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Chapter 1

Introduction

Our understanding of the structure of the Internet topologyand its dynamics is extremely important, as it
has much impact on our ability to extend and manage the network, to improve its reliability and efficiency,
and to design appropriate protocols for its various applications. Indeed, such works rely on theoretical
studies and simulations conducted on artificial graphs obtained from models of the Internet topology.

However, due to its decentralized nature and fast evolutionfor several decades, a global view of the
Internet is not directly available. Instead, one relies on maps of its topology obtained through intricate
and expensive measurement procedures. These measurementstypically rely on the traceroute tool, which
basically gives a path from a given node to another node. One then builds maps of the Internet by running
traceroute from several nodes to many others, and then merging the obtained paths. Much effort is devoted
to making these maps as complete and reliable as possible, and one then generally makes the assumption
that they are representative of the true network. Indeed, once such a map is obtained, one generally
considers that properties of the map are properties of the true Internet. As a consequence, models try
capturing properties of the maps, and generate graphs similar to these maps.

This general approach may seem reasonable but it faces extremely challenging issues. The most
important one certainly is that measurements give very partial views of the network, which are in addition
biased by the measurement process. For instance [75, 5] showboth experimentally and formally that
the degree distribution (fraction of nodes with k links, forall k) observed on measurements may differ
significantly from the actual one. Similar problems occur for other properties and other networks [61, 79,
112, 111]. In addition, measurement tools themselves are imperfect and prone to errors.

These issues have crucial consequences for the field, as we donot know whether observed properties
should be trusted or are only properties of partial, biased and erroneous maps currently available. As a
consequence, current knowledge of key properties of the actual Internet topology, even the most basic
ones like its degree distribution, remains very limited. This is subject to controversy [120] with a strong
impact on applications. For instance, famous results claiming that the Internet is very resilient to failures
but sensitive to attacks [11, 28, 36, 37] rely on the assumption that the Internet has a power-law degree
distribution with a given exponent, observed from measurements. The fact that the true network may
actually have a totally different degree distribution makes the relevance of such results unclear. This
leads to difficult discussions and analyses of the extent to which the observed degree distribution may be
trusted [44, 61].

Of course, the degree is only one of the many properties useful to describe and model a complex
object like the Internet topology. Problems encountered during the measurement and study of these other
properties are in general just as challenging, or even more.In particular, if studying the structure of the
Internet topology at a given moment is difficult, studying its dynamics is even harder. Indeed, trying
to cope with this dynamics leads to new obstacles raised bothduring the measurement and during the
analysis. First, there is no measurement tool enabling to directly grab information on the dynamics and
studies often rely on comparing static views of the Internetacquired at different times. Second, when
comparing two collections of routes it is difficult to distinguish between modifications of the routing and
modifications of the underlying topology. As a consequence,current knowledge of the dynamics of the
Internet topology is even more limited than knowledge of itsstatic properties.

The goal of Task 3.2 has been to change this situation by designing new tools, methods and approaches
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to accurately and reliably measure key properties of the Internet topology and its dynamics. Consistently
with these measurements, we designed models able to captureobserved properties, thus leading to artifi-
cial graphs more realistic than any map currently available. Indeed, these graphs will have the same key
properties as the true topology, while maps are partial, biased and erroneous. In addition to the funda-
mental need for a true understanding of the Internet, such artificial graphs are crucial for formal studies
and simulations of protocols.

Outline of the document

In Deliverable D3.2 we already reported the measurement tools and the dataset provided during the first
year of the project. The purpose of the present deliverable is to rely on those dataset to extract relevant
information.

As outlined above, one of the key characteristic of the Internet properties is the degree distribution of
the routers. This is why we dedicated effort to develop a method providing key insight on this property.
While Deliverable D3.2 we already presented the tools developed in order to implement the method, we
focus here on how one could exploit the data obtained with themeasurement tools and apply it on the
dataset obtained during the first year of the project. More precisely, in Chapter 2, we explore all details of
this approach, including its expected outcome through simulations, technical difficulties, and assessment
of results. In Chapter 3, we turn to the determination of the nature of the distribution obtained with this
method.

A second contribution of Task 3.2 has been to address the dynamics on the Internet. During the
first year of the project, we presented the data obtained fromthe Radar tool that enables to study par-
tially the routing topology dynamics in Internet and we proposed a first model able to account for the
observed properties. Two main contributions emerged from this work. First, we investigated in depth
the differences between different types of random graphs interms of forwarding paths. Second, we tried
to confront those observation to the one performed on BGP routing data. All those aspects are reported
Chapter 4.

Besides, as a complementary approach to the detection of invariant in the routing topology dynamics
documented in Chapter 4, we have also designed different methods for detecting events in times series
data and applied them using the tool obtained from the Radar measurement performed in EULER. De-
scription of the methods, their application, and obtained results are described in Chapter 5.

Finally, in ordre to help the preparation of realistic scenarios of trafic demands over the Internet, we
also focused on p2p systems which have driven a lot of attention in the past decade as they have become a
major source of internet traffic. Indeed, this development has crucial implications for traffic engineering
and information diffusion at the same time. Thus, models able to generate synthetic traffic and diffusion
data which mimic accurately real p2p activity. Chapter 6 addresses this question, by analysing the p2p
traffic dataset presented in Deliverable D3.2 that records p2p activity at a remarkable scale. We show how
relevant properties extracted from the dataset may bring insights of how to model relevant diffusion and
traffic demands.
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Chapter 2

Inference of the degree distribution of
core routers

Active measurements to study the Internet topology have been led and extensively studied since the
seminal papers of Pansiotet al. [95] and of Faloutsos [53]. The classic method, to build mapsby
mergingtraceroute-like paths from a limited number of monitors to many targets[95, 53, 87] has been
shown to lead to intrinsically biased results [120, 76, 5, 44, 61, 62, 79]. The hope that increasing the size
and the quality of the measurement data set would overcome this bias has led to multiple other studies
[18]. But the work of Lakhinaet al., first experimentally [76], and then formally in the case of asingle
source [5], revealed that the Power law (and even the heterogeneous) shape of the degree distribution
found by the classic method may beonly a measurement bias, since actual homogeneous graphs could
display heterogeneous degree distribution with the paths-merging map method, even with a very large
dataset.

We present in this chapter the advantage of a new approach proposed in the EULER project, which
makes it possible to accurately infer the actual degree distribution of the core Internet topology. In
order to make it effective in practice, we explore all details of this approach, including its expected
outcome through simulations, technical difficulties, and assessment of results. We implement it using
PlanetLab and finally obtain the first reliable estimate of the degree distribution of routers in the core
Internet topology.

2.1 The approach

Both RFC 1122 and 1812 state that when a monitorm sends an UDP packet to a target IP addresst on
an unallocated port, then the targett should answer with an ICMP Destination Unreachable (Code 3/Port
unreachable) packet tom. An important detail is that the source of this ICMP packet isin principle the IP
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Figure 2.1: Left: an example of targett in the core. The routes coming from the set of monitors go
through all of its neighbors. Right: an example of targett ′ in the border. Only the neighbora of t ′ is
accessible from the core. In the two figures, the light colored squares stand for the monitors, the big
nodes denote a node in the core while the small ones represents the nodes in the border and the black
links belong to a route from a monitor to the target.
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t towards an unallocated port. The routerr(t) replies using its interfacei.

Border

Core−border

Core

Figure 2.3: A graph can be divided into three parts: the core,the border, and the core-border. Border
nodes are the ones removed when we iteratively remove nodes of degree one. Core node are the one
remaining after this process. Core-border are core nodes directly connected to border nodes.

address of the interface by whicht sends the packet. As a consequence, if a setM of monitors succeeds in
sending such UDP probes in a way such that for each interfacei of t there is inM a monitormi to which
t answers through its interfacei, the setM of monitors is able to discoverall interfaces oft. We will use
this as our basic measurement primitive, see Figure 2.2.

Now let us divide the Internet topology into three parts: theborder, the core, and the core-border
(included in the core), see Figure 2.3. Border nodes are the ones removed when we iteratively remove
nodes of degree one, i.e. the nodes of initial degree one, thenodes which have degree one when these
have been removed, and so on. The core nodes are the remainingnodes. Among them, some are linked
to a border node, and we call them core-border nodes. Notice that for each border and core-border router
r there is a set of nodes which necessarily go throughr to reach the core (these are trees routed atr). We
denote this setBr for all r.

If we target a core routerr with a reasonably low degree, then it seems reasonably easy to build a set
of monitorsM able to measure it. For instance, ifr has degree 3 we only require that the monitors inM
are distributed enough to get answers from all 3 interfaces of t. However, ifr has degreek then getting
answers from all its interfaces requires at leastk monitors, and certainly significantly more as several
monitors may get answers from a same interface. If the setM is not large enough, or poorly distributed,
then one may underestimate the degree ofr.

If we target a border routerr, then appropriately determining its degree requires that we have inM
at least as many monitors inBr asr has border interfaces, which is not feasible in general. This is why
our method is not suited for degree estimation of border routers, and we aim at estimating the degree
distribution of core routers only.

The particular case of border-core routers deserves special attention, see Figure 2.3. In such cases,
one may easily estimate the core-degree ofr (i.e. its number of interfaces connected to core nodes) but
not its border-degree (i.e. its number of interfaces connected to nodes inBr ).

Finally, our method consists in the following steps:

1. Build a setM of monitors as large and distributed in the Internet as possible;

2. Build a large setT of target core routers chosen uniformly at random;

3. Estimate the degree of each targett in T using distributed measurement fromM;

4. Assess the quality of the obtained estimate.
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Figure 2.4: Simulations on a Poisson graph with 2.5 million nodes and mean degree 25

The degree distribution of the nodes inT then gives an estimate of the actual degree distribution of all
core routers. The lagerT is, the more accurate this estimation will be. In addition, the degree of some
targets may be underestimated, depending onM, and so we must carefully assess the quality of obtained
estimates.

2.2 Proof of concept

The goal of this section is to estimate the theoretical relevance of our approach by means of simulations.
Assuming that we are able to build an appropriate set of monitors and targets, the key questions we want
to answer are: what is the risk that our estimate of the degreeof a given node is different from its actual
degree, and how many monitors do we need to have an accurate estimate of the degree distribution?

For this purpose, we conduct simulations as follows (see [41] for more details): we consider different
kinds of artificial graphs to model the topology; we use as monitors random nodes with degree one
(representing end-hosts); and we useall core targets (i.e. nodes in the graph obtained by iteratively
removing degree one nodes). We then assume that each target answers to probes from each monitor
randomly using one of its interface which starts a shortest path from the target to the monitor. We use
two different kind of topology: one with a Poisson degree distribution, which is a typical homogeneous
distribution, and one with a Power law degree distribution,which is a typical heterogeneous distribution.

Figure 2.4(a) shows the observed degree distributions for aPoisson graph of 2.5 million nodes and
mean degree 25, using respectively 12, 25, 50, 100, 200, 400 and 800 monitors. As one could expect,
with 12 monitors (which is less than the average degree) the degree distribution is poorly estimated.
Nevertheless, it is remarkable that, even with this poor level of quality, the nature of the distribution is
properly discovered: though its parameter are modified, theobserved degree distribution is still Poisson-
like. When the number of monitors increases, so does the quality of the observed degree distribution, and
the observed distribution and the real distribution becomes visually indistinguishable with 200 monitors.
This is strengthened by the plot on Figure 2.4(b) which showsthe scatter plot of real degree (on the x-
axis) and observed degree (on the y-axis) for all targets in the core. We can see that using 200 monitors,
the estimate degree of all nodes is quite close to its real degree. Thus, we can conclude that our method
performs very well on Poisson graphs.

The situation with Power law distribution is similar. Figure 2.5(a) shows the results of the simulation
we conduct on a Power law graph with 10 million nodes and exponent 2.1. Again, we can see that
the quality of the observed distribution, which is poor using 12 monitors, increases with the number of
monitors. When this number is sufficient, the distribution is properly observed, except for very large
degrees where we observe a cut-off in the distribution, close to the number of monitors we use. As
we mentioned previously, this comes from the limitation of our method that we identified a priori: the
observed degree cannot exceed the number of monitors, and more generally, the observation becomes
inaccurate for targets whose degree is too closed to the number of monitors. On the other hand, for
reasonably low-degree targets, let say up to 20, the observed distribution and the real one are visually
indistinguishable when using 200 monitors. This fact is again reinforced by the scatter plot of real degree
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Figure 2.5: Simulations on a power-law graph with 10 millionnodes and an exponent of 2.1

and observed degree for all targets in the core (Figures 2.5(b)). We can see that using 200 monitors, the
estimate degree of low-degree nodes is quite close to the actual one, showing that for this type of nodes,
our method performs very well for Power law graphs as well.

One may wonder if these results still hold for graphs of different size and with different parameters,
average degree for Poisson graphs and exponent for Power lawgraphs. These questions were investigat-
ing in [41], as well as the influence of some other parameters of the simulations. It turns out that the
conclusions we derive here are still valid for different size and parameters. In particular, [41] shows that
the size has very little effect, if any, on the quality of the observation, both for Poisson graphs and Power
law graphs. Then, the conclusion obtained by simulations ongraphs of some millions of nodes must still
hold for graphs of the size of the Internet, with hundreds of millions of nodes.

To summarize, we observe that both for Poisson graphs and Power law graphs, the degree distribution
is correctly observed by our method as the observed distribution fastly tends to the actual one when the
number of monitors augments. This conclusions have to be tempered with for the high-degree nodes in
Power law graphs, for which we obtain a cut-off in the observed distribution. This is not a real obstruction
since we do not intend to observe high degree nodes with our method, and the part of the distribution
corresponding to low-degree nodes is quite accurately observed. Moreover, the simulations show that
not only the degree distribution is properly estimated, butalso the degree of each node as far as this
degree remains reasonably low, which is precisely the rangeof degree we are interested in observing in
the Internet.

2.3 Monitors

Our method relies on the use of a large setM of monitors distributed in the Internet. It is crucial that
this set is large because the observed degree of targets is bounded by|M| (each monitor observes only
one interface, with several monitors observing the same onein general). It is also crucial that these
monitors are well distributed in the Internet, because the observed interfaces are the ones used by the
target to answer probe packets; monitors located at a same place probably lead to the observation of a
same interface.

However, it is not easy to have a monitor set that is both largeand well distributed: for example, it
is straightforward to add monitors by multiplying machineson a given observation site, but this will not
increase the global quality of the measurement. Our monitorset could be biased by construction: it may
be easier to obtain monitors in the same region than distributed over the whole Internet. Therefore, we
need tools to assess the quality of a set of monitors, and identify which monitors are actually co-located.
This also plays a key role in our target selection method described in Section 2.4.

2.3.1 Similarity

Intuitively, two close monitorsm andm′ in monitor setM lead to similar observations in our measure-
ments: most targets will answer to their probes using the same interface. Conversely, if most targets
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answer with the exact same interface to two given monitors, then they can be considered redundant re-
garding the quality of the monitor set.

However, given that a target can (and often will) have less interfaces than the size of the monitor
set, two monitors may observe the same interfaceby chance, while not being co-located at all. And
the lower the degree of the target, the higher the chances that two, non-colocated monitors, observe the
same interface. For example, if a targett has exactly two interfacesi and i′, and uses them exactly as
much in general, then one given monitorm has a prior probability of observing each interface of exactly
P(m(t) = i) = P(m′(t) = i′) = 1

2. More importantly, two non-colocated (or independent) monitorsm and
m′ have a significant probability of both observing one given interface oft, equal to1

4.
In general, for a targett with exactlyd interfaces equally used, two independent monitors have a

probability of observing one given interface oft equal to 1
d2 . Therefore, the higher the degree of the

target, the less likely it is for two monitors to observe the very same given interface for this particular
target.

To capture the similarity between observations of the core by two monitors, we compute what we call
their similarity as the expression of the number of times they observe the sameinterfaces for the targets
over the course of the measurement, weighted with a factor accounting for the unlikeliness to observe the
same interface without being colocated.

σ(m,m′) = ∑
t∈T,m(t)=m′(t)

deg(t)2

To enhance this key element of the monitor set evaluation, wefurther extend this definition to iterated
measurements using the same sets of monitors and targets. Wenamem̂(t) the union of the interfaces
observed bym over the multiple iterations of the measurement (which can be different from{m(t)), and
ˆdeg(t) = |⋃m∈M m̂(t)|. And we extend the definition of similarity between monitorsas :

σ̂(m,m′) = ∑
t∈T

|m̂(t)∩ m̂′(t)|
|m̂(t)∪ m̂′(t)|

ˆdeg(t)2

Notice that two co-located monitorsmusthave a very high similarity; however, it is possible that two
non-colocated monitors have a very high similarity. Our expectation, confirmed in Section 2.6 is that it
is necessary to strengthen the very high similarity criterion with ana priori knowledge of the monitor set
to clearly draw classes of colocated monitors, that observethe core very similarly.

In order to identify colocated monitors, and to check that they indeed lead to very similar observations,
we use their IP address prefixes. We denoteB the length of the longest common prefix of their IP addresses
(expressed in their 32 bits form) :

B(m,m′) = LCP(IPbinary(m), IPbinary(m
′))

We state thatm andm′ are colocated ifB(m,m′) > 24, as measurement in Section 2.6 shows that
ensures very high similarity, and very high confidence thatm andm′ are actually colocated. Since the
relation defined by having a longest common prefix higher than24 is an equivalence relation, , we
compute the equivalence class of each monitor:M̄ = M/ = {m̄|m∈M}.
|M̄| is the number of non-colocated monitors of the monitor set, and is therefore a more precise

indication of the quality of the monitor set than|M|.
Finally, notice that some monitors inM may be deficient or may experience problems like failures or

network shutdowns during the measurement. We identify these monitors by computing for each monitor
m the number of targets from whichm received an answer. If this number is too low (which we decideby
observing the distribution of obtained values, see Section2.6), we discardm. In this way, we ensure that
all remaining monitors significantly contribute to the measurement.

2.3.2 Colocation

Besides observed,a posteriorisimilarity, monitors may or may not be actually colocateda priori, i.e., be
connected to the Internet, and to the Internet core in particular, in a very similar way. Formally,m andm′

arecolocatediff they are leaves of the same tree on the IP graph. This can beexpressed in terms of routes
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Figure 2.6: If multiple monitors are colocated, then they will share a common subroute towards reaching
the core. If one is able to detect such subroutes for a given subset of monitors, then one can assume this
subset is a colocation class.

: mandm′ are colocated iff all the routes frommandm′ truncated when they reach the Internet core have
a non-empty common suffix.

