slightly oscillates around a mean value, with no notable change. The
mean value itself may change during time, leading to different regimes, but
it remains stable for wide periods. Fig.5 shows a typical example.

 Fig.5: umber of distinct IP addresses seen at each round (blue) and during ten consecutive
rounds(red)

This does not mean that the nodes observed in each ego-centered view are
always the same, though, as demonstrated by the plot of the number of
distinct nodes in consecutive rounds of measurements (see Fig.5) and the
plot of the number of distinct nodes observed since the beginning of the
measurement (see Fig.6).

This stability of the number of nodes of routing trees certainly is an
important and desirable feature for protocol design. The growth of the
total number of observed nodes with iterated measurements seems to be due
to routing dynamics, and will be used as a lower bound for performances of
future protocols, as current ones succeed in reaching this level of
stability.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 35 / 39

 Fig.6: umber of distinct IP addresses seen since the beginning of the measure (in black) and
the number of IP addresses which were present at all rounds (in blue)

4.3.2 Distance-oriented properties
A key feature of the dynamics is the appearance of new links in the
topology and their discovery (apparent appearance) by ego-centered
measurements. In typical radar measurements, this may be quantified by
computing the distribution of the distances between two nodes immediately
before a link is discovered between them (a link which was previously not
there or that we had not discovered). This distribution clearly shows that
appearing links are between nodes at small distances from each other (and
uneven distances are overrepresented because of the presence of diamonds).
This is not surprising, but some appearing links are also between nodes
which were previously very far from each other (up to 30 hops).

Such features show that routing changes mostly are local (probably due to
load balancing), which will be an important criteria for performance of new
routing protocols. However, non-local changes also occur, and, again, real-
world observations provide indications of performances attained by current
protocols to this regard.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 36 / 39

5. Conclusion

We conclude this deliverable by documenting the requirements on the various
tools that will be required to conduct the different validation, and
verification phase of the routing schemes that will be developed in the
context of the EULER project as well as the evaluation and analysis of
their performance.

1. Tools requirements for formal verification and analysis (that will be
conducted in Task 2.2)

Formal verification aims to rigorously prove that some piece of soft- or
hardware actually meets its requirements. Typically, this task is performed
by formally specifying the intended behavior using mathematical notation
and verifying that the code actually fulfills the formulas. As an aside, we
would like to mention that we do not focus on model checking in the text
below. The reason stems because model checking is most of the time either
not exhaustive, or it takes too long time. Hence, performing model checking
often boils down to extensive random testing.

Thus, the work is split up in two parts: the first part describes exactly
what the software should do by specifying its design. This seems rather
straightforward but is actually the hardest part of the entire work.
Indeed, most of the time, when we are designing complex systems from
scratch, we actually do not know what we are aiming at. With hindsight,
e.g. when designing software in a problem domain with which one has large
experience, this is often conceived to be trivial but for new domains and
without a priori insight this phase is typically very hard.

Secondly, once the intended behavior of the program is specified, one can
actually prove that a piece of code actually fulfills the requirements.
Most of the time, this work is not too difficult as the specification
should be clear by itself, such that corresponding code matches the
specification easily. Most of the tools of common use support automatic
code-generation from specifications, in the case that these specifications
are constructive (also called intuition-driven). This means that one never
uses proofs which show that some element fulfilling some condition does
exist without actually exhibiting the element itself.

Two remarks should be made at this point: both phases described here above
typically go hand-in-hand, so that one never writes down a full
specification without at least trying to prove some typical statements
about it at the same time. Secondly, it is absolutely wrong to first design
and to implement an algorithm, and only afterwards specifying it and trying
to prove some properties about it. This is often an impossible task as one
almost never programs in a way that lends itself to easy mathematical
specification. In other terms, one should strive to an elegant mathematical
formalization from the start on, instead of forcing code into such a model.

To fulfill our needs we aim at selecting an appropriate formal
specification and verification tool. Here below, we provide an overview of
the current state-of-the-art tools.

• PVS, the Prototype Verification System, is a freely available system
of industrial strength to specify and verify soft- and hardware
using a classical tableaux-style interface. It is very intuitive,
both in its specification-language as well as in its prover-commands
and -interface. It is programmed in LISP and can be fully extended

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 37 / 39

by your own strategies. It also allows the automatic execution of
constructive specifications, although this feature is not officially
supported. Everybody does it all the time, however. Please note that
the code of the system's core is very large intricate, and allegedly
nobody of the designers actually understands it anymore.

• HOL, one of the first higher-order-logic implementations and for

years the de-facto standard for formal verification using higher-
order-logics. The tool has grown very big and almost unmanageable,
and most people using it do not understand the full proof-structure
which was built up by the community anymore. This is not a problem,
as everybody can easily let run the proof-checker which shows that
the edifice in its entirety is still mathematically correct.
Nevertheless, this uncomfortable situation has led part of the
community to pursue new alleys, like HOL-Light. The system is
programmed in Meta-Language (ML).

• Isabelle is a generic framework for designing new proof tools with

new logics, and so the instantiation we are talking about in this
text should actually be written out fully as Isabelle/HOL. It is
quite comparable to the mainstream HOL-system, has both its
advantages and disadvantages, but also suffers from obscurity by
size. Typically, it takes a long time before you actually get
acquainted to these tools.

• Perfect Developer aims at an easy-to-use, industrial proof tool for

the masses. It does succeed to its design goals very well, although
unfortunately the wider non-mathematically oriented community does
not seem to value it like that. It can generate java, c# and c++ out
of specifications. It is a commercial package, although for research
purposes it's free of charge.