To decide whether two monitors are colocated, we use an active probing method resembling UDP
ping (and UDP traceroute), which we call UDP explore. UDP Explore floods the IP neighborhood of a
monitor with increasing TTLs probes targeted at random IP addresses, in order to reachall the routers
between a monitor and the Internet core. The flooding stops whenever more than exactly one router
replies to a given TTL, meaning that the monitor is a that distance (in terms of IP hops) to the core. The
output of UDP explore is a chain of hosts (either a star (“*”) or an IP address)(un(m)) such that all the
probes sent at TTLn replied with a star (“*”, ie timeout) or withun.

Measuring these chains for all the monitors allows us to identify precisely which monitors are colo-
cated, since then two monitorsm andm′ iff (un(m)) and(un(m′) have a common suffix. See Figure 2.6.

2.4 Targets

The method described above relies on our ability to select uniformly at random a core router in the
Internet1. There is no direct way to do so, though. On the contrary, it iseasy to select uniformly at
random IP addresses, as they are nothing but 32 bit integers.Of course, sampling such a random integer
does not necessarily lead to avalid IP address: the address may belong to unallocated or privateranges,
and more generally the address may not be associated to any machine in the Internet. Going further, the
address may belong to a machine which does not give any answerto our probes (UDP packets) and/or
does not belong to the core of the Internet (it may for instance belong to an end-host).

More precisely, given any IP addressi, the possible situations at a given moment in time are as follows:

• i is not a routable address (private address, address in an unallocated range, ...),

• i is a routable address but is not associated to a machine in theInternet,

• i is a routable address associated to a machine in the Internetwhich does not answer to our probes,

• i is a routable address associated to a core Internet router which does answer to our probes.

• i is a routable address associated to another machine (end-host or border router) in the Internet
which does answer to our probes.

The first situation may be identified easily using known classes of reserved addresses. The second
and third situations are identified by sending one probe and getting no answer for it. We will see in the
following how to distinguish between the two last cases, theones where we receive an answer from a
core router or another machine in the Internet (end-host or border router).

Before this, let us notice that when a given core router does not answer to our probes, the absence
of answer isa priori not related to its degree. As a consequence, the degrees of such core routers are
representative of the ones of all core routers, and in particular they have the same distribution. We may
therefore obtain the degree distribution of core routers bymeasuring the number of core routers which
answer to our queries.

1Uniformly at randommeans that all routers are selected with the same probability.
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To do so, we still have to distinguish between answers from core routers and answers from other
machines in the Internet (end-hosts or border routers). First notice that a core router necessarily has more
than just one interface or else it cannotroute. Moreover, from the definition of a core router, at least two
of its interfaces are connected to core routers and our measurement method will see at least two of them
if the monitors are reasonably well distributed. Instead, an end-host has only one interface, which will be
discovered by our probes.

Let us now consider a routerr which is either a border-core router or a border router. Remember
(Section 2.1) that this means that routerr belongs to a tree between a border-core router (root of the tree)
and end-hosts (its leaves). When we measure the degree of such a router, several situations may occur. In
the vast majority of cases, as long as our monitor set is a small fraction of all possible ones, none of the
machines in setBr is a monitor. Then, our measurement method is able to observeonly the interfaces of
r that aredirected toward the core, that is those interfaces used to send packets to core routers. If r is a
border router then it has only one interface directed towardthe core (r0 on the figure), which is the only
interface ofr we discover with our probes. Thus, we may make no difference betweenr and an end-host,
which is quite satisfying for us as we intend to discard both end-hosts and border routers from our data
set. In the other case, wherer is not a border router but a border-core router, we may discover several
interfaces ofr. But, since none of our monitors belongs to setBr , then we can only discover the core
interfaces ofr, which is again precisely our goal.

The difficult case to be carefully examined is the one where some of our monitors belong to setBr :
as our monitor set is large, and as the number of targets increases, the probability that we have in our
target set a routerr with one or several monitors inBr increases. In this case, an interface ofr, connected
towardsBr , is observed by the monitors inBr .

Fortunately, in this case we are able to detect when an interface is actually not directed towards the
core. While we use UDP Explore mainly to detect colocated monitors, we can also use its output to list all
such interfaces. Indeed, the output of UDP Explore from a monitor is exactly the list of all the interfaces
oriented towards the monitor that are not in the core, that is, for a given monitor, all the interfaces not
oriented towards the core that may be observed by Distributed UDP Ping. We use this observation to build
a blacklist, which is the reunion of all the interfaces observed by UDP Explore. Whenever an interface is
observed that is on the blacklist, it is discarded for not being an interface in the core.

Fortunately, in this case we are able to distinguish betweenthe interfaces ofr that are directed towards
the core and those that are not. Indeed, consider the case where several machines inBr are in our monitor
set. Then they clearly are what we have calledcolocated monitorsin Section 2.3. Thanks to the previously
described method, we are able to identify these colocated monitors, and we are able to detect when an
interface is observed only by monitors that are colocated (in the same colocation equivalence class). Since
all the other interfaces ofr are observed by monitors that are not inBr , we only have to discard interfaces
that are seen by at most 1 colocation class of monitors. The remaining interfaces ofr after removing such
interfaces are called thecore interfaces ofr.

Finally, we build our target list as follows. We sample random 32 bit integers and discard the corre-
sponding IP addressi if one of the following is true:

• i is in an unallocated or private range,

• a probe sent toi does not lead to a valid answer,

• our method observes only one interface fori (it is an end-host or a border router),

• our method observes more than one interface fori, but only 0 or 1 of these interfaces remains after
removing the non-core interfaces.

Additionally, after the measurement, interfaces from the blacklist are discarded.

2.5 Bias correction

The procedure above (Section 2.4) selects uniformly at random IP addresses of core routers (among the
ones answering to our probes, representative of all core routers). It however does not select uniformly at
randomcore routersthemselves: a core router withk interfaces hask possibility to be chosen, so there is
a bias due to degree. More precisely, ifpk is the fraction of core routers with degreek, the probability ˜pk
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to choose a core router of degreek is proportional tokpk. Thus, if we knew the number of interfacesk
of the core router to which corresponds each of the IP addresses we selected, then we could easily infer
the true degree distribution by applying the correction formulapk = p̃k/(k.Σi≥2p̃i/i), wherepk is the real
proportion of routers of degreek in the core of Internet and ˜pk is the observed proportion in our sample.

The obstruction to proceed tis way is that we do not know the number of interfacesk of the core
routers in our sample since we cannot discover all of their non-core interfaces. On the other hand, we
hopefully observe all of their core interfaces and, as explained earlier, we are able to decide for each of the
observed interface whether it is a core interface (observedby several monitors) or a non-core interface (not
observed or observed only once after choosing a unique representative for each set of colocated monitors,
which we call quotienting). Then, we artificially change ourselection method so that the probability of
selecting a core router is proportional to its number of interfaces in the core instead of its total number
of interfaces : we simply decide to discard all routers that have been selected by an interface that we do
not observe or that we observe with only one monitor after choosing a representative for sets of colocated
monitors. In this way, we obtain the desire property and the correction formula given above becomes
valid, up to substituting the degreek of routers by their core degreek′.

Proceeding this way even offers a subtle but very interesting advantage: it improves the accuracy
of our sampling for the high-degree routers, which are the most difficult to obtain since they are less
numerous. Indeed, the statistical relevance of a sample to evaluate the rate of a given category of elements
is directly related to the number of such elementsni contained in the sample. Ifni >> 1 then the accuracy
of the observation is good, while on the opposite, ifni ∼ 1 one can have only low confidence in the
observed proportion of the referred category of elements. It turns out that, with our sampling method, the
presence of degrees in our sample is biased toward the highest degree, since the probability to choose a
core interface of a given core router is proportional tok′.pk′ , wherek′ is the core degree. This augments
the accuracy of observation of the proportion of these nodes, whose number is very low in the Internet2,
while the accuracy of observation of the proportion of low-degree nodes is guaranteed by their high
number.

2.6 Measurement

To confirm the feasibility of our method and to get first results, we have conducted actual, real-world
measurement.

2.6.1 Data collection

The monitor set was composed of∼700 machines from the PlanetLab platform, capable of sending,
receiving and processing UDP and ICMP packets towards the large number of targets, as required by our
method (2.3). The target set was composed of∼ 3 millions UDP ping responding, uniformly randomly
chosen among routable IP addresses, as described previously (2.4).

The most lengthy part was the creation of the target set : since relatively few routable IP addresses
respond to UDP ping, a large number of addresses must be probed to construct a suitable target set, and
this part took about 10 hours, while each single measurementpass took no more than 4 hours. The whole
measurement (creation of the list, three rounds of measurement) lasted less than 24h hours. Each pass
is considered an independent data set for the first step of data post-processing, and the three rounds are
merged for the last step of data post-processing.

2.6.2 Data cleaning and filtering

To meet the requirements described in the previous sections(See 2.3 and 2.4), we had to apply both data
pre- and post-processing.

Invalid IP addresses, or IP addresses filtering UDP or ICMP were immediately discarded upon the
target list creation. The distributed measurement was thenexecuted and the data retrieved for further
post-processing. Monitors and targets producing a suspiciously low amount of data (monitors observing
less than 80% of the targets, and targets being observed by less than 80% of the monitors) were purged for

2This is a widely acknowledged fact, which we confirm in the result section 2.7.
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All other targets are considered suspicious and are discarded.

being unreliable. Targets generating multiple responses from single probes, or not answering at least once
with the interface they are designated by (theirnominalinterface), or not answering at least once with an
interface different from the one they are designated by (andhence being of degree 1, and therefore not in
the core), are all removed from the data set for the reasons explained in 2.4.

Dataset M1 M2 M3
Initial number of monitors 619 625 622
Initial number of targets 2849740 2734548 2699642
Total dataset size (moni-
tor/interface/target triplets)

1082691302 1100694241 1077678410

Targets generation multiple re-
sponses for single probes

10150 9842 11048

Monitors observing too few targets 65 73 72
Targets being observed atleast once
by their nominal interface

2641485 2526446 2491990

Targets being observed atleast once
by an other interface

215514 215228 215159

Targets being observed by atleast
two different interfaces

7259 7126 7507

Remaining targets after target filter-
ing

5593 5623 5619

Remaining monitors after monitor
filtering

421 442 442

UDP Explore blacklist length 440 440 440
Blacklisted interfaces in the unfil-
tered data

1040 1107 1097

Blacklisted interfaces in the filtered
data

0 0 0

Some targets generated more than one response for at least one monitor. We consider this as sus-
picious, probably being due to packet duplication or improper configuration. Since the number of such
targets is low, we deny them the benefit of the doubt and removethem from our data set. About 104 such
targets are removed from each data set.

Targets that respond significantly less than the other, and monitor that get responded significantly less
than the others, are also considered suspicious and discarded. About 5×105 targets (see Fig 2.7) and 70
monitors (see Fig 2.8) are removed from the data set.

Finally, targets that have only one observed interface at this point, or that never use the interface by
which they have been selected (to prevent the selection bias) are discarded, for a total of about 2.8×106)
for each data set.

After this post-processing, the data is assumed to be clean,and valid for the representative remaining
∼ 5600 targets.
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2.7 First results

2.7.1 Observed degree distribution

The computation of the number of different observed interfaces of each of the targets allows us to draw
the number of interfaces distribution of our target set 2.9.

However, this distribution does not account for the selection bias described previously (2.5). To
derive a proper estimation of the distribution of the numberof interfaces of the Internet core, we apply
the distribution transformation(k, pk)→ (k, pk/k). 2.10

2.7.2 Assessment of results

We explore here several approaches to assess the quality of obtained results.

Colocation Using the UDP Explore method presented in 2.3.2, we were ableto identify classes of colo-
cated monitors, as defined previously, that is the number of actual different vantage points in the monitor
set. From the total number of monitors, 203 actual classes were extracted, of average size 2.11. Most
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Figure 2.11: Convergence of the fraction of nodes of degreek with the number of monitors

classes regroup monitors obviously from the same Planetlabregistered institution, typically matching a
*.domain.ext-like pattern. We have used these classes to further analyze the quality of the monitor set.

Impact of the number of monitors A crucial issue with the method we have presented is to use a
monitor set that is large enough and distributed enough to actually observeall the interfaces of each
given target. We do not have a direct method to support this assertion, but we can at least check that our
monitor set isconvergent. More specifically, we check that the marginal addition of new monitors from
our monitor pool does not affect a lot the shape of the measured distribution. To do so, at post-processing,
we re-sample monitors from our monitor pool and extract the fraction of nodes of every degree observed
in average for every number of monitors between 1 and the maximum number of monitors in our pool.
We then plot the evolution of the average fraction (over its final value, observed when all the monitors are
included in the monitor set) and verify that this fraction converge. (Figures 2.11, 2.12)

Although it provides merely an indication of local optimality and not a global validation, the conver-
gence of the fraction of nodes of a given degree (and to an extend, of the degree distribution itself) with
the number of monitors proves the stability of the method with the addition of marginal monitors to the
monitor set.

Balance between interfaces As a validation of our method to decide whether an observed interface is in
the core or not, we compare the number of the interfaces classified as non-core by our method for monitors
observed with degree two, with a rough estimation of the expected number of such interfaces in our
sample. Let us suppose that the routes from every representative monitor to the core of Internet are distinct
and of average length 5. Since there are about 400 representative monitor in our measurement, there are

17



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250

Convergence of the fraction of a given degree with the number of classes

M0 - d =  2, fraction of final value
M0 - d =  3, fraction of final value
M0 - d =  4, fraction of final value
M0 - d = 10, fraction of final value
M0 - d = 18, fraction of final value

Figure 2.12: Convergence of the fraction of nodes of degreek with the number of classes

about 2000 routers for which we can observe a non-core interface. Moreover, since we discard the targets
that do not respond with the interface we selected, there are4000 interfaces that lead to the presence
of these 2000 routers in our sampling : each of them can be selected by its unique core interface (we
consider only monitors of observed degree two in the estimation) or by its unique interface directed toward
a representative monitor. This gives a number of 4000∼ 212 IP addresses out of 232 IP addresses. Our
sample of IP addresses for a 3000000-targets measurement was made by randomly generating roughly
80000000∼ 80.220 32-bit integers. Our sampling should then contain about 80.220.212/232= 80 routers
of degree two having one non-core interface. This number, obtained by a rough estimation, is to be
compared with the number of interfaces of routers of observed degree two that were classified as non-
core interfaces by our selection method.

Iterated measurements In order to corroborate the former results, we propose in this section another
validation based on the simulation framework discussed in Section 2.2. The purpose is to answer the
following question: let us suppose that the real degree distribution is exactly the one measured above,
then how our measurement techniques would perform? The simulation enables to investigate in particular
whether it respects the shape of the distribution or not and how accurate is the method according to the
real degree of the nodes.

Note that the validation presented in this section differs from the one proposed in Section 2.2 since the
graphs used previously belonged to two very specific classes, following either a Powerlaw or a Poisson
distribution. In this section, the distribution cannot be formally characterized as one of those two possible
types and it seems then natural to assess the relevance of themethod by means of the same simulation
framework.

Simulations The simulation setup consists in the following: we generated 5 different graphs of 1 mil-
lion nodes according to each of the 3 measured distributions; for each of the graphs, we chose 5 different
sets of nodes defined as the virtual monitors and simulated the measurement process from those monitors
towards all the other nodes. This represents 75 different simulations for which we tested sets of 12, 25,
50, 100, 200, 400 and 800 monitors.

Note that this process avoids the issue of co-located monitors since each virtual monitor in the sim-
ulation is chosen as a node of the graph and then would rather stand here as the entry point of a set of
co-located monitors in the measurement framework. As such,the number of monitors in the simulation
that would be similar to the one used in the PlanetLab measurement is around 200.

We first present in Figure 2.13 the simulation results regarding the assessment of the degree distribu-
tion. In Figure 2.13(a), one can see the inverse cumulative degree distribution observed with the different
sets of monitors. It shows that with a number of monitors higher than 200, the shape the original distribu-
tion seems preserved, even if the proportion of large degreenodes tends to be less accurately estimated.
This results is coherent with previous studies. Besides, the plot tends to show that the proportion of small
degree nodes seems to be particularly well estimated. Manual investigations confirmed this statement for
nodes with degree less or equal to 10 and for sets of monitors higher than 200.
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Figure 2.13: Qualitative assessment of the observed distribution

We now analyze the accuracy of the method and in particular toassess how close the measurement of
a degree is to the real value. Indeed, while the number of correctly estimated nodes is very high in the
simulations (96.3% of the nodes have been correctly estimated over the 75 simulations), which explains
why the distribution is globally well estimated, one may wonder how the mis-estimated nodes impact the
quality of the estimation.

Figure 2.13(b) presents the correlation between the real and the estimated degree for all the nodes
(we only plot the 200 monitors case for readability sake). Anemphasis is made on the plot to outline the
median value for each degree. This figure shows that the method is also efficient on measuring the degree
of specific nodes. In particular, one can see that the median value remains close to the real one, even for
the highest degrees. Moreover, even for the highest degrees, the estimation value is never far from the
real one: for instance, 18 has been the worst estimation madefor a 29-degree node; 17 for a 27-degree
one and 14 for a 22-degree one.

These analyses confirm that the degree estimation provided by the proposed the method is reliable
whether we are interested in the global distribution or in the degree of a specific node in the network.
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Chapter 3

Determining the nature of the degree
distribution

The degree distribution of a network carries a significant information regarding the structural and evo-
lutionary properties of a network. The knowledge of the degree distribution will be helpful to allow us
to discriminate between various random graph models that have been, could be or will be proposed to
model the Internet. Indeed, one expects that a valid model ofthe Internet topology should at least approx-
imately reproduce its degree distribution, among other properties. Consequently, we can accept or reject
a proposed hypothetical model based on its ability to mimic the degree distribution of Internet.

Our goal is to select or eliminate explicative and generative models based on their consistency with
the degree distribution measured in Chapter 2. In this purpose, for different classes of distributionsΓ,
we identify the particular distributionD ∈ Γ that is the most consistent with the experimental data. We
pre-assume different random graph models which generates avariety of hypothetical distributionsΓ such
as power law, exponential and lognormal, and apply a set of rigorous methodologies to test each of them
to accept or reject these candidate conjectures. To be more precise, we parameterize a given class of
random graphs by a vectorΦ, and want to check whether such a random graph for one value ofthe vector
Φ could represent the Internet. We first estimate the vectorΦ of parameters for which the corresponding
theoretical degree distributionDΦ matches best our measured degree distributionDMeasured, and then
test the hypothesis “couldDMeasured have been obtained by randomly selecting degrees accordingto
DΦ”. We use different standard methodologies such as maximum likelihood estimator [90], least square
estimator [103] etc to estimate the parametersΦ for different hypothetical distributionsDΦ. Next we use
different statistical hypothesis test methodologies (Monte Carlo-based technique [35] andχ2 test [102]
etc) to determine if the measured degree distributionDMeasured is not consistent with the hypothetical
distributionsDΦ; based on the outcome, we reject some of the hypothetical distributions.

Classes of distributions considered

Our first and main objective is to determine whether the measured degree distribution follows a power law,
which is probably the most popular model that is used to explain the evolution of a network. Nevertheless,
recently few other distributions came up as the possible candidate to model different kinds of networks.
Exponential degree distributions have for example been found in many real world complex networks [45].
Inspired from the non-equilibrium network theory, Deng et al. [45] constructed the network according to
two mechanisms: growing and adjacent random attachment. Their results showed that many empirical
datasets, such as the Worldwide Marine Transportation Network (WMTN), the Email Network of Univer-
sity at Rovira i Virgili (ENURV) in Spain and the North American Power Grid Network (NAPGN) closely
matches with the exponential degree distribution. In [106], Sala et al. also showed that modeling large
scale online social networks using power law produces a significant fitting errors, hence they proposed a
more accurate node degree distribution model based on the log-normal distribution.

We will therefore test three classes of distributions, Power laws in Section 3.2, Exponential distribu-
tions in Section 3.3 and Lognormal distributions in Section3.4.
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3.1 Challenges

In this section, we focus on the challenges that we face to model Internet with different hypothetical
distributions.

3.1.1 Independent samples and post-processing

Parameter identification methods and statistical tests arenormally designed for experimental data sets
consisting a certain number ofindependent samplesobtained from some (a priori unknown) distribution.
This assumption does not hold in our case, as several post-processing steps have been performed in order
to clean the data and to correct biases of the real experiments. In particular, for reasons explained in
Chapter 2, the degree distributionpk resulting from the direct measurements was biased, and needed to
be corrected by computingqk = pk/k (and re-normalizing). The distribution obtained is unbiased, but
does not correspond anymore to a numberN of values for independent samples. In particular, one cannot
identify Nqk nodes with degreek. To avoid this issue, we will work directly on the biased data, and
transform our hypotheses and distributions accordingly.

Besides, node degrees in a network are never entirely independent: Their sum over the whole net-
work needs for example to be an even number, and we suspect that there might be stronger dependency
issues. The precise influence of such dependency remains unknown, but it should be absent if the random
selection of samples on which measurements are made is made with repetitions, which is always approxi-
mately the case when the proportion of selected samples is small, as in Chapter 2. In any case, we believe
that the effect should be negligible with respect to other possible artifacts of the measurements and the
analysis method.

3.1.2 Parameter estimation

As explained in the introduction of this section, we consider different classes of distributionsΓ which
can be proposed as a hypothetical model for the Internet. We would like to stress on this point that
unlike ad hoc and ‘a priori’ hypothesis, these hypotheticalmodels are suitably parameterized based on
the experimental dataset. Moreover, in one of the predominant candidates called power law distribution,
the power law behavior is usually not observed for very smalldegrees, but emerges smoothly for the
higher degrees (see Figure 3.1).

Deciding where the power law behavior starts and how to parametrize the first part of the distribution
without over-parametrizing it are challenging issues for which there is no universally agreed upon answer.
The number of parameters needed to describe the first part of the distribution is in particular often not
clear, and may depend on where the actual power law behavior starts. As a result, the class of models
considered does not have a fixed number of parameters.

Most standard techniques for parameter estimation and hypotheses testing are designed for classes of
models with fixed number parameters, and can therefore not bedirectly applied here.

3.2 Hypothesis: Power law distribution

In this section, we consider the power law distribution as a candidate hypothetical distribution for the
measured Internet. The power law distribution is defined by

pk =Ck−α (3.1)

whereα > 1 is the scaling exponent,C is the normalizing constant andk is the discrete variable rep-
resenting individual degrees. The exponentα can be observed as the slope in the log-log scale of the
distribution. As represented in Fig. 3.1, the slope of the curve does often not followα = 2.5 for the few
initial degrees (k < 8), however, for the higher degrees (k≥ 8) the linear slope becomes quite evident.
In such a case, we say that the distribution follows power lawwith a slopeα starting from a minimum
degreek≥ xmin. Hence we redefine the discrete power law distribution Eq. (3.1) for x≥ xmin with proper
normalization as follows

pk =
k−α

ζ (α,xmin)
(3.2)
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Figure 3.1: A power law distribution withxmin = 8

whereα is the scaling parameter andxmin is the minimum degree at which power-law behavior holds and
ζ (α,xmin) = ∑∞

m=0 (m+ xmin)
−α . Our first task lies in correctly fitting this power law distribution with

the experimental distribution. In order to do that, we first estimate the parameter setΦ = {xmin,α} using
various statistical estimation techniques. Then we test the corresponding power law hypothesisDΦ using
different hypothesis testing methodologies.

3.2.1 Parameter estimation

In this section, we use different standard statistical estimation methodologies to compute the parameters
of the power law distribution. Precisely, we focus on two popularly used methods such as the maximum
likelihood estimator [90] and least square estimator [103]and in the following, we explain them one after
another.

Maximum likelihood based estimation In statistics, maximum-likelihood estimation (MLE) is a pop-
ular method of estimating the parameters of a statistical model. When applied to a data set and given a
statistical model, maximum-likelihood estimation provides estimates for the model’s parameters [90].

For the particular case of the power law, let us first assume that the lower boundxmin is known, and
estimate the slopeα. We use maximum likelihood estimation to compute the estimator α̂ of the exponent
from a discrete dataset containingN observations. Suppose that theN observed degreesx1,x2, . . . ,xN are
assumed to be independent and identically distributed according to pk. Then, the likelihood function can
be expressed as

L(α|x1,x2,x3, . . . ,xN) = px1× px2× px3 · · ·× pxN (3.3)

=
N

∏
i=1

x−α̂
i

ζ (α,xmin)
(3.4)

Taking the logarithm, we obtain

lnL =−N lnζ (α,xmin)−α
N

∑
i=1

lnxi

Taking as estimator̂α the valueα that maximizes the log-likelihood function by setting∂ lnL
∂α |α=α̂ = 0,

we obtain
ζ ′(α̂,xmin)

ζ (α̂ ,xmin)
=− 1

N

N

∑
i=1

lnxi
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The solution of this equation admits the following closed form approximation (see Appendix B.3 in [35])

α̂ = 1+N

[

N

∑
i=1

ln
xi

xmin−0.5

]−1

wherexi , i = 1. . .N are the observed values ofx such thatxi ≥ xmin. We can also transform the above
equation in terms of the measured frequenciespMeas

k

α̂ = 1+
1

∑kmax
k=xmin

pMeas
k

(

ln k
xmin−0.5

) (3.5)

We now turn to the problem of estimating the lower limitxmin from the data, for which we follow the
approach of Clauset et al. [35]. The basic assumption is that, if we choose too low a value forxmin we
try to fit a region which does not fall under the power law behavior (in Fig. 3.1, the region isk < 8). On
the other hand, if we choose too high a value forxmin, we are effectively throwing away legitimate data
points in the regionk < xmin, which increases both the statistical error on the scaling parameter and the
bias from finite size effects. Our goal is to find a good compromise between these cases. The fundamental
idea behind the method is very simple: we choose the value ˆxmin that makes the probability distributions
of the measured data and the best-fit power-law model as similar as possible above ˆxmin. In general, if we
choose ˆxmin higher than the true valuexmin, then we are effectively reducing the size of our data set, which
will make the probability distributions a poorer match because of statistical fluctuation. Conversely, if we
choose ˆxmin smaller than the truexmin, the distributions will differ because of the fundamental difference
between the data and model by which we are describing it. In between lies our ideal value.

We use Kolmogorov-Smirnov (KS) statistic for quantifying the distance between the data and the
fitted model. LetP(k) be the cumulative density function of the hypothetical power-law distribution for
k≥ xmin. We compute the CDF as

P(x) =
ζ (α̂ ,k)

ζ (α̂ ,xmin)

which has the nice normalization property asP(x) = 1 at x = xmin. On the other hand, we suitably re-
normalize the experimental distribution to obtain cumulative density functionS(k) for k≥ xmin. Here also
we observeS(k) = 1 atk= xmin. Finally the KS-statistic can be computed as

d = max
k≥xmin

|S(k)−P(k)|

Our estimated ˆxmin is then the value ofxmin that minimizesd. A brief outline of the methodology is
provided as Algorithm 1.

Algorithm 1 : Parameter estimation using MLE

Input : Degree distributionpk

Output : Estimated parameters ˆxmin, α̂
Two temporary vectorsα[kmin . . .kmax],d[kmin . . .kmax] are used in this algorithm
foreachxmin such that kmin≤ xmin≤ kmax do

Estimateα̂ = 1+ 1

∑kmax
k=xmin

pk

(

ln k
xmin−0.5

)

foreachk such that xmin≤ k≤ kmax do
P(k) = ζ (α̂,k)

ζ (α̂,xmin)

S(k)← Re-normalizedpk in xmin to kmax

d[xmin] = maxk′≥xmin
|S(k′)−P(k′)|

α[xmin] = α̂
x̂min = i, for the minimum value in the vectord[kmin≤ i ≤ kmax]
α̂ = α[x̂min]
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Least square fit method The method of least square assumes that the best-fit curve of agiven dataset
is the curve that has the minimal sum of the deviations squared (least square error) from a given set of
data [103]. In our case, the measured degree distribution ofInternet of sizen can be described as (1, p1),
(2, p2), . . . , (n, pn), wherepk is here the measured proportion of nodes with degreek. Using least square
method, we aim to propose a mathematical modelpTh

k = f (k,Φ) =Ck−α (parameter setΦ = (C,α)) that
fits with this experimental distribution. This is importantto note that the normalizing constantC and the
exponentα are mutually dependent parameters. However using least square method, we primarily focus
to estimate the exponentα only, giving less attention toC. Instead of working directly on the original
function, we prefer to linearize it to reduce the weight given to the high degree nodes. The function can
be linearized by taking logarithms

ln pTh
k = lnC−α lnk

The fitting function f (k,Φ) has the deviation (error)r from each data point, i.e.,r i = ln pki − f (ki ,Φ).
According to the method of least squares, the best fitting curve has the property that the sumS, of squared
deviations

S=
n

∑
i=0

r2

is minimum. To find the values of the parametersC andα which minimizesS, we set the partial deriva-
tives ∂S

∂ lnC = 0 and ∂S
∂α = 0. Solving the equations, we find the parameters

lnĈ=
(∑n

i=1 ln pk)(∑n
i=1 (lnk)2)− (∑n

i=1 lnk)(∑n
i=1 lnk ln pk)

n∑n
i=1 (lnk)2− (∑n

i=1 lnk)2

α̂ =− (n∑n
i=1 lnk ln pk)− (∑n

i=1 lnk)(∑n
i=1 ln pk)

n∑n
i=1 (lnk)2− (∑n

i=1 lnk)2

The quality of the least square fit is measured with the help ofcoefficient of determinationR2 which
quantifies how well the proposed model is able to fit the experimental data points.R2 is computed as
the square of the sample correlation coefficient between experimental and predicted values [104]. This
coefficient can be expressed as

R2 = 1− Serr

Stot

where
Stot = ∑

k

(pk−〈pk〉)2, Serr = ∑
k

(pk−Ck−α)2

In the above,〈pk〉 is the mean of the observed data

〈pk〉=
1
n

n

∑
i=1

pk

3.2.2 Hypothesis testing

The tools described in the previous sections allow us to fit a power-law distribution to the measured
Internet dataset and provide good estimates of the parameters. However, they hardly tell us anything
about whether the data are well fitted by the power law. In particular, data that are actually generated
from a different distribution can always be fit to a power-lawmodel, but the fit may be very poor. In
practice, therefore when considering the measured degree distribution of Internet, our challenge is to
decide not only what the best parameter choices are but also whether the power-law distribution is even
a reasonable hypothesis to model Internet. In this section,we use different classical hypothesis testing
methodologies such as Monte Carlo,χ2 test etc to test the validity of the power law models. We first
describe a hypothesis testing methodology based on Monte Carlo technique proposed in [35] by Clauset
et al., and then a more standardχ2 test.
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Monte Carlo method Given an experimental degree distributionDMeasuredand the corresponding fit-
ted hypothetical power-law distributionDΦ, we want to know whether “that hypothetical distribution
is a likely model given the experimental data”. We answer this question by computing ap-value. By
definition [107], ap-value quantifies the probability that our data were drawn from the hypothesized
distribution, based on the observed goodness of fit.

If the p-value is close to 0, then it is unlikely that the data are drawn from a power law. If it is closer
to 1 then the data is more consistent with the hypothesis of a random generation using a power law, but
the latter hypothesis is of course not guaranteed. Note thatwhen the data are indeed generated according
to the hypothesis, the expectedp-value is 0.5.

We numerically compute ap-value following the Monte Carlo based based methodology proposed
by Clauset et al. in [35]. We generate a large number of synthetic data setsSynΦ drawn from the power-
law distributionDΦ that best fits the observed dataDMeasured, fit each data set individually to its own
power-law distribution, calculate the KS statistic for each one relative to its own best-fit model, and then
simply count what fraction of the time the resulting KS statistic is larger than the valued observed for the
experimental data. This fraction is ourp-value. This is important to note that we create synthetic datasets
SynΦ that have a distribution similar to the experimental dataDMeasuredbelow xmin but that follow the
power law distributionDΦ abovexmin. The steps to computep-values are as follows:

1. Determine the best fit of the power lawDΦM to the experimental Internet degree distribution
DMeasured. Estimate the parameter setΦM = {xmin,α}.

2. Calculate the KS statistic of the best-fit power lawDΦM to the dataDMeasured.

3. Generate a large number of synthetic data setsSynΦ (of same size as experimental dataset) from
the parametersΦM, estimate the parametersΦS= {xmin,α} to fit each of them with a hypothetical
power law distributionDΦS, and then calculate the KS statistic for each fit. Note crucially that for
each synthetic distributionSynΦ, we compute the KS statistic relative to its own best-fit power law
distributionDΦS, not relative to the original distributionDΦM . In this way we ensure that we are
performing for each synthetic data set the same calculationthat we performed for the experimental
data set.

4. Calculate the p-value as the fraction of the KS statisticsfor the synthetic data sets whose value
exceeds the KS statistics for the real data.

5. If the p-value is sufficiently small, the power-law distribution can be ruled out.

χ2 test In addition to the Monte Carlo method, we also useχ2 test [102] to examine whether “The
hypothetical power law distribution is a likely model the measured Internet degree distribution”. If
pMeasured

k for 1 ≤ k ≤ n is the measured degree distribution of the Internet (assuming xmin fixed) and

pTh
k = f (k,Φ) = k−α

ζ (α ,xmin)
is the hypothetical distribution with parameterΦ = {xmin,α}, then we compute

theχ2 statistic as

χ2 =
n

∑
k=xmin

(npMeasured
k −npTh

k )2

npTh
k

(3.6)

This is crucial to note that, since the hypothetical distribution pTh
k is defined within the intervalxmin ≤

k≤ n, we need to re-normalize the empirical degree distributionpMeasured
k within the same interval.

Like Monte Carlo method, here also we assess the confidence ofthe hypothesis usingp-value. The
p-value is calculated by comparing the value of theχ2 statistic to aχ2 distribution keeping in mind the
number of “degrees of freedom” which is again calculated by the numbern of values of degree for which
we have an estimated probability , minus the reduction in degrees of freedomm. The reduction in the
degrees of freedomm is calculated followingm= s+ 1 wheres is the number of parameters for the
hypothetical distribution.

Note that the numbern of values of degrees for which we have an estimated probability is unclear:
Since there is a priori no maximal degree in a power-law, thisn could be infinite, or very large. Theχ2

test is however only valid asymptotically, for numberN of samples that are sufficiently large with respect
to n and the distributions considered. It does thus not provide trustful results if we chose a too largen,
and we must therefore arbitrary fix a sufficiently small maximal degree.
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Figure 3.2: Example of artificially generated dataset following a power-law, withN = 104, xmin = 8 and
α0 = 2.5.

These ambiguities are one of the reasons for which we use the Monte-Carlo based approach of Section
3.2.2.

3.2.3 Validation

Before applying the estimation and testing the relatively novel methodologies described in Section 3.2.1
and in 3.2.2 on the experimental data, we first validate them on the artificially generated datasets. Next
we illustrate the generation of the synthetic datasets and show how accurately we can recompute the a
priori parameters and calculatep-value.

Artificial datasets We fix values ofxmin,0 and α0, and generate a discrete synthetic datasetSynNU

containingN individual degreesxi in the following way.N−Ntail ) are taken randomly uniformly between
1 andxmin,0−1), and ‘Ntail ’ of them are selected according to a strict a power law distribution with slope
α0 starting atxmin. This is done using the following expression

x= ⌊(xmin,0−0.5)(1− r)−1/(α0−1))+0.5⌋,

wherer is a random number uniformly selected between 0 and 1.

Remark:For practical implementation reasons, it can be convenientto impose a maximal degreekmax

in the synthetical datasets and to discard all the generateddegrees larger than thatkmax. When this option
is selected, one should be very cautious to specify a sufficiently largekmax, especially for small values
of α, for otherwise one could discard a significant number of datapoints, resulting in erroneous esti-
mations and validations. Hence, while generating synthetic datasets for the computation ofp-value, we
dynamically set thekmax based on the estimated exponentα such that the fraction of discarded data points

remains less than a predefined fraction (say 10−4) following the expressionkmax=
(

x(α−1)
c

)1/(1−α)
.We

observe that for lowα, thekmax gets a quite high value so that only a few data points are discarded.

An example of resulting distribution forN = 104, xmin,0 = 8 andα0 = 2.5 is presented in Fig. 3.2.

Validation results Applying the MLE-based approach on the synthetic datasetSynNU as represented in
(Fig. 3.2), we calculatêα = 2.51 and ˆxmin = 8. More generally, we have generated datasets for various
values ofα0 between 2 and 4 and re-estimated the parameters using the MLE-based approach. The results,
presented in Fig. 3.3, show that the estimated slopesα̂ match the actual values very closely (usually with
a difference smaller than 0.02).
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Figure 3.3: Comparison between the estimated slopeα̂ and the actual slope that was used to generate the
synthetical datasets, forN = 104 nodes, andxmin,0 = 8. The figure shows that the estimated and actual
slopes match very closely.
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Figure 3.4: Cumulative distribution funcitn of the computed p-value for 120 different artificial datasets
with parametersα0 = 2.8, xmin,0 = 10 andN = 105.