• HOL-Light [HolL11] is another member of the HOL-family of proof

tools, and aims explicitly at a clear codebase and lean
implementations. The current version is implemented in OCaml, and
boasts beautiful packages chock-full with nice mathematical theorems
which are very handy while developing your own proofs. It has
famously been used for validating the floating-point arithmetic
procedures of INTEL-chips, and is currently used to validate the
alleged proof of the Kepler Conjecture. As it is fully
reprogrammable and easy-to-read, it is not difficult to get insight
in its libraries in a short time. One can easily develop in it and
extract executable code, and even change its underlying logic to
another equivalent logic.

As a conclusion, it is suggested to adopt HOL-Light for the task at hand.
Nevertheless, the tool alone is not alone beatifying, as one should
definitely start working on the specification and verification from the
start on, before actually designing and implementing the algorithms. This
being said, the level of specification is left up to each routing scheme.

2. Tools requirements for performance evaluation and analysis (that will be
conducted in Task 3.3)

In order to evaluate the behavior (in particular, the performance) of the
routing schemes through simulation, the following tools are required:

• A generator of topologies representative of the Internet. This
generator should be able to generate topologies satisfying a given

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 38 / 39

set of properties, either with a proof or with high probability.
Multiple topology sizes are necessary:

o Topologies of 10k nodes in order to observe rare events that

might be hidden in smaller instances.

o Topologies comprising of the order of 100 nodes in order to
compare simulation and experimental results on the same
topologies and scenario.

o Topologies ranging from 100 to 10k nodes in order to evaluate
the evolution of the performances under various scale of
topology growth.

• A set of tools to measure the properties of a given topology. This

tool will be used for first testing if a given topology satisfies
the properties it is claimed to satisfy, and second to evaluate the
evolution of the topological properties under dynamic scenarios
(addition/deletion of nodes/edges) and routing policy changes.

• A dynamicity scenario generator. A dynamic scenario is a list of

events (topology or policy changes). The tool should allow
generation of realistic scenarios in order to evaluate the quality
and evolution of the above mentioned metrics (e.g., convergence time
after an edge deletion).

• A dynamic routing model simulator (such as DRMSim) that given a

routing scheme and topology allow to:

o Build the routing tables starting from scratch

o Load pre-computed routing tables and store computed one

o Measure the performance metrics documented in this report

o Perform experimentations with dynamic scenarios (the dynamic
scenario is also an input)

 The tool should thus allow comparing the behavior of various routing

schemes under the same topology and dynamicity scenario.

3. Tools requirements for emulated protocol component evaluation and
analysis/ experimentation (that will be conducted in Task 4.3). Due to the
dependency on the routing protocol specifics, the emulation platform, and
the properties of the experimental facility, these requirements will be
documented once the routing protocol components will be designed following
task T2.2 outcomes and the experimental execution scenarios determined as
part of task T4.2.

FP7-ICT-2009-5 – EULER: Experimental UpdateLess Evolutive Routing

Deliverable 4.1 Page 39 / 39

References
[ADK+04] E.Anshelevich, A.Dasgupta, J.Kleinberg, E.Tardos, T.Wexler and

T.Roughgarden, The price of stability for network design with
fair cost allocation, SIAM Journal on Computing, 38(4):1602–
1623, 2008.

[Aum74] R.J.Aumann, Subjectivity and correlation in randomized
strategies, Journal of Mathematical Economics, 1(1):67–96, 1974.

[Har67] J.C.Harsanyi, Games with incomplete information played by
Bayesian players, Parts I-III, Management Science, 14:159–182,
330–334 and 486–502, 1967–1968.

[KB2010] N.Khanna and S.Baswana, Approximate Shortest Paths Avoiding a
Failed Vertex: Optimal Size Data Structures for Unweighted
Graphs, STACS 2010, pp.513-524.

[KP99] E.Koutsoupias and C.Papadimitriou, Worst case equilibria,
Proceedings of the 16th International Symposium on Theoretical
Aspects of Computer Science (STACS'99), LNCS 1563, pp.404–413,
Springer, 1999.

[HLMEvent] A.Hamzaoui, M.Latapy and C.Magnien, Detecting Events in the
Dynamics of Ego-centered Measurements of the Internet Topology,
Computer Networks, 2011.

[HolL11] John Harrison, HOL Light Tutorial (for version 2.20), January
2001. http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf

[LMORadar] M.Latapy, C.Magnien, and F.Ouédraogo, A Radar for the Internet,
Journal of Complex Systems, 2011.

[MS96] D.Monderer, and L.Shapley, Potential games. Games and Economic
Behavior, 14:124–143, 1996.

[MV78] H.Moulin and J.P.Vial, Strategically zero-sum games: the class
of games whose completely mixed equilibria cannot be improved
upon, International Journal of Game Theory, 7:201–221, 1978.

[Nas50] J.Nash, Equilibrium points in n-person games, Proceedings of the
National Academy of Sciences, 36:48–49, 1950.

[NRTV07] N.Nisan, T.Roughgarden, E.Tardos and V.Vazirani, Algorithmic
Game Theory, Cambridge University Press, 2007.

[Pap01] C.Papadimitriou, Algorithms, games and the Internet, Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing
(STOC'01), pp.749–753, 2001.

[Ros73] R.Rosenthal, A class of games possessing pure-strategy Nash
equilibria, International Journal of Game Theory, 2:65–67, 1973.

[You04] H.P.Young, Strategic Learning and its Limits, Oxford University
Press, 2004.