Let us now analyze the Monte-Carlo basedp-value evaluation method. By definition of thep-value,
when the artificial datasets are indeed generated by takingN i.i.d. realizations of a random variable
following a power law, thep-value should behave as a uniform random variable. Several reasons related
to the heuristic nature of the method applied, approximations in the estimation methods, and the possible
distortion of KS-distances for different values ofα could however have prevented this from happening.

To validate the method used, we have generated 120 differentartificial datasets for same parameters
α0 = 2.8, xmin,0 = 10 andN = 105. For each of them, we have estimated the parametersα0,xmin,0, and
computed thep-value. The results, presented in Fig. 3.4, show that thesep-value do indeed behave
approximately as a uniform random variable.

3.2.4 Measured degree distribution

The detailed measurement methodology and tools used to measure the distribution of degrees on the
Internet have been explained in Chapter 2. Three experiments were performed at different times, yielding
5453, 5482 and 5478 valid measurements respectively. In addition, we will consider a larger dataset
(1+2+3) resulting from the union of all these valid measurements.Note that this combinations of the
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Experiment β̂ x̂min p-value (%)
1 3.245 5 2.0
2 3.331 5 8.8
3 3.276 5 1.8

1+2+3 3.230 5 4.6

Table 3.1: Values of the power-law parameters obtained using the MLE-based estimator, and correspond-
ing p-values obtained the Monte-Carlo approach.

Experiment β̂ x̂min p-value (%)
1 3.386 5 12
2 3.386 5 16
3 3.385 5 10

1+2+3 3.392 5 7

Table 3.2: Values of the power-law parameters obtained using the MLE-based estimator, and correspond-
ing p-values obtained the Monte-Carlo approach.

three experiments should be considered with appropriate care, as these there were conducted at different
times, possibly in slightly different conditions.

As already explained in Section 3.1.1 we need to work on the biased initial measurements, because our
methodology assumes that we have access to a certain number of independent measurements randomly
drawn from the same distribution, and this does not hold trueonce the distribution has been corrected for
bias.

We use the accurately measured biased degree distribution to indirectly estimate parameters of In-
ternet. Lets assume that the hypothetical degree distribution of the Internet follows power law degree
distributionpTh unbiased

k = k−α

ζ (α ,xmin)
. Subsequently, the biased hypothetical degree distribution becomes

pTh biased
k = k× k−α

ζ (α,xmin)
=

k−β

ζ (β ,xmin)

whereβ = α−1. Since the empirical distributionpEmpbiased
k is essentially a biased distribution, we need

to estimate the parameterβ of the hypothesispTh biased
k from these experimentally measured distribution

and then compute the power law exponentα of the unbiased hypothetical degree distributionpTh unbiased
k .

MLE and Monte-Carlo based tests Applying the Maximum likelihood-based estimator of Section
3.2.1 and computing thep-values for the results obtained using the Monte-Carlo based method described
in Section 3.2.2 yields the results presented in Table 3.1. One can see that while the power-law hypothesis
is not strongly supported, it can certainly not be rejected outright. Besides, all results predict axmin = 4,
and a value ofβ around 3.25 corresponding to a slopeα of the degree distribution close to 4.25. A
comparison between the experimental data and the estimatedpower-law distributions are presented in
Fig. 3.5 for the three experiments.

Since we have very few nodes with high degrees, we have try applying our methodology to truncated
distributions, in which we remove every node with degree higher than 20. As presented in Table 3.2, the
values of the slope obtained are higher and much more uniform. A higher slope is naturally explained by
the need to account for the absence of nodes at a degree above 20. On the other hand, the uniformity of
the result suggests that the difference between the valuesβ̂ obtained in Table 3.1 for different experiments
could be caused by discrepancies at high degrees. This hypothesis should however be considered with
necessary caution, as the need to account for the absence of nodes with degree higher than 20 may
”compress” the differences between the different experiments.

Maximization of p-values It is interesting to compute thep-values using the approach of Section 3.2.2
for different values of the parameters. As can be seen in Fig.3.6, there are values ofα leading to much
higher p-values than those obtained by the MLE. It is therefore tempting to take as estimators of the
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Figure 3.5: Comparison between measured data and the distribution estimated using the MLE-based
method.

Experiment β̂ x̂min p-value (%)
1 3.29 5 10
2 3.36 5 20
3 3.31 5 13

1+2+3 3.26 5 17

Table 3.3: Values of the power-law parameters obtained by maximizing thep-values, as computed by the
Monte-Carlo approach of Section 3.2.2; and corresponding ”p-values”.

power-law parameters thexmin andβ that maximize thesep-values. The results of this approach are
presented in Table 3.3. One can see that the estimated slopesare close to but slightly higher (typically
by 0.05) than those estimated in Table 3.1. Thep-values are however significantly higher, lying between
10% and 20%. One should however note that these percentages cannot be formally interpreted asp-
values, as the methodology used to compute them relies on theassumption thatα andxmin were obtained
by the MLE-based approach.

We have also tried to identify the best parameters for the power-law using a directp-value approach
that does not assume that we use the MLE to identify parameters. More precisely, for given parameters
ΦH = (xmin,β ), we compute the KS statistic for the difference between the measured degree distribu-
tion DMeasuredand the power-law distributionDΦH . We then compute the KS statistic for the difference
between the power lawDΦH and 100 synthetically generated datasets (on the same number of nodes as
DMeasured) and take asp−value the percentage of those synthetic datasets for which the KS-distance is
larger than that of the Measured data. We repeat this operation for all relevant values ofxmin andβ . Fig-
ure 3.9 shows the values obtained forxmin = 5, and Table 3.4 shows the valuesβ (for xmin = 5) for which
the p−values obtained are the largest. One can see that the optimalvalues ofβ are very similar to those
obtained in Table 3.3 where the MLE approach was re-used in the computation of thep−values. But,
thep−values themselves are much larger, being as high as 50%. Remember though that these values can
again not be strictly interpreted asp-values once one select the parameters by optimizing these values.
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Figure 3.6: Evolution ofp-values as computed by the Monte-Carlo based method described in Section
3.2.2 withα, for xmin = 5.

Experiment β̂ x̂min p-value (%)
1 3.29 5 44
2 3.36 5 46
3 3.31 5 40

1+2+3 3.26 5 51

Table 3.4: Values of the power-law parameters obtained by maximizing the p-values computed by a
Monte-Carlo based method using the KS-statistic; and corresponding ”p-values”.

Concerning the methodology, it is interesting to note that the highest ”p-values” are obtained when
no maximum likelihood estimator is used at around 40%−50%. Selecting the parameters by optimiz-
ing ”p-values” computed using the maximum likelihood estimator as explained in Section 3.2.2 leads
to smaller values, of the order of 10%− 20%, and computing thep value for the parameters directly
obtained using the maximum likelihood estimator leads to even smaller values. This could indicate that
the maximum likelihood is efficient to recover parameters corresponding to a small KS-statistic when the
data are artificially generated, but not on the measured dataset.

χ2 test In addition to the Monte Carlo method, we also applyχ2 test (explained in Section 3.2.2) to
examine the goodness of fit of the hypothetical model. For biased distribution with estimated ˆxmin = 5
and β̂ = 3.21, we evaluate theχ2 statistic as 1760.22 (using the Eq. (3.6)). The total number of data
pointsn= 31−5= 26 and reduction in the degrees of freedomm= 2+1= 3. Hence the number of the
degrees of freedom= 26−3= 23. Using theχ2 statistic,χ2 distribution and number of the degrees of
freedom, we compute a very lowp-value= 0.001. As explained in Section 3.2.2), it is however not so
clear that the hypotheses under which theχ2 test is valid are satisfied here.
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(b) Unbiased degree distribution

Figure 3.7: Comparison between the measured and hypothetical degree distributions using Least square
method considering all the data points
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Figure 3.8: Comparison between measured and hypothetical degree distributions using Least square
method considering only initial 10 data points.

Least Square Estimator In addition to the maximum likelihood estimator, we also estimate the pa-
rameters from the empirical distributionspEmp biased

k andpEmp unbiased
k using the least square method ex-

plained in section 3.2.1. We observe that the value of the estimated parameter following the least square
method heavily depends on the number of datapoint (i.e. total number of degrees) taken into considera-
tion. For instance, in the combined (1+2+3) dataset, if we consider all 31 different degrees, we compute
the power law exponent asβ = 2.92 with coefficient of determinationR2 = 0.96. When working directly
on the corrected unbiased distribution becomesα = 3.92 with R2 = 0.97. In Fig. 3.7 we show a com-
parison between the model and measured data for both biased and unbiased distributions. However, if
we consider only the initial 10 degrees, the least square method computes the exponentβ as 3.43 with
R2 = 0.97 for the biased distribution, andα = 4.43 with R2 = 0.98 for the corrected unbiased one (see
Fig. 3.8).

Obtaining much higher values ofα̂ or β̂ when considering only the first degrees should not be very
surprising. Indeed, we know that the power-law behavior wasnot very pronounced for degrees smaller
than 5, and smaller slopes are needed to account for this flatter start of the curve. So, to avoid this artifact,
and the effect of noisy data at high degrees, we have also applied the least square estimator to versions
of our data truncated on both sides. More specifically, we have removed all nodes with degree smaller
than 5 or higher than 20. For the three experiments and the combined datasets, we obtained estimated of
β̂ between 2.802 and 2.805 (corresponding tôα ≃ 3.805), with values ofR2 around 0.89. This suggests
again that the difference between the coefficients estimated using the different experiments are mostly
caused by the noisy data for high degrees.
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Figure 3.9: Evolution ofp-values computed by a Monte-Carlo based method using the KS-statistic with
α, for xmin = 5.

3.3 Hypothesis: Exponential distribution

In this section, we consider the exponential distribution as the candidate hypothetical distribution to model
Internet. We chose to work with an expression of probabilities similar to the exponential probability
density function for continuous variable:

pk = λ exp(−λk)

whereλ is the parameter. In the previous section, we have already illustrated the fact that the actually
measured degree distribution of Internet is essentially a biased distribution. Hence the hypothetical biased
exponential distribution can be expressed as

qk = kpk = kλ exp(λk),

with appropriate normalization.
Similar to what was done for power laws, our first task is to correctly fit this biased exponential

distribution with the measured degree distribution (We work here only with a combination of the results of
the three experiments). In order to do that, we use MLE to estimate the exponentλ from the experimental
distribution.

3.3.1 Parameter estimation

We approximate the discrete exponential distribution fromthe continuous function by suitable normal-
ization as follows

hk =
qk

∑ j q j

So we assume that theN measured degreesxi , 1≤ i ≤ N are independent and identically distributed
observations, coming from a discrete exponential distribution pk with scaling parameterλ . Similar to
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Figure 3.10: Comparison between the measured degree distribution and the hypothetical models

Eq. (3.3), the likelihood function becomes

L(λ |x1,x2, . . . ,xN) =
N

∏
i=1

hxi

=
N

∏
i=1

(xiλ exp(λxi))
1

∑ j q j

Taking the logarithm of the likelihood, we obtain

lnL = ln

(

∑
j

q j

)−N

+ ln

(

N

∏
i=1

(xi)λ N exp(−λ ∑
i

xi)

)

.

Taking as estimator̂λ the valueλ that maximizes the log-likelihood function by setting∂ lnL
∂λ |λ=λ̂ = 0,

we obtain
N

λ̂
−

N

∑
i=1

xi−
N∑ j exp(−λ̂ j)(1− λ̂ j)

∑ j jλ̂ exp(−λ̂ j)
= 0 (3.7)

We numerically solve the above expression to estimate the exponentλ̂ for the experimental dataset.

3.3.2 Validation and parameter estimation

In order to validate the correctness of the estimatedλ̂ , we generate a synthetic network of sizeN with
exponential distribution with parameterλ0. Precisely, we numerically generate the degree sequences
xi ,1≤ i ≤ n following the exponential distribution withλ0 = 0.5,1.0,1.5 respectively. From these degree
sequences, we compute the synthetic degree distributionspEX

k . We apply Eq. (3.7) onpEX
k to estimate the

parameterŝλ as 0.498,1.008 and 1.487 respectively which proves that MLE is correctly able to evaluate
the true parameters.

Having validated the method, we apply Eq. (3.7) to the (biased) measured degree distribution from
Chapter 2pEmpbiased

k and estimate the exponent asλ̂ = 1.08. Hence, we propose the null hypothesis that
the best fit exponential distribution for the Internet can beexpressed as

pk = 1.08exp(−1.08k)

Fig. 3.10(a) shows the comparison between the biased experimental distributionpEmpbiased
k and the cor-

responding hypothetical distribution.

3.3.3 Hypothesis test

Similar to power law distribution, we use the Monte Carlo-based method to test the exponential hypoth-
esis of the Internet degree distribution. The procedure is exactly same as described in section 3.2.2,
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nevertheless for the moment we ignore the impact ofxmin and only put our attention toλ . One word of
caution regarding the computation of the KS distance between the best fit exponential distribution and the
experimental distribution, which requires the normalization of the cumulative biased exponential distri-
bution. The re-normalized cumulative distribution of the biased discrete exponential distribution can be
expressed as

P(k) = 1−
exp(−λk(k+ 1

λ ))

exp(−λxmin(xmin+
1
λ ))

)

contrary to the normalized cumulative distribution of the classical exponential distributionP(k) = (1−
exp(−λk)). Similar to power law distribution, first we generate a synthetic dataset following discrete
exponential distribution and compute thep-value using the Monte Carlo-based method. As expected, the
p-value follows random distribution. After this validation step, we compute the p-value for the (biased)
measured degree distribution and obtain 0. This clearly rejects our null hypothesis of modeling Internet
with exponential distribution.

3.4 Hypothesis: Lognormal distribution

In this section, we consider the lognormal distribution as the candidate hypothetical distribution for the
Internet. Lognormal distributions are normally used for continuous variables. To treat discrete distri-
bution, we chose to assign to each degreek a probability proportional to the value of the (continuous)
probability density function at thatk, with a proper renormalization. This gives us probabilities of the
form

pk =
1

kσ
√

(2π)
exp

(

− (lnk− µ)2

2σ2

)

whereµ is the mean andσ is the standard deviation. Earlier, we have already illustrated the fact that the
actually measured degree distribution of Internet is essentially a biased distribution. Hence the hypothet-
ical biased lognormal distribution can be expressed as

qk = kpk =
1

σ
√

(2π)
exp

(

− (lnk− µ)2

2σ2

)

We first try to correctly fit this biased lognormal distribution with the experimental distribution. In order to
do that, we use MLE to estimate the meanµ and standard deviationσ from the experimental distribution.

3.4.1 Parameter estimation

We approximate the discrete lognormal distribution from the continuous function by suitable normaliza-
tion as follows

hk =
qk

∑ j q j

We assume again that the measured degreesxi , 1≤ i ≤ N are independent and identically distributed
observations, coming from a discrete lognormal distribution pk with meanµ and standard deviationσ .
We aim to estimateµ andσ . Similar to Eq. (3.3), the likelihood function becomes

L(µ ,σ |x1,x2, . . . ,xN) =
N

∏
i=1

hxi (3.8)

=
N

∏
i=1

1

σ
√

(2π)
exp

(

− (lnk− µ)2

2σ2

)

1

∑ j q j
, (3.9)

whose logarithm is

lnL = ln

(

max

∑
k=min

qk

)−N

+ ln

(

1

σ
√

(2π)
−exp

[

1
2

kmax

∑
k=kmin

(

(lnk− µ)
σ

)2
])

34



Again, we take as estimator the maximizers of log-likelihood function. We first have∂ lnL
∂ µ |µ=µ̂,σ=σ̂ =

0, which becomes

N

∑
i=1

(

lnxi− µ̂
σ̂2

)

−







N

∑kmax
k=kmin

1
σ̂
√

(2π)
exp
(

− (lnk−µ̂)2
2σ̂2

) ×P






= 0 (3.10)

where

P=
kmax

∑
k=kmin

1

σ̂
√

(2π)
exp

(

− (lnk− µ̂)2

2σ̂2

)

× (
(lnk− µ̂)

σ̂2 . (3.11)

Similarly setting∂ lnL
∂σ |µ=µ̂,σ=σ̂ = 0 yields

N
σ̂
−

N

∑
i=1

(

(lnxi− µ̂)2

σ̂3

)

+







N

∑kmax
k=kmin

1
σ̂
√

(2π)
exp
(

− (lnk−µ̂)2
2σ̂2

) ×Q






= 0

where

Q=
kmax

∑
k=kmin

exp

(

− (lnk− µ̂)2

2σ̂2

)

1

σ̂
√

(2π)
×
[

(lnk− µ̂)2

σ̂2 −1

]

We numerically solve the simultaneous equations Eq. (3.10)and Eq. (3.12) to estimate the meanµ
and standard deviationσ from the experimental dataset. Similar to exponential distribution, we validate
the correctness of our estimation by numerically generate the synthetic dataset. Precisely, we numerically
generate the degree sequencexi ,1≤ i ≤ N following the lognormal distribution with{µ0 = 1,σ0 = .5},
{µ0 = 1.5,σ0 = 2} and{µ0 = 0.5,σ0 = 0.8} respectively. From these degree sequences, we compute the
synthetic degree distributionspLog

k . We apply Eq. (3.10) and Eq. (3.12) onpLog
k to estimate the parameters

{µ̂ = 1.01, σ̂ = 0.49}, {µ̂ = 1.5, σ̂ = 1.97} and{µ̂ = 0.51, σ̂ = 0.81} respectively which proves that
MLE is correctly able to evaluate the true parameters.

After this validation step, we apply Eq. (3.10) and Eq. (3.12) on the (biased) measurements from
Chapter 2pEmpbiased

k and estimate the parameters for Internet as{µ̂ = 0.12, σ̂ = 0.74} (We work again
on a combination of the three experiments described there).Hence, we propose the null hypothesis that
the best fit lognormal distribution for the Internet can be expressed as

pk =
1

0.74k
√

(2π)
exp

(

− (lnk−0.12)2

1.09

)

Fig. 3.10(b) shows the comparison between the biased experimental distributionpEmpbiased
k and the cor-

responding hypothetical distribution.

3.4.2 Hypothesis test

We use Monte Carlo method to compute thep-value of the lognormal hypothesis of the experimental
degree distribution. The procedure is exactly same as described in section 3.2.2, nevertheless for the
moment we ignore the impact ofxmin and only put our attention to estimateµ andσ . Similar to expo-
nential distribution, here also we raise the issue regarding the computation of the KS distance between
the best fit lognormal distribution and the experimental distribution, which requires a properly normal-
ized cumulative biased lognormal distribution. However, unlike power law and exponential distribution,
the re-normalization of the biased cumulative distribution has to be performed numerically, due to the
absence of analytical expression.

Computing thep-values on the (biased) degree distribution measured in Chapter 2, we obtain again
0, which rejects our null hypothesis of a lognormal distribution.
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3.5 Results summary

To the best of our knowledge, this work represents the first rigorous statistical analysis of hypothesis
about the degree distribution of the Internet relying on real accurate measurements. Our analysis has
shown that one can definitively reject the hypotheses of exponential and lognormal distributions. Similar
results not presented here apply for Poisson distributions.

The case of power-law distribution is much more nuanced. We have seen indeed that, while thep-
values computed are not very high (2−8% with the standard Monte-Carlo based methodology), they are
way to high to justify an outright rejection of the power-lawhypothesis, especially since much higher
values are obtained when the less formal maximization of thep-value approach is used (10−20% and
even up to 50%). Besides, we have seen that our results are sensitive to small variations of the data or
methodology (identification via regression, modified maximum likelihood, maximization of thep-value,
etc.). Nevertheless, our results confirm the qualitative impression that the Internet degree distribution is
”close” to a power law for degrees higher than 4, and identifya slope close to 4.25.

More precise results would need further experiments, or thedevelopment and application of new
approaches in parameter identification, allowing taking the specificities of power-law distribution into
account.

Taking a step back and considering the complexity of the phenomena at stakes, one can however sus-
pect that sufficiently long further experiment would eventually reject the power-law hypothesis, and that
a modification of paradigm would be needed to make more precise statements. Indeed, our approach here
has relied on the assumption that all discrepancies betweenthe theoretical and experimental distributions
are due to finite-size effects. It is however unlikely that the degree distribution was generated exactly by
any nice law, that would eventually be matched by the experimental data if the size of the Internet and the
number of measurements were sufficiently large. A refinementof our approach should take into account
the possible presence of second order unmodeled phenomena,in order to test hypotheses such as ”The
degree distribution could have been generated by a law that differs from a power law by less than a certain
measure.” In the meantime, the safest practical option is toconsider that the internet degree distribution
is well approximated by a power-law with slope 4.1 for degrees above 4.
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Chapter 4

Analysing the routing topology
dynamic

4.1 Study of the IP-level routing dynamics over Radar data

The Internet is a living system that evolves over time. Everyday, many nodes and links are added or
removed, during planned maintenance or because of unexpected network failures. It is important to map
the Internet topology, in particular when designing futurenetwork protocols which can be hard to test
on the real Internet. It is equally or even more important to understand its dynamics. This can be very
helpful for future protocols or new types of applications tomake use of its evolving nature.

Study of the dynamics of the Internet topology has been tackled both by analyzing the dynamics
of individual routes [100, 108, 74, 73] and from a more globalperspective, mainly at theAS- or IP-
level [57, 32, 92, 98, 94]. In addition, routing changes thathappen at theIP-level topology does not
necessarily imply changes at the physical level andvice-versa. This work focuses on theIP-level routing
topology and asks the question of how it evolves over time. Instead of individual routes, we study atree
of IP-level routes from one monitor to a fixed set of destinations in the Internet.

In our previous work reported in Deliverable D3.2, we already analyzed the dynamic of theIP-level
routing topology discovered around a single node [85]. Using a traceroute-like measurement tool, we
periodically probed the route to several destinations froma single monitor in the Internet. This results in
a series of routing trees which represent differentego-centeredviews of the routing topology around the
monitor. Analyzing these trees, two dynamic behaviors wereapparent. In particular, we observed that
we never stop discovering newIP addresses over time. Understanding the observed dynamics without
knowing the properties of the real Internet topology is complex. Therefore, we relied on simulations to
identify the factors behind these behaviors and to study their influence. We proposed a model whose
main goal was explanatory. This model represents the Internet IP-level routing topology as an Erdös-
Rényi random graphG = (V,E) where vertices correspond toIP addresses and edges correspond to the
IP-level connectivity or links between twoIP addresses. Then, it incorporates onG well known apparent
dynamic factors: load-balancing and route evolution. Finally, it simulates Internet measurements onG to
create a routing tree. This process is repeated many times tocreate several routing trees that we use to
analyze the dynamics. From this work, we learn that it is possible to reproduce on Erdös-Rényi graphs
the dynamic behaviors observed on the Internet.

This work goes further and studies the dynamic behaviors by using power-law random graphs to
model the routing topology. With Erdös-Rényi random graphs, we made no assumption on the underlying
topology. Here, we use a graph with a power-law degree distribution. Indeed, Faloutsos and al. [54] have
shown that power-law graphs may be close to the Internet topology in term of their degree sequence, so
they may well approximate its structure. We first ask the samequestions as in the analysis with Erdös-
Rényi graphs: (1) can we reproduce the dynamics behaviors on power-law graphs ? and (2) how does
the dynamic behavior depend on various simulation parameters ? Then, we investigate the differences of
results that appear for Erdös-Rényi and power-law graphs.

The rest of the section is organized as follows. In Section 4.1.1, we describe two characteristics of the
dynamics of theIP-level routing topology around a single monitor. Section 4.1.2 presents the simulation
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Figure 4.1: Properties of the observed dynamics.

model. In Section 4.1.3, we analyze the results of our experiments. Finally, Section 4.1.5 discusses some
related works, and Section 4.1.6 presents our conclusions.

4.1.1 IP-level routing topology dynamics

In our previous work [85], we presented two main characteristics of the dynamics of theIP-level routing
topology around a given monitor. To perform this study, we needed several snapshots of theIP routing
topology between the monitor and a given set of destinations. We use tracetree [78] which is a traceroute-
like measurement tool that aims at discovering a tree of routes or routing paths with the monitor as the
root and the destinations as the leaves. The intermediary nodes of the tree are theIP addresses found on
the routing path for each pair (monitor, destination). The size of a tree is then the number of all its nodes
(intermediary nodes plus the monitor and destination nodes). The link between two nodes represents a
hop at theIP level. One routing tree represents a subset of theIP-level routing topology between the
monitor and the destinations. It is called anego-centeredview of this topology. Repeating many trace-
tree measurements periodically gives a set of routing treesthat one can use to analyze the dynamics.
Each measurement round lasts about 4min and the frequency between a pair of rounds is about 15min.
Different datasets were collected from many monitors around the world (almost 150 monitors, mostly on
PlanetLab) and are publicly available [1].

Analyzing these datasets, two main dynamic characteristics came out: (1) newIP addresses are per-
sistently discovered around the monitor, (2) the pattern ofoccurrence ofIP addresses (number of occur-
rence/observation, and numbers of blocks of consecutive observation) follows a parabolic shape. Here,
we present these characteristics for two of our monitors which arewoolthorpe andovh [85]. All other
monitors exhibit similar results. The collection onwoolthorpe started in December, 2010 and ended in
June, 2011 and 3,000 destinations were used. The monitorovh only used 500 destinations with a higher
measurement frequency. It was collected from October, 2010to September 2011.

New IP addresses are persistently discovered around the monitorGiven a set of routing treesT1, T2,
..., Tr , we computed the cumulative unionCi = ∪Tk,1≤ k≤ i. Fig.4.1(a) plots the size of all setsCi as a
function of time forwoolthorpe andovh. We observe that newIP addresses are discovered at a fast rate.
In other terms, we never stop discovering newIP addresses between the monitor and the destinations over
time.

This plot presents the number of distinctIP addresses observed, and not the number of distinct routers,
as in general severalIP addresses, or interfaces, correspond to a same router. Detecting which interfaces
correspond to which routers is a difficult task. Though several methods exist, none is 100% accurate.
We used theMIDAR tool developed byCAIDA [27], and studied the number of discoveredroutersob-
served since measurement beginning. The results were consistent with the plot presented in Figure 4.1(a).
Moreover, previous work has studied the number of distinctASes discovered by such measurements, and
showed that it also increases significantly [86]. All in all,there is a good evidence that new routers are
actually discovered at a significant rate, even if part of theobserved growth may be caused by discovering
new interfaces for already observed routers. As there is no method that allows to know with certainty
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which interfaces correspond to a same router, we limit ourselves to the study of interfaces in the rest of
the paper.

The pattern of occurrence of IP addresses follows a parabolic shapeWe defined two values that
quantify the occurrence ofIP addresses around a monitor. First, theobservation numberof an IP address
represents the total of distinct rounds in which it occurs. Secondly, theblock numberof an IP address is
the number of groups of consecutive rounds in which it is observed. As an example, an IP address which
was observed on rounds 1,2,3,5,6,8,9 and 11 has an observation number of 8 and a block number of 4.
Fig. 4.1(b) presents the correlation between these two quantities for the monitorwoolthorpe. The plot
exhibits a clear parabolic shape with a large number of points close to thex-axis and to the liney= x/2.

This can be explained in the following way. The presence a large number ofIP addresses close to the
parabola can be explained by load-balancing routers. If a load-balancing router randomly spreads traffic
amongk paths1, each router belonging to any of these paths has a probability p= 1/k of being observed
at each round, leading to an observation number equal torp approximately.

A given round is then the first of a consecutive block of observations for one of these routers with the
probability p that this router was observed in this round, multiplied by the probability 1− p that it was
not observed in the previous round. Multiplying this probability by r gives the expected block number,
which is then equal torp(1− p) and is the equation of the parabola. This is a simplification of the real
case in which a router may belong to paths used by several loadbalancers, themselves belonging to paths
used by other load balancers.

In practice, anIP address belonging to load-balanced paths can have any probability p, 0< p< 1, of
being observed. The set ofIP addresses closed to thex-axis are often observed on consecutive rounds.
Finally, points on the liney= x/2 correspond toIP addresses that are observed only during a finite part
of the measurement and have a probability ofp = 1/2 of being observed during that time, due to load
balancing.

4.1.2 Model

Our purpose here is to propose relevant and simple mechanisms that reproduce the observations made
in Section 4.1.1. For that, we use the same simulation model we have already proposed in [85] and
presented in Deliverable D3.2. Note that we do not aim at proposing a realistic model, but rather at
providing a first and significant step towards understandingthe impact of simple mechanisms on the
observed dynamics. This model incorporates four ingredients: the routing topology, the routes from
the monitor to the destinations in this topology, load balancing, and routing changes. For modeling
each ingredient, we try to make the simplest choice possible, our goal being to obtain a baseline model
which makes it possible to investigate the role of each component, and to which future and more realistic
models should be compared. In that sens, this work follows atop downapproach, starting from properties
observed on real data and proposing a model able to reproducethe. The philosophy behind stands in the
fact that if the model succeed in reproducing them, then it naturally captures the processes that play a
fondamental role in the observed properties. As we will see,this approach enables to have significant
insights on the relation between the different parameters and thus to extrapolate with the measured data.

1It has been shown [14] that per-packet or per-flow load-balancing routers spread –r–pobes equally among all paths to the
destination, which is roughly equivalent to randomly choosing a path.
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This work would of course benefit from the oppositebottom upapproach that would focuse more precisely
on the technical mechanisms ruling the situation.

We represent theIP-level routing topology of the Internet by an undirected graph G = (V,E). Each
vertex inV corresponds to anIP address and each edge inE corresponds to the connectivity between
two IP addresses2. Then, we simulate tracetree measurements inG. As a preliminary step, we randomly
choose one node as the monitor andd nodes as the destinations. Then fromG, we inferred a routing treeT
with the monitor as the root, and the destinations as leaves.In practice, we simply perform abreadth-first
search(BFS) starting from the monitor, and then discard all branches that do not lead to the destinations.

At this point, we have a routing tree ofshortest pathsfrom the monitor to the destinations. The next
step is to repeat this procedurer times to simulater measurement rounds. We simulate load-balancing
by a random BFS. We model route evolution using link rewiring, orswap. This consists in choosing
uniformly at random two links(u,v) and(x,y) 3 and swap their extremities,i.e. replace them by(u,y)
and(x,v).

Our previous work [85] used the Erdös-Rényi random graph model [51] to produceG. Here, we
use a random graph with a power-law degree distribution [23]. For power-law graph generation, we use
the following procedure: (1) given an exponentα, randomly generate a list of degrees that respects the
following power-law [9] (d is a degree value,f (d) the frequency ofd):

f (d) = d−α ,α > 0, (4.1)

(2) for each node, create as many half links as the value of itsdegree, (3) randomly sort the previous
list and, (4) connect consecutive half links to form links.

4.1.3 Simulation results

This section investigates whether it is possible to reproduce on power-law (PL) graphs the dynamic be-
haviors observed on the Internet or not. We perform several simulations with different values of the
parameters of the model which are: the numbern of nodes, the exponentα, the numbersd of destina-
tions, s of swaps per round andm of links for Erdös-Rényi (ER) random graphs. We further look for
relations between the simulation parameters that may lead to invariants of the dynamic behaviors, and
explore the differences in the simulation results withPL andERgraphs.

4.1.3.1 Reproducing the evolution ofIP addresses discovery

Let us first focus on the evolution of the discovery of newIP addresses over time (meaning in the context
of this study, new vertex of the graph). As a preliminary step, we vary the numbers of edge swaps.
Fig. 4.2(a) presents the simulation results on aPL graph withn= 500,000 andα = 2.3, for varying values
of s. For this first step, we adopt the same number of destinationsas in our measurements (d = 3,000).

2Note that we do not address here the problem of aliases and we identify a vertex to the set of allIP addresse of a given router.
For sake of readability, we will omit this formal precision in the following.

3We choose them such that the four nodes are distinct.
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Figure 4.5: Observation numbers vs. block numbers for various values ofs (n = 500,000, m= 2.3,
d = 3,000).

Three main observations appear from Fig. 4.2(a). First, it is possible to reproduce onPL graphs the
fast discovery ofIP addresses observed on our tracetree data, in particular fors= 1,000 ors= 10,000
swaps. Second, the larger the number of swaps, the faster newnodes are discovered. In fact, routing paths
change more quickly with a larger number of swaps (e.g., for s= 100,000), than with a lower number of
swaps (e.g., for s= 10). Recall that we use edge swaps to simulate link changes due to route evolution.
Therefore, increasing the number of swaps also naturally increases the probability for routes between the
source and the destinations to change, which leads to the fast discovery of new nodes. Third, the first
point of all curves are very close. This means that the numberof swaps have no influence on the size of
routing trees, which was expected.

Fors= 0 swaps, the curve has a fast initial growth, and then it remains flat until the last round. In the
absence of swaps, the only dynamic observed comes fromload balancingand not from route evolution.
All nodes that belong to load-balancing routing paths are quickly discovered at the beginning.

We never succeed in discovering all nodes forPL graphs, even when we swap almost all their links
at each round. For instance, usings= 1,000,000 swaps leads to the quick revealing of only 60% of the
nodes in the graph in less than 1,000 rounds. In the next section, we explore in depth the reasons behind
this.

We also test the impact of the number of destinations on the dynamic behaviors. Fig. 4.2(b) shows
the results on a graph withn= 500,000,α = 2.3 ands= 1,000 swaps. We observe that the number of
destinations clearly has an influence on the height of the first point of the curves, which represents the
size of the first routing tree. The larger the number of destinations, the higher the first point of the curves,
i.e. the larger routing tree. Also, for different numbers of destinations, the slope of all curves are very
similar, but not exactly identical. For instance, one may assume that doubling the number of destinations
(e.g., from 1% to 2%), we also double the size of the resulting routing trees. However, for this to be true,
two conditions need to be verified: (1) all destinations should be on strictly different routing paths from
the monitor, (2) and all destinations should be chosen at thesame distance from the monitor. This is not
the case in our experiments.

Finally, we vary the exponentα of PL random graphs. Fig. 4.2(c) presents the simulation resultson
a graph withn= 500,000,s= 1,000 andd = 3,000, for various values of the parameterα. Note that,
the value of the exponentα determines the numbermof links for PL graphs. From Fig. 4.2(c), it appears
that the lower the value ofα (or the higher the numbermof links), the slower the rate of discovering new
nodes over time. Indeed, the proportion of links affected byswaps are negligible on graphs with a high
number of links. In addition, distances between pairs of nodes are highly reduced on graphs with a high
number of links. Indeed, the closer the destinations are to the source, the shortest are the paths between
the source and the destinations. Therefore, less new nodes will be discovered over time.
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4.1.3.2 Finding relations between simulation parameters

To analyze the interaction between the simulation parameters, we vary several of them at the same time.
The goal here is to find invariants which can be very helpful tounderstand our model in depth.

The first relation we explore is between the size of the graph and the number of swaps. We setα = 2.3
andd= n

100. The value ofα are chosen so that the ratiom
n = 2 is verified. Fig. 4.3 presents the simulation

results on two graphs of different sizesn= 50,000 and 500,000, for different values of swapss= 500
and 50. They-axis on Fig. 4.3 represents the fraction of discovered nodes over the total of nodes, and the
x-axis, the number of rounds. We observe that the two middle curves are very close and almost follow
the same slope. It appears that these curves correspond to graphs with a similar ratios

m of the number of
swaps over the number of links.

The second relation concerns the number of links and the number of swaps. Here, we fixn, and set
the proportion of destinations to 1%. We varyα ands. Fig. 4.4 presents the results of the simulation
on graphs ofn= 500,000 nodes, withα = 2.1 and 2.3, for s= 500 and 250 swaps. It seems that when
the number of links doubles, the number of swaps also needs tobe doubled as well in order to obtain
curves with similar slopes. This result also tends to confirmour previous observation that simulations
with the same ratios

m may follow a similar slope for node discovery. Sometimes, some abrupt increases
may deviate a curve from its initial growth rate (e.g., the caseα = 2.1 ands= 500 ford = 1%). We find
that these events are caused by swaps that happen close to themonitor and therefore may affect a high
number of paths to destinations. However, these events usually do not change the slope of curves.

These results are interesting because they imply that knowing the trend of the evolution curve for
a given graph and for a given value of swaps, it can be possibleto infer the slope for a range of other
graphs. During our experiments, we have tested the previoustwo relations for other sizes of graphs and
obtained the same conclusions. These analyses are at a very preliminary stage. We visually observe
the similarities between different curves for various parameters ofPL graphs. Later, we may need some
statistical analysis to confirm our conclusions.

4.1.3.3 Reproducing the parabolic shape on the occurrence of IP addresses

We now turn to the correlation between the observation numbers and the block numbers. Fig. 4.5 illus-
trates our results on aPL graph withn= 500,000,α = 2.3 andd= 3,000, for various values ofs. We are
clearly able to reproduce the parabola observed on our tracetree data (for instance, fors= 50 and 100). In
that particular case, we also observe that a large number of points are close to thex-axis. Fors= 0 swaps,
all points strictly appear on the parabola. We already know that without swaps, the only dynamic factor
in our model is load balancing. This means that nodes are revealed by load-balancing related dynamics.
Increasing the number of swaps, the parabola tends to vanish. For instance, fors= 1,000 the parabola
has already started to vanish. For higher values ofs, it completely loses its shape. This can be explained
by the fact that with a higher number of swaps, the effects of load balancing becomes negligible. In
practice, we find that if we increase the exponent of aPL graph, which also increases its number of links,
we maintain the parabola if we increase the number of swaps aswell.
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4.1.4 Exploring the differences betweenPL and ERgraphs

The evolution of node discovery onPL andER graphs are very different. Fig. 4.6(a) shows that the
majority of nodes of anER graph, withn = 500,000, m= 1,000,000 andd = 3,000, are discovered
within r = 5,000 rounds with onlys= 1,000 swaps. Using the same amount of swaps on aPL graph
with approximately the same size and the same number of destinations, we end up discovering only 12%
of all its nodes. Clearly, nodes are discovered more slowly over time onPL graphs than onERgraphs. In
this last set of experiments, we investigate the reasons that explain this difference.

Our first intuition concerns nodes of degree one. They represent the largest fraction of nodes onPL
graphs and, unless they are chosen as destinations, it is impossible for them to be discovered during sim-
ulations since they are not router nodes. From Fig. 4.2(a), we have seen that even when we swap almost
all links on aPL graph withn= 500,000 andα = 2.3 at each round, we never succeed in discovering all
its nodes. Indeed, withs= 1,000,000 swaps the curve tends to flatten out close to the valuey= 295,877.
Examining the remaining nodes, we find that 99.9% of them represent the degree-1 nodes. At the end,
we almost discover no nodes of degree 1 onPL graphs.

We now ask the question whether a reducedPL graph in which we have removed every nodes of
degree 1 will follow the same evolution of node discovery as an ERgraph with the same dimensions; if
this is true, then degree-1 nodes may be the only reason of thedifference of results observed forPL and
ERgraphs. Fig. 4.6(a) shows that this is not the case. The reducedPL graph has onlyn= 293,328 nodes
andm= 841,326 links. Therefore, we plot its curves withd = 1,760 to maintain the same ratio of the
number of destinations over the total of nodes as in the original PL graph. Withs= 1,000 swaps, the
curve of the reducedPL graph grows more slowly than the curve of theERgraph, but similarly as the one
of the originalPL graph. This means that nodes of degree 1 are not the reasons behind the slow evolution.
Increasing the number of swaps until we reach the deprecatedcase where a maximum is reached for the
original PL graph in Fig. 4.6(b), we end up discovering the majority of nodes of the reducedPL graph.
This confirms the fact that the flat phase onPL graphs are due to the non-discovery of degree-1 nodes.

Our second intuition concerns the difference in the averagedistance that exists betweenPL andER
graphs. It has been proven that the average distance is in theorder oflog log nonPL graphs [33], while
it is of log n on ERgraphs [26]. We explore this result in Fig. 4.6(c) which plots the average distance
as a function of the number of links for bothPL andER graphs withn = 500,000 nodes. We use the
approximation proposed in [77] to compute the average distance. It appears that average distances are
effectively much smaller inPL than inERgraphs. This implies that the destination nodes onPL graphs
are closer to the monitor; therefore, the resulting routingtrees onPL graphs will have fewer nodes. To
confirm this result, we examine the size of the trees producedon ERandPL graphs withn = 500,000
and the same number of links. We usesd = 3,000 destinations ands= 0 swaps. We find that the average
size onr = 5,000 trees is 5,363 and 12,868 forPL andER, respectively. We then study in Fig. 4.7 the
evolution of node discovery onPL andERgraphs with the same average distance. We find that they still
do not follow the same slope. Finally, this shows that apart from the degree-1 nodes and the average
distance, there are still other factors behind the difference betweenPL andERgraphs.
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4.1.5 Related work

Study of the dynamics of the Internet topology has been tackled both by analyzing the dynamics of
individual routes [100, 108, 74, 73, 118] and from a more global perspective, mainly at theAS- or IP-
level [57, 32, 83, 92, 98, 94, 63, 110, 47, 46]. Load balancinghas also been acknowledged for playing
an important role in the dynamics of routes as measured with traceroute-like tools [14]. Cunha etal. [43]
used a method for measuring load-balanced routes, i.e. routes containing one or more load-balancing
routers, and study their dynamics.

Some works [64, 98] argue that the topology dynamics should be taken into account in order to
produce realistic models for the Internet topology. Work onmodeling this topology and its dynamics can
be roughly divided between approaches aiming at realistically mimicking the evolution mechanisms of
the topology, e.g. reproducing the criteria taken into account by ASes for creating peering or customer-
provider links, see for instance [52, 31, 117, 99, 84], and approaches aiming at reproducing global network
characteristics through simple mechanisms, thus exhibiting simple causes for more complex observations.
This paper belongs to this second approach. Tangmunarunkitet al. [114] showed that this approach is
relevant by establishing that network generators based on local properties, such as the degree distributions
of nodes, can capture global properties of the topology, such as its hierarchical structure. Most related
to our characterization and modeling of the evolution of theInternet topology is the work by Oliveira
et al. [92], which analyzes theAS topology and shows that real topology dynamics can be modeled as
constant-rate births and deaths of links and nodes. In a similar spirit, Valleret al. model BGP routing
churn by a process similar to an epidemic spreading on a network [115]. Parket al. [99] studied several
growing models for the Internet topology, i.e. models in which nodes and links are progressively added
over time. They compared the evolution of these induced networks with the evolution of the real topology,
and use this to distinguish between the quality of the different models.

Whereas most existing works focus on the long-term evolution (e.g. from the Internet birth to current
times) of thephysicalAS topology, we are concerned here with the short- to medium-term evolution of
therouting topology at theIP-level. The routing and physical topology are closely linked but not identical
objects. In particular, routing changes can occur in the absence of physical changes. They are closely
linked to BGP dynamics which have been studied for instance in [74, 83, 115, 118]. Finally, our model
does not take into account node appearance and disappearance, which would be necessary for modeling
the long-term topology evolution.

4.1.6 Results summary and Next steps

This work focuses of the dynamics behaviors observed at the InternetIP-level routing topology. We use
an existing model that incorporates a routing topology, itsdynamics and traceroute-like measurements to
explain the observed dynamics. Our former work detailed in Deliverable D3.2 represented the routing
topology by an Erdös-Rényi random graph. Here, we use a power-law random graph and investigate the
effect of its degree distribution on the dynamics. As in Erd¨os-Rényi graphs, we are able on power-law
graphs to reproduce the dynamic behaviors observed on the Internet. However, we find that the results
between the two types of graphs are quantitatively different.

Two main reasons for this difference appear: (1) it is difficult to discovered the degree-1 nodes, which
represent the largest fraction of nodes on power-law graphs, (2) the average distance on power-law graphs
are much smaller than for Erdös-Rényi graphs. Therefore,traceroute-like measurements on power-law
graphs produce smaller routing trees, which leads to a slower discovery of new nodes over time.

Future work lies in two main directions. First, we strongly believe that this model can be used to
estimate some properties of the actual IP-level routing topology that are not directly available through
measurements. For instance, performing more extensive studies of the relations between the model’s
parameters and the observed behavior, would allow to infer the parameters from the observed behavior.
Applying this knowledge to real-world data would allow to estimate the real-world values corresponding
to these parameters, such as for instance the frequency of link changes in the whole topology. More-
over, since our model is based on random graphs and simple mechanics for load balancing and routing
dynamics, it lends itself well to formal analysis. This would allow to obtain formal proofs for such results.

Second, the field of Internet topology modeling is very active, and models far more realistic than
random graphs are available. One should explore the combination of our routing mechanisms principles
with these topology models, to investigate the role played by the topology structure on the observed
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dynamics. In particular, our model does not take into account the long term topology evolution, since
it does not model node birth or death. Coupling the ingredients of our routing dynamics with, e.g., a
growing model for the Internet topology which would reflect its long term dynamics would surely lead to
insightful results.

4.2 Routing stability analysis

4.2.1 Introduction

In Deliverable D3.2, we investigated the problem of path-vector routing stability by means of:

1. the development of a method to process and interpret the data part of Border Gateway Protocol
(BGP) routing information bases in order to identify and characterize occurrences of BGP routing
system instability; such characterization can be used as a comparison point for the stability of the
newly developed schemes (candidate to replace BGP) and characterize instability phenomena any
routing system would have to cope with;

2. the definition of a set of stability metrics and develop methods for using them in order to provide a
better understanding of the BGP routing system’s stability;

3. the investigation how path-vector routing behavior and network dynamics mutually influence each
other.

The experimental results show that the proposed method enables detecting instability events affecting
routing tables, and deriving the local impact on the stability of the routing system (local stability). We
have also determined a differential stability-based decision criterion that can be taken into account as part
of the BGP route selection process. A significant fraction ofthe routes (90%) of the routes selected by
means of this process is not stretch increasing. Moreover, if one would admit an increase of one AS-
hop, only a minor fraction of the routes (about 2%) would be penalized by a higher stretch increase (two
AS-hops and above).

The complete this stability analysis, we investigate the correlation between forwarding path and BGP
routing path instability. The objective is to relate the measurements carried in subtask 2 on ego-centered
visions of the topology (along its forwarding paths) and subtask 3 dedicated to the stability of routing
paths (as locally determined by individual routers).

The measurements carried in subtask 3 are based on processing BGP update messages collected by
the RouteViews project (www.routeviews.org), and processing them by applying the algorithm described
in [40] [96]. The proposed approach to relate such measurements with the ones obtained in Subtask 2
relies on the observation that RouteViews monitors a ratherlarge set of Internet eXchange (IX) points4.
The data obtained from these routers part comprise the full list of Routing Information Base (RIB) entries
(updated each two hours) and the received updates from the peer ASs separated in files every 15 minutes.
The format used of this files is MRT [25].

The measurements carried by RADAR are traceroute-like probes running from a set of monitoring
nodes. Such probes target a large set of prefixes and end-hosts distributed in the Internet. Based on these
measures, radar builds ego-centered views of the forwarding topology. A subset of the forwarding paths
followed by the radar probes will, expectedly, use one of theIX points monitored by RouteViews and
consequently, a subset of the AS-path monitored by the tool developed in subtask 3 are also monitored
by radar. Based on that both tools can complement each other.

It is worth noticing that the tool developed by subtask 3 cannot process the BGP data collected by all
the RouteViews monitoring points because of the very high volume of information (remember that the
tool developed in the context of subtask 3 associates processing of BGP routes to a single BGP speaker).
The selected router to be monitored by subtask 3 is route-views.wide.routeviews.org.

4a complete list can be found in http://www.routeviews.org/peers/
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Destination prefix Forwarding path Routing path
71.240.192.0/19 2500 701 19262 2500 701 19262
71.126.64.0/18 2500 701 19262 2500 701 19262

193.138.220.0/22 2500 2914 174 16243 174 34305 2500 174 34305
75.89.192.0/21 2500 2914 3356 7029 2500 7018 7029
211.60.0.0/16 2500 2516 3786 2500 2516 3786

124.139.60.0/22 2500 2516 3786 38409 2500 10026 18302 38409

Table 4.1: Example of different paths following by RADAR androuteviews.

4.2.2 Alignment of the data

The first step to perform the correlation between forwardingpath and routing path stability is to align the
data obtained in subtask 2 and subtask 3. For this purpose, the following points have been addressed.

On the one hand, the sampling intervals of the measurements obtained through Radar and the MRAI
time interval as used by the tool to process the BGP routes aredifferent (the latter is shorter than the
former). In Radar, each round of measurement takes approximately 4 minutes and 10 minutes elapses
between the end of a given round and the beginning of the next one. We thus run two different tests with
the routes obtained from the routeviews data. The first run uses the real BGP update time interval and
the routing path stability is computed according to real period between updates as dictated by the MRAI
(without having the forwarding path stability at this granularity but assuming this value remains constant
over that period). The second run only tests the stability ofa routing path at each RADAR iteration
(around each 10 minutes).

On the other hand, the data provided by RADAR are IP addresseswhile the stability analysis is
performed in terms of AS path. Finding association (or matching) between IP forwarding paths to AS
routing paths is thus required. This matching can been obtained executing the Whois tool. Whois is a
query and response protocol that is widely used for queryingdatabases that store the registered users or
assignees of an Internet resource, such as a domain name, an IP address prefix, or an autonomous system.
In particular, we used the Whois-based web tool made available by the Team Cymru (http://www.team-
cymru.org/). This tool takes as input a file containing quitelarge numbers of IP addresses and translates
them into AS numbers as output.

4.2.3 Matching IP address to AS Number

The matching between IP and AS Number (ASN) presents severalshortcomings for the analysis of the
forwarding path stability. These are described in the following paragraphs.

4.2.3.1 IP address prefix owner vs. IP address allocation

The mapping provided by Whois is not able to discriminate between the current owner of an IP prefix
and the actual user of an IP subnet part of this prefix (thus, inparticular, the IP prefix itself). Indeed, a
customer AS may use IP addresses that actually belong to the (transit) provider AS to which the customer
AS is attached to. In the mapping, these addresses appear as belonging to the transit provider AS instead
of designating network attachments located at the customerAS (or eventually to the customer AS router
connected to the transit provider AS). This explains much ofthe differences observed in AS sequences
between the routing path and the forwarding path. An exampleis shown in Table 4.1.

4.2.3.2 Concatenation of non-routable IP addresses and filtered IP addresses

In some cases, the forwarding path trace as provided by RADARmay consist of a sequence of non-
routable IP addresses such as 10/8 (commonly used to number internal interfaces of edge routers) like in
the following example:

• Source interface: 203.178.141.138
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• Intermediate interfaces: 203.178.135.1,203.178.138.243,61.213.145.93,61.213.162.87,61.213.162.97,
129.250.2.141,129.250.4.118,129.250.4.231,62.156.138.197,62.154.5.5, 193.159.224.118,10.232.3.66,
192.168.196.17, 10.233.16.4, 10.232.1.2, 10.232.0.9, 10.233.66.130, 10.233.66.135

• Destination interface: 84.241.194.22

• Destination prefix: 84.241.192.0/18

According to the IP to ASN mapping, the IP address 193.159.224.118 belongs to the AS 3320 while
84.241.194.22 to AS 31615. The Whois tool provides the information that the AS 3320 is peering AS
31615, thus we can derive that the sequence of non-routable IP addresses belongs to a single AS (either
the AS 3320 or the AS 31615). In order thus to map the AS path routing sequence to the forwarding path
requires thus to capture such sequence.

In other cases, the filtering procedure applied by some routers may hide some IP addresses along the
forwarding path. The resulting information is incomplete.

These two cases are the most common. For example, in one RADARiteration, the paths to reach
around 1400 of the overall 3000 destinations contain eithernon-routable IP addresses or the IP addresses
are filtered and thus unknown.

4.2.3.3 Paths with AS loop

It may happen that the resulting AS path presents a loop. An example is shown below. The forwarding
path provided by RADAR consists of the following IP address sequence:

• Source interface: 203.178.141.138

• Intermediate interfaces: 203.178.135.1,203.178.138.243,61.213.145.93,61.120.144.87,61.213.162.229,
129.250.2.34, 129.250.8.182, 4.68.111.249, 4.69.132.78, 4.69.134.22, 4.69.132.38, 4.69.132.42,
24.164.96.140, 64.156.66.50, 65.25.128.254, 24.29.164.132, 24.29.161.118

• Destination interface: 71.67.90.93

• Destination prefix: 71.67.0.0/17

Applying the IP address to ASN map shown in 4.2, we obtain the AS path2500 2914 3356 11060
3356 10796which contains the loop3356 11060 3356.

The observation of AS loop (from the IP address to the AS number mapping) could be due to the
following :

• Misconfiguration of a transit router, policy-induced oscillation or the use of redundant protocol like
VRRP (the traceroute message passing twice by the AS interconnecting the two routers giving both
access to the destination prefix);

• The user of the IP address is not the actual AS owning the corresponding IP address prefix itself as
already discussed in Section 4.2.3.1.

4.2.3.4 Paths to the same destination prefix but with different AS sequence

Another problem that makes such analysis difficult is that during the same time interval, forwarding paths
directed to IP destination address part of the same destination prefix can be associated to different routing
paths directed to that destination prefix. As such it is thus not possible to consider that all forwarding
paths directed collectively to a given destination prefix follow the same AS path.

For example, the previous AS sequence is obtained at the sametime of the following one

• Source interface: 203.178.141.138

• Intermediate interfaces: 203.178.141.138,203.178.135.1,203.178.138.243,61.213.145.93,61.120.144.87,
61.213.162.229,129.250.2.34,129.250.8.182,4.68.111.249,4.69.132.78, 4.69.134.22, 4.69.132.38,
4.69.132.42, 4.69.132.205, 4.78.216.14, 65.25.128.158,71.67.121.69
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Mapping IP Prefix AS
203.178.141.138 203.178.128.0/17 2500
203.178.135.1 203.178.128.0/17 2500

203.178.138.243 203.178.128.0/17 2500
61.213.145.93 61.213.144.0/20 2914
61.120.144.87 61.120.144.0/20 2914
61.213.162.229 61.213.160.0/19 2914
129.250.2.34 129.250.0.0/16 2914
129.250.8.182 129.250.0.0/16 2914
4.68.111.249 4.0.0.0/9 3356
4.69.132.78 4.0.0.0/9 3356
4.69.134.22 4.0.0.0/9 3356
4.69.132.38 4.0.0.0/9 3356
4.69.132.42 4.0.0.0/9 3356

24.164.96.140 24.164.96.0/19 11060
64.156.66.50 64.152.0.0/13 3356
65.25.128.254 65.25.128.0/19 10796
24.29.164.132 24.29.160.0/20 10796
24.29.161.118 24.29.160.0/20 10796
71.67.90.93 71.67.0.0/17 10796

Table 4.2: Example of an AS loop in the forwarding path

• Destination interface: 71.67.121.69

• Destination prefix: 71.67.0.0/17

Applying the IP to ASN map shown in 4.3, we obtain the AS sequence of the routing path2500 2914
3356 10796which is different than the AS sequence obtained in Section 4.2.3.3.

One possible explanation is the application of load balancing techniques that may split the announce-
ment of a given prefix into two (or more) routes (prefix de-aggregation), each one advertising a sub-prefix
towards a different interface whereas closer to the source both are aggregated (prefix aggregation along
the common segment).

4.2.4 Data Processing

In order to process the data, we use the following procedure:

• Association between forwarding and routing paths (on per destination basis) does not require full
identification before association but only that a given forwarding path can be associated unambigu-
ously with a given routing path

• Based on this pair of data sequence, characterization of instability can be limited to a first level
analysis that would consist in determining whether an instability the forwarding and/or the routing
path is detected or not.

• These pairs can be then grouped/classified into 4 classes/subsets:

– RP Stable - FP Stable: does not require any further analysis

– RP Unstable - FP Stable: translate routing instability without forwarding instability (or for-
warding path stability)

– RP Stable - FP Unstable: translate routing stability without forwarding stability (or forward-
ing path instability)

– RP Unstable - FP Unstable: requires identification if a common segment is at the origin of the
instability (thus AS-IP address mapping is required to determine whether there is a common
origin to instability)
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Mapping IP Prefix AS
203.178.141.138 203.178.128.0/17 2500
203.178.135.1 203.178.128.0/17 2500

203.178.138.243 203.178.128.0/17 2500
61.213.145.93 61.213.144.0/20 2914
61.120.144.87 61.120.144.0/20 2914
61.213.162.229 61.213.160.0/19 2914
129.250.2.34 129.250.0.0/16 2914
129.250.8.182 129.250.0.0/16 2914
4.68.111.249 4.0.0.0/9 3356
4.69.132.78 4.0.0.0/9 3356
4.69.134.22 4.0.0.0/9 3356
4.69.132.38 4.0.0.0/9 3356
4.69.132.42 4.0.0.0/9 3356
4.69.132.205 4.0.0.0/9 3356
4.78.216.14 4.0.0.0/9 3356

65.25.128.158 65.25.128.0/19 10796
71.67.121.69 71.67.0.0/17 10796

Table 4.3: Example of a forwarding path crossing different ASes to reach the same prefix as the case
above

• For each of the four classes, we record the min, the max stability metric value in addition to the
computation of the average and variance of the stability metric (over all pairs associated to each
class)

Cases 2) and 3) are the interesting cases because they translate routing instability without forwarding
instability and vice-versa, characterizing (in particular, identifying) the origin for these subsets provides a
location analysis which can be performed in a second step of analysis. Hence, the identification problem
is to be considered as part of the analysis/step and is limited to a specific subsets (at least for a first
level analysis). Moreover, this approach (by association)is much simpler compared to the approach
that requires full mapping of data sequences (IP addresses (forwarding) and AS (routing paths)) before
analysis.

Over the whole duration of the measurement and processing period, it has become clear that it was
not possible to classify all routing-forwarding path by means of a single discriminant (as some of these
pairs can exhibit multiple patterns during the measurementperiod). Instead, we count the number of
matches labeled as (1 for RP Stable - FP Stable, 2 for RP Unstable - FP stable, 3 for RP Stable - FP
Unstable, and 4 for RP Unstable - FP Unstable) for each routing-forwarding path pair. We then derive
a dominant behavior/main trend (corresponding to the labelwith the maximum number of counts) and
sub-trend would be more appropriate.

4.2.5 Results and Analysis

The table 4.4 presents a summary of the classification of the routing - forwarding paths pairs using the
following classes (unstable,unstable), (unstable,stable), (stable,unstable). The second column indicates
the number and the percentage of paths per class for which at least one instability event has been observed.
The third colum provides the maximum number of measurement intervals over which the corresponding
behaviour has been observed together with the median value.

Label Number and Percent of PairsMax.Count - Median
FP unstable - RP unstable 517 - 54% 40 - 2
FP unstable - RP stable 915 - 96% 223 - 47
FP stable - RP unstable 182 - 19% 117 - 2

Table 4.4: Pair classification
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The table 4.5 accounts for the dominant behaviour/trend andthe sub-trend. In case of a tie during
classification, we counted only 1/2 (two conditions tie) or 1/3 (all conditions tie). The majority of the
pairs falls in the (FP unstable,RP stable) class. The latterdetermines the dominant behaviour, i.e., the
most representative behaviour: the instability observed for about 95% of the pairs results from forwarding
path instability. The second trend indicates that for about50% of the pairs the observed instability result
from both forwarding and routing path instability.

Main trend Number of Pairs Score
FP unstable - RP unstable 36 32
FP unstable - RP stable 912 906
FP stable - RP unstable 15 12

Second trend Number of Pairs Score
FP unstable - RP unstable 474 444
FP unstable - RP stable 3 3
FP stable - RP unstable 58 12

Table 4.5: Trend analysis

Figure 4.8 plots the percentage of the pairs labeled (stable,stable) over the entire measurement period
in the form of a cumulative distribution function (CDF). Thefollowing observations can be drawn from
this figure:

• Few pairs (less than 4%) are constantly unstable, meaning that only a small fraction of the observed
routing path instability correspond to a forwarding path instability.

• The majority of the pairs (around 60%) are labeled as (stable,stable) more than 90% of time, around
75% show the same behavior more than 80% of the time.

These observations combined with the fact that main cause ofinstability results from the forwarding
plane corroborates the assumption that the dynamic properties of the forwarding and the routing system
are different. Henceforth, it is impossible to derive the one from the other. Moreover, it can also be
observed that a second order effect correlates forwarding and routing path instability for about 50% of
the observed instability.

Figure 4.8: Cumulative Distribution Function (CDF)
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Chapter 5

Detecting events in samples and time
series

Faced with complex networks that evolve over time, a frequent need is to monitor their evolution and
automatically raise alerts on abnormal behaviors of the system, i.e., events which are statistically different
from most others. This challenging task is generally calledoutlier detection. In spite of many works
addressing this question for decades in various fields, the diversity of cases leading to different outlier
definitions makes it hard to create a single universal method. Here we consider the case of a property
measured on an evolving network (Figure 5.1). How can we automatically and reliably identify outliers
in it? It is challenging because these data contain both regime changes (i.e. sudden changes of the mean
of the time series) due to the evolution of the normal behavior, and outlying values that deviate globally
or locally from the main trend. Moreover, we have no prior knowledge on the data; events may occur
at different time scales; we want an on-line method for real-time analysis. These settings are known to
pose a difficult problem. This work introduces a new method toautomatically detect outliers in sets of
numbers and in time series. We also show its relevance for detecting abnormal events in computer and
social networks. The source code is available[2].

5.1 Introduction

Related Work

Given a data set, outlier detection aims at finding data points which are very different from the remain-
der. This field has received a large attention in the last decades because outliers often represent critical
information about an abnormal behavior of the system described by the data. It covers a broad spectrum
of applications such as the identification of mechanical faults, changes in system behavior, human and
instrument errors, natural deviations in a population, or data cleaning prior to modeling. Outliers are also
called: event, novelty, anomaly, noise, deviation or exception [66].

However there is no formal definition of an outlier because this intuitive notion varies with the con-
text and the desired characteristics of outliers. In a statistical perspective, Grubbs [59] defined that “an
outlying observation, or outlier, is one that deviates markedly from other members of the sample in which
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Figure 5.1: Evolution of a property measured on a network during time. Some outliers are circled.
Regime changes are pointed by arrows.
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it occurs”. Hawkins [65] defines an outlier as “an observation which deviates so much from other ob-
servations as to arouse suspicions that it was generated by adifferent mechanism”, while Barnett and
Lewis [19] call an outlier “an observation (or subset of observations) which appears to be inconsistent
with the remainder of that set of data”. The diversity of applications has led to the introduction of various
techniques for outlier detection [30]. Areas of research such as statistics, data mining, information theory
and process control theory have produced various methods for spotting outliers in stochastic processes.
Specific researches also address the question of detecting anomalies in the Internet traffic [56].

Existing methods may be divided betweenunivariate methods(i.e. considering one variable), pro-
posed in earlier works in statistics, andmultivariate methods(i.e. considering multiple variables) which
form the main part of the current body of research. Although univariate methods have been studied during
a long time, and despite recent focus on multivariate methods due to the increase of computational power,
univariate methods remain important to study.

We also distinguish parametric and non-parametric (model-free) procedures [22]. Parametric proce-
dures assume the values to be identically and independentlydistributed following a known probability
distribution (generally a normal distribution), or at least a statistical estimate of the distribution param-
eters to fit the data. They flag as outliers the values that deviate from the model hypotheses. They are
often unsuitable for data sets without prior knowledge of the underlying distribution [97] because the
hypotheses (e.g. the independence of values) are not satisfied, and because the statistical models are not
reliable for real data and are hard to validate since many data sets do not fit one particular model.

Non-parametric procedures do not assume knowledge of the data distribution, and learn to detect
outliers. In some cases (supervised learning) labeled data sets are available, from which the program
builds a model of normal behavior (and sometimes also a modelof outlying behavior). Otherwise (unsu-
pervised learning), the procedure builds a probabilistic model of the data set, and updates this model as
new points appear. These procedures classify as outliers the data points that deviate significantly from the
model. These approaches are based on histogram analysis, kernel density, distance measures or clustering
analysis.

The output of an outlier detector is a score of “outlierness”assigned to each data point, which rep-
resents its probability to be an outlier, or the distance from normal points. Data points are ultimately
classified as outliers when their score is above a given threshold which is a parameter of the method.

The detection of outliers in temporal data relies mainly on two approaches. In the first one, points
which deviate from a temporal model like the autoregressiveintegrated moving average (ARMA) model [3]
or a finite-state automaton model [71] are marked as outliers. In the second one, points very different from
other points within a sliding window are marked as outliers.Regime changes (i.e. change points in time
series that are observed by sudden changes of the mean) may beconsidered as anomalies as well [29, 113].

Finally, recent papers address the issue of outlier detection in networks and graph streams [7] by
finding surprising motifs [10][72].

Our Contribution

We propose here a new unsupervised non-parametric univariate method that reliably detects multiple
outliers on either static or temporal data sets given the following setting, which is known to be hard:
values may not be independent and identically distributed;we have no prior knowledge of the underlying
process which generated the data, or of the probability distribution; in time series, regime changes may
exist due to the evolution of the normal behavior (non-stationarity), and also outlying values which deviate
globally or locally from the main trend. We finally want an on-line method for real-time monitoring. In
this context, our method has the following advantages: (a) it uses a novel approach based on the study
of the skewness of distributions, and is easy to interpret; (b) it looks for outliers only when the notion of
outlier is relevant in the considered data set; (c) it is easyto use, as the only parameter is the size of the
time window for time series, and (d) it may be used on-line.

We describe our method in Section 5.2, validate it in Section5.3, and apply it on real-world data in
Section 5.4; we conclude in Section 5.5.
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Figure 5.2: Example of negative (left) and positive (right)skewed distributions.

5.2 The Outskewer Method

Our method relies on the notions ofskewnessof distributions and its evolution when extremal values are
removed, which we callskewness signature; we use this to detect outliers in multisets of numbers and in
time series.

5.2.1 Skewness

We consider a multiset (i.e. a set in which members may appearmore than once)X of n values. The
distribution of these values is the fractionPx, for eachx, of values inX which are equal tox. Such
distribution samples are basically described by their meanx̄ = ∑x∈X(x/n) and standard deviationσ =
√

1/(n−1) ·∑x∈X(x− x̄)2. Going further, the sample skewness is a measure of distribution asymmetry,
and can be estimated by:

γ(X) =
n

(n−1)(n−2) ∑
x∈X

(

x− x̄
σ

)3

.

Intuitively a negative skewness indicates a tail on the leftof the distribution more pronounced than
the one on the right, while a positive skewness means the converse, see Figure 5.2. If no tail exists, i.e. all
values are equal,γ(X) is undefined becauseσ = 0. If both tails exist on each side and are equal,γ(X) = 0.

For normal distributions (Px=
1

σ
√

2π e−
1
2(

x−µ
σ )

2

), γ(X)= 0, while for Pareto distributions (Px=
aba

xa+1 where

0< b≤ a), γ(X)> 0. Examples of unimodal skewed distributions are shown on Figure 5.2.
The skewness has the interesting feature to be influenced by values which are far from other values,

because it is based on the cubed distance from values to the mean. Hence its value changes a lot if they
are removed. We show now how to use this feature for outlier detection.

5.2.2 Skewness Signature

We consider the evolution of the skewness of a distribution of values in a multisetX while extremal values
are removed one by one fromX, which we call theskewness signatureof X. The extremal value ofX,
denoted bye(X), is:

e(X) =

{

max(X) if γ(X)> 0,and
min(X) otherwise.

In practice, the skewness is almost never equal to zero, hence always choosing min(X) in the case where
γ(X) = 0 induces a negligible bias.

We define a series of multisets as follows:X0 = X, Xi = Xi−1\{e(Xi−1)}, for all i > 0. In other words,
Xi is the multiset obtained by removing one occurrence of the largest (resp. smallest) value ofXi−1 if
the distribution of values inXi−1 has a positive (resp. negative or zero) skewness. Finally, we define the
skewness signature as the functions(p,X) = γ(X⌊p·n⌋), wheren is the size ofX andX⌊p·n⌋ is the multiset
obtained fromX by removing⌊p ·n⌋ extremal values, i.e. a fractionp of extremal values.

For example, ifX = {-3, -2, -1, -1, 0, 1, 2, 3, 7}, values 7, 3, 2, -3, 1, -2, 0 are removed in this order1,
and the values of the skewness signature are 1.09, 0.22, 0.17, 0, 0.40, 0, 1.73.

The skewness signature may be used to find outliers in unimodal distributions because outliers lie at
their extremities, and because skewness is sensitive to theremoval of outliers.

1Values are removed untilγ(X) is not computable: our skewness estimator is only relevant for data sets with at least 3 values.
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5.2.3 Outliers Detection

Our method relies on the following hypotheses: outliers areextremal values which cause the skewness to
be far from zero; the skewness signature converges to zero (i.e. the distribution becomes more symmetric)
when outliers are removed one by one. Therefore, the distance of the skewness to zero can be used to
identify outliers. Extremal values which cause this distance to be too large should be classified as outliers.
But how is it possible to determine that the distance is too large without making any hypothesis on the
data set?

We propose to consider the distance relatively to the proportion of extremal values removed: the more
extremal values removed, the closer to zero the skewness is expected to be. For anyp∈ [0;0.5] we say
thats is p-stable if and only if |s(p′,X)| ≤ 0.5− p, for all p′ ∈ [p,0.5]. We do not consider values ofp
larger than 0.5 because this corresponds to a removal of morethan half of all values; in such situations,
the skewness has little to do with the original data, and it may vary much if too many values are removed.

Let t be the smallest value such thats is t-stable, andT be the largest value such thats is T-stable.
Whens is neverp-stable for anyp, t andT do not exist. This case indicates that it is irrelevant to look
for outliers in the given data set, according to our notion ofoutlier; in this case our method classifies all
values in the data set asunknown. Otherwise we find outliers as follows.

We denote the smallest and largest numbers inXi by mini = min(Xi) andmaxi = max(Xi). Then,
min⌊p·n⌋ (resp. max⌊p·n⌋) is the smallest (resp. largest) remaining value when a fraction p of all values
has been removed. Lett ′ (resp. T ′) be the smallest value ofp such that|γ(X⌊t′ ·n⌋)| ≤ 0.5− t (resp.
|γ(X⌊T ′·n⌋)| ≤ 0.5−T). Our method concludes as follows: belowmin⌊t′·n⌋ and abovemax⌊t′·n⌋, values
areoutliers; betweenmin⌊t′ ·n⌋ andmin⌊T ′·n⌋ included (resp.max⌊t′·n⌋ andmax⌊T ′·n⌋), values arepoten-
tial outliers ; values arenot outliers otherwise. Notice that whent ′ = T ′, min⌊t′·n⌋ = min⌊T ′·n⌋ (resp.
max⌊t′·n⌋ = max⌊T′·n⌋). In this case, values equal tomin⌊t′·n⌋ (resp.max⌊t′·n⌋) are potential outliers. Fig-
ure 5.3 illustrates our method on an example.

5.2.4 Dynamic Extension

Our method may be used on time series representing the evolution of a system’s property. Let{x0,x1, ...,xn}
be a time series. We consider the multisets which containw values:Xi = {xi−w+1, ...,xi}. Any valuexi of
the series belongs toXi ,Xi+1, ...,Xi+w−1. We use our method on all thesew multisets, and consider the
final class ofxi to be the one which occurs most often among thesew classifications. In case of equality,
we give priority ofoutlier uponpotential outlieruponnot outlier, because we prefer to detect too much
outliers than too few.
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distributions.

5.3 Experimental Validation

The validation of outlier detection methods is difficult because of the various outlier definitions, hypothe-
ses and use cases [22]. Labeled data sets raise also the issueof prior criteria to label the data. We
consider that our method should detect outliers, if any, if the notion of outlier is relevant for the given
data set. In particular, we consider for our experimental validation the following cases: (a) distributions
like Power laws (e.g. Pareto and Zipf’s law) commonly contain extremal values far from the mean (i.e.
heterogeneous), so it is erroneous to consider them as outliers, moreover Power law distributions are
asymmetrical so our method should conclude that looking foroutliers in them is irrelevant; (b) normal
distributions are symmetrical and extremal values far fromthe mean are uncommon (i.e.homogeneous),
so no outlier should be detected but these extremal values when they occur; (c) half-normal distributions
(Px =

2a
π e−x2a/π , wherea> 0), which are basically the absolute of normal distributions with mean equal

to 0, are asymmetrical but homogeneous, so this case is ambiguous and should be unclear for our method
as well; (d) symmetric Pareto distributions (Px =

aba

2 |x|−1−a1|x|>b, where 0< a < 2 andb > 0), which
are basically the mirror symmetric of Pareto distributionsabout the vertical axis, are symmetrical but
heterogeneous, so we study the behavior of our method in thiscase.

We first study the relevance of our method on these four distributions, and we study the effect of the
sample size (III.A). Then we study the performance of our method to detect outliers, and evaluate the
rate of true outliers and false outliers detected (III.B). We finally study the behavior of our method when
regime changes occur in temporal data (III.C).

5.3.1 Relevance

Our method is applicable if and only if the given data set isp-stable for at least one value ofp between
0 and 0.5. A necessary condition for this is that|s(0.5,X)| < 0.5. We show in this section that this is
true for normal distributions (even with a few outliers) andfalse for Pareto distributions, which is the
expected behavior: normal distributions are symmetrical and homogeneous and Pareto distributions are
asymmetrical and heterogeneous.

We study the behavior ofson normalN (0,1) and Pareto (shape=6, location=2) probability distribu-
tions2. For each one, we randomly generate 1,000 samples of 100 numbers to obtain skewness signatures;
we compute and plot the skewness signature of each sample in Figure reffig:skewness-signatures. We ob-
serve that the values of normal signatures oscillate aroundzero, whereas the values of Pareto signatures
globally decrease and are above zero untilp≈ 0.5. The cumulative frequency distributions ofs(p,X)
on Figure 5.4 confirm these observations. We also computed the skewness signatures of normal and
Pareto distributions with various parameters, and also various symmetrical distributions3 which we do
not present here due to space constraints. All of them exhibit patterns similar to normal signatures.

It is clear that the probability for Pareto skewness to be within [−0.5;0.5] increases withp. We
estimateP(|s(0.5,X)|< 0.5) on 1,000 Pareto and 1,000 normal samples. We obtain that thisprobability

2Other parameters lead to similar results.
3Cauchy, Laplace, some Gamma and Weibull distributions.
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is equal to zero for Pareto samples, and is greater than 0.95 for normal samples. We conclude that our
method is able to characterize symmetrical and homogeneousversus asymmetrical and heterogeneous
distributions at a confidence level of 0.95. Moreover, the addition of some outliers in these distributions
produces almost the same signatures than without outliers,because extremal values are firstly removed.
Therefore existing outliers do not notably change the characterization.

Let us study the evolution ofs(0.5,X) when the sample sizen varies. We generate 1,000 normal and
Pareto samples for each value ofn between 3 and 1,000, then computes(0.5,X) for each sample, and we
finally obtain the quartiles, min and max of the values ofs(0.5,X) at eachn. We observe in Figure 5.5
that the results converge to zero for the normal distribution, and to≈ 0.3 for the Pareto distribution. Thus,
increasingn should lead to a better characterization.

We verify this hypothesis by evaluating the rate of samples wheres is neverp-stable, for 1,000 normal
and Pareto samples for each sizen. We observe in Figure 5.6 that it seems to follow a fast decrease for
normal samples. Forn≥ 37, less than 5% of normal samples are incorrectly characterized, and less than
5‰ for n≥ 55. We also observe that it increases withn for n> 50 on Pareto samples. The minimum is
79% atn= 52, is around 85% atn= 100, around 95% atn= 240, and above 99.5% forn> 500.

We also evaluate this rate for half-normal and symmetric Pareto samples. We observe in Figure 5.6
that it seems to follow a fast decrease for symmetric Pareto samples, but a slow decrease for half-normal
samples. This result is not surprising because the theoretical skewness of half-normal distributions4 is
≈ 1, and the skewness decreases slowly when extremal values are removed one by one. As expected, our
method has unclear results in this case.

We conclude that our methods characterizes samples with size 100 very well, and is excellent on
samples of size 1,000. Our method also considers that the symmetric Pareto distribution should contain
no outlier.

In addition, we study the skewness range where our method considerss to bep-stable at least once.
We vary the shape parameter of a Gamma distribution (thus itsskewness) to incrementally generate 1,000
samples of 100 numbers for each skewness value, from Pareto-like samples to normal-like samples, and
compute the rate ofs that arep-stable at least once for each skewness. We remind thats is p-stable if and
only if |s(p′,X)| ≤ 0.5− p, for all p′ ∈ [p;0.5]. The result in Figure 5.7 shows thats is alwaysp-stable
at least once for samples of skewness below 1.5, and neverp-stable for samples of skewness above.

5.3.2 Performance

We study the effect of the sample size on outlier detection innormal, Pareto, half-normal and symmetric
Pareto distributions. We generate 1,000 samples for each distribution and sizen, then we detect outliers
on each sample. Normal and Pareto samples contain no outlierby definition, so no outlier should be
detected; they are calledfalse outliers.

We observe in Figure 5.8 that the rate of false outliers is low, with at most 3% for the normal distribu-
tion and at most 5% for Pareto. This rate decreases whenn increases to be less than 1‰ aboven≈ 100
for the normal distribution, and aboven≈ 500 for the Pareto distribution. We also evaluate the rate of
outliers detected for the symmetric Pareto distribution: reaching 5% at most, it seems to follow a fast de-
crease whenn increases, to reach 1‰ atn≈ 1000. For the half-normal distribution, this rate is between
8% and 12% forn> 100, and is consistent with the fraction of samples for whichs is neverp-stable. We
conclude that our method detects few false outliers on samples of size 100, and almost none on samples
of size 1,000, which is an excellent performance; it rarely detects outliers on symmetric Pareto samples,
which is the expected behavior regarding the characterization.

Now we estimate the ability to detect true outliers by generating a sample of size 1,000 composed of
a normal sample of variance equal to 1 and a uniform sample (called thenoise) of size varying from 0.2%
to 50% of the total number of values. We then count the number of noise points which are classified as
outliers and potential outliers. It is the worst case because the initial skewness is close to zero and outliers
are uniformly distributed around the mean with no gap between them and the rest of the distribution. This
is also a way to evaluate the robustness of our method againsta problem known as themaskingeffect [24],
occurring when some outliers are not detected because of thepresence of other outliers close to them.

We generate uniform samples of various ranges (i.e. largestminus smallest value). The range of
normal samples of size 1,000 is roughly 6 and the range of samples of size 106 is roughly 10, so we select

4γ = (
√

2 · (4−π))/(π −2)3/2
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Figure 5.8: Fraction of sample points classified as outlier as a function ofn for normal (top left), Pareto
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noise ranges larger than this: 10, 50 and 100. We observe in Figure 5.9 that noise points very close to the
signal points (range 10) are classified as potential outlier. Larger ranges increase the number of detected
outliers. We also see that the less noise, the higher the power to detect true outliers. However almost no
outlier can be detected with more than 10% of uniform noise.

5.3.3 Regime Changes

Regime changes are change points in time series that are observed by sudden changes of the mean. When
they occur we are faced with non-trivial distributions. We study now how our method deals with them.
We simulate a stream of values by generating two normal samples of size 110 with mean equal to 0
and 3 respectively.t indicates the order of appearance of the values. Figure 5.10shows our method
applied dynamically with a sliding window of sizew = 100. The outlier status of values is unknown
at the beginning. At the end, none of them are outliers but onepotential outlier. Our method is hence
robust against regime changes. Notice that 72 values are classified as potential outliers when our method
is applied on the whole data set at once.

5.4 Real-World Applications

5.4.1 Dynamics of Internet Topology

We applied our method to data collected with the radar for theInternet [81], which makes possible to
observe the dynamics of the Internet’s topology at the scaleof a few minutes. It consists in focusing
on the part of the Internet’s topology viewed from a single computer called themonitor. Periodical
measurements of this map, calledego-centered view, were performed every 15 minutes during several
months, leading to a series of graphs.
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The most natural idea to detect events in the dynamics captured by a radar measurement from a given
monitor certainly is to study the numberNi of nodes observed at each roundi. We plot it for a typical
case in Figure 5.1. Clear outliers appear under the form of sharp decreases ofNi for some values ofi, but
this brings little information because they may be due to losses of connectivity by the monitor. Except
from these statistical outliers, which are detected by our method, the numberNi of nodes observed at each
roundi in Figure 5.11 is very stable.

We thus compute the number of distinct nodes seen in five consecutive rounds to avoid the outliers
which only reveal losses of connectivity in one round of measurement. We observe events in the dynamics
shown in Figure 5.12, where many decreases existing in Figure 5.11 have disappeared. Figure 5.12 is well
centered around a typical value, but still exhibits sharp increases and decreases. This means that these
outliers, which were also detected by our method, may revealreal events in the dynamics of this network.
Outliers above the typical values indicate a sudden appearance of many new nodes in the network, while
outliers below the typical values may indicate longer losses of connectivity or a sudden disappearance of
many nodes.

Our approach is hence relevant for studying the evolution ofego-centered views of the Internet topol-
ogy, and for raising automatic alerts in real-time when significant changes of connectivity occur.

5.4.2 Search Engine Queries

We applied our method on the data set of search queries captured from a eDonkey server [80]. It consists
in textual queries made by users for lists of files matching certain keywords. The measurement lasted for
28 weeks. The data set contains 205,228,820 queries enteredfrom 24,413,195 IP addresses. Samples and
procedure descriptions are publicly available [80].

In order to study the number of queries related to the filmHarry Potter and the half blood prince,
we filtered the queries to get only those which contain the words ”half blood prince”. Then for every
10 minutes we counted the number of queries made during the last hour of measurement. Outliers were
finally detected using a sliding window of sizew = 1,008 (7 days) to capture meaningful events at the
scale of one week. We plot in Figure 5.13 the number of outliers and potential outliers observed each day
and each week. The scale of a day seems better for observing fast increases of user queries.

We identify three main events: we observe many values markedas potential outliers during the week
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Figure 5.10: From top-left to bottom-right, evolution of the outlier status of values in a time series of size
n= 220, and having one regime change (mean value changing from 0to 3). Vertical lines indicate the
time window boundaries between what outliers are detected.

after July 15, 2009, when the film was out in theaters. Then an unknown event appears from August
23 to 25, when almost all values are outliers. The last automatically detected event, from October 10 to
12, coincides with the release of a pirated version of the filmon October 10 on BitTorrent, another P2P
network, as discovered by searching onhttps://thepiratebay.se. We suppose that this release was
made from a promotional DVD, because the commercial DVD was released on December 7 only; we
observe no noticeable event on this day.

Our approach is hence relevant for studying logs of search queries, and for detecting bursts of queries
related to a same topic.

5.5 Results summary and Next steps

The proposedOutskewermethod to detect statistically significant outliers in samples and time series relies
on the study of the distribution skewness. This method is easy to interpret because values are classified as
outliers, potential outliersor not outliers. The class of all values is unknown when the notion of outlier
is not relevant in the considered data set. Our method is alsoeasy to use because it requires no prior
knowledge on the data, and the only parameter is the size of the time window for time series. Moreover,
it may be used on-line.
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We applied this method on two data sets representative of many use-cases: evolution of ego-centered
views of the Internet topology, and logs of queries entered into a search engine. We clearly identify events
in the evolution of ego-centered views of the Internet topology as shown in Figure 5.11 and Figure 5.12.
We also automatically detect the release of a pirated version of a film in a P2P system, through the queries
entered by users in the search engine, as show in Figure 5.13.

This work opens the way to further investigation of the use ofthe skewness to detect multiple outliers
in samples, and to detect events at different time scales in time series. Further studies may also extend
our method to detect regime changes.
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Chapter 6

Anaysis of P2P data

Peer-to-peer (p2p) file sharing applications have evolved into a major traffic source in the Internet [16, 4,
15, 69, 109]. This development has crucial implications fortraffic engineering and information diffusion
at the same time, since p2p networks constitute a remarkablecase of interaction between atechnolog-
ical layer (network of computers) where the traffic occurs upon which we have asocial layer (overlay
network of peers, structured by related interests), where the file spreading occurs. Indeed, understanding
p2p activity and its dynamics is critical to assure a good quality of service, enhance network architecture,
forecast long-term provisioning and design better protocols upon it. Such tasks naturally rely on measure-
ments of real-world traffic and models that can generate synthetic traffic. Consequently, identifying key
properties of p2p traffic and conceiving models capable of reproducing them is decisive for the domain.

In the chapter, we present the analyses performed on a 48 hourrecord of the file sharing activity in
an eDonkey server (akin to [8], see Deliverable D3.2 for furthur delails), suitably anonymized for privacy
protection purposes. We show that our dataset presents non trivial properties, both in terms of download
requests and file exchanges, that we study from the point of view of traffic dynamics and diffusion. We
also propose different model in order to reproduce those observations. This work has to be seen in direct
relation with WP2 and WP4 related to the elaboration of realistic scenario of traffic demand that can be
used to test routing algorithm and policies proposed in the EULER project.

6.1 Cascade properties

In this section, we explain how traces of peer-to-peer file sharing may be used to this goal. We also per-
form simulations to assess the relevance of the standard SIRmodel to mimic key properties of spreading
cascade. We examine the impact of the network topology on observed properties and finally turn to the
evaluation of two heterogeneous versions of the SIR model. We conclude that all the models tested failed
to reproduce key properties of such cascades: typically real spreading cascades are relatively “elongated”
compared to simulated ones. We have also observed some interesting similarities common to all SIR
models tested.

6.1.1 Introduction

Diffusion phenomena in complex networks – such as the spreadof virus on contact networks, gossip on
social networks and files in peer-to-peer (P2P) networks – have spawned an increasing interest in recent
years. The boost of computer networks and online social network platforms offers data and new insights
on these phenomena in large scale networks; the possibilityto validate and refine current models might
lead to breakthroughs in the field.

Although large scale diffusion phenomena have always attracted considerable interest, it has been
historically challenging to obtain open, extensive and detailed real-world data at this level. Despite this
obstacle, diffusion models emerged, notably in epidemiology. The early models, both discrete and con-
tinuous (see [13, 12] for a survey), focused primarily onmacroscopicaspects of diffusion – such as the
evolution of the number of infected individuals in a population – overlooking themicroscopicdynamic of
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the epidemic – i.e., how (by whom) individuals become infected. The advent of network analysis in vari-
ous contexts has pushed for a more detailed description of the diffusion process. Indeed, models based on
the detailed interactions of agents on a network have blossomed in sociology [58], computer science [49]
and economics [68], among others. New epidemic models inspired by the classical approaches featuring
a detailed dynamic description in the context of networks also appeared (see [20, 48] for a survey). In
particular the network version of the SIR family of models has established itself as reference model in the
study of information diffusion [38, 91, 39, 82, 93].

In this context, assessing the pertinence of such models to describe real-world data is critical. In order
to validate this model a comprehensive empirical spreadingtrace, consisting of (1) detailed chronologi-
cal data of who transmitted the information to whom and (2) data describing the underlying network on
which the diffusion process takes place. Indeed, the network version of the SIR model (henceforth called
simply SIR model) is based on local rules of transmission which take into account the network topology.
In large epidemic bursts the available data often provides the evolution of large aggregate quantity, such
as the number of touched individuals, but rarely uncover thelocal trail of the epidemic. Conversely, other
empirical studies feature transmission events, but lack complete information of the underlying network
structure on which the diffusion takes place [6, 67]. This work analyses the relevance of the SIR model
for real-world diffusions, using data obtained measuring the activity on a peer-to-peer file sharing net-
work. This rich dataset allows one to reconstruct both the underlying network and the detailed diffusion
trail at a remarkable scale.

We begin with a description of our dataset and framework in section 6.1.2. In section 6.1.3 we define
the spreading cascade. Next, in section 6.1.4, we simulate the spreading of files as a standard SIR process
and confront it with the observed spreading; we also investigate the interplay between this process and
structural properties of the underlying network where the spreading takes place. In section 6.1.5 we ex-
amine the spreading pattern when we modify the SIR model to account for heterogeneity in the behavior
of the peers and in the popularity of files. We conclude with future work perspectives.

6.1.2 Dataset and framework

The data used in this study comes from file sharing in an eDonkey server, obtained from a measurement
of six hours of activity (akin to [8]). In this setting, peersquery the eDonkey server indexing files and for
each file they get a list of available peers in the network possessing the requested file. Next, peers contact
potential providers directly and transmission between them ensues. This dataset is a collection of answers
to these queries, encoded as 4-tuples of integers in the following format:(t,P,C,F), where capital letters
represent unique ids (e.g. in Figure 6.2). Each tuple accounts for a query made at timet of the fileF by
the peerC, satisfied by the peerP – that is,P has providedF to the peerC at timet. LetD be the set of all
recorded tuples,P the set of all peers in these tuples andF the set of all files exchanged. In our dataset
we have|P|= 1 908 500 peers,|F |= 801 280 files and|D|= 22 944 800 file transfers.

6.1.2.1 Underlying network

The traceD naturally induces a relationship between files and peers (who request or provide them), which
we encode in a bipartite graphB = (P,F ,A ) on the disjoint sets of peersP andF files respectively.
Let (t,P,X,F) ∈ D be a recorded transmission of the fileF by the peerP to some peerX at some timet,
which we denote simply by(·,P, ·,F). Likewise, let(·, ·,P,F) ∈ D be a recorded transmission of the file
F to the peerP, provided by some peer at some time instant. Hence:

A = {(P,F) ∈P×F : (·,P, ·,F) ∈ D∨ (·, ·,P,F) ∈ D}

To study the diffusion, it is necessary to define the underlying network on which spreading takes
place. Focusing on information content diffusion among peers, it is natural to consider theinterest graph
in which each node represents a peer and each edge joining twopeers stand for common interest. In-
terests connecting peers may include broad subjects such asopen source software, folk rock or French
literature or narrow ones such as movies by Quentin Tarantino, a particular computer game or pictures
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Figure 6.1: Interest graph as a projection of the bipartite graph of peers and files contructed from the trace
D.

Figure 6.2: Trace log example with corresponding spreadingcascade in black and underlying network in
light gray.

of Beijing. It is reasonable to suppose that peers store and share content related to their interests and,
likewise, peers will search for content matching their interests. Hence the diffusion of files among peers
takes place on the interest graph and occurs from neighbor toneighbor. Indeed, if a peerP provides a file
F (corresponding to a music album for example) to another peerP′ then there is link between them in the
interest graph, since both are interested in the same content, namelyF.

It is beyond doubt extremely difficult in a large scale interaction network to know precisely whether
any two individuals have a common interest. Nonetheless, itis possible to approximate this graph using
the data inD: the inferred interest graph is given by the projectionG = (P,E ) of B onP, connecting
the peers who belong to the neighborhood of a common file in thebipartite graph, for each file:

E = {(P,P′) ∈P×P : ∃F ∈F ,(P,F) ∈A ∧ (P′,F) ∈A }

See example in Figure 6.1. For the sake of readability the inferred interest graph will be henceforth called
simply interest graph.

6.1.2.2 Observed network structure

We begin examining properties of the bipartite graphB constructed from the P2P diffusion trace. In or-
der to estimate the typical number of interested peers per file we have calculated the median degree of the
files in the bipartite graph, 5, and the average degree, 14.73, with standard deviation of 34.74. Likewise,
we have calculated the same statistics for the peers, to estimate the number of files commonly shared by
peers: its median degree in the bipartite graph is 3 and the average degree is 6.19, with corresponding
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Figure 6.3: Properties of the underlying network and observed spreading cascades

standard deviation of 12.66. The degree distribution of both peers and files is however heterogeneous
(Figure 6.3(b)) and mostly concentrated on small values; all degree values for peers and files remain be-
low 104.

The interest graph obtained from the observed bipartite graph (as explained above and in Figure 6.1)
has a single giant component containing almost all nodes(99.99%) and density 2.62× 10−4. In Fig-
ure 6.3(a) we have plotted the degree distribution for the peers: considering the set of all peers, the
median degree is 118 and the mean value is 500.11, with corresponding standard deviation of 1271.42.
We proceed to a finer analysis of the degree distribution, grouping peers in categories (Figure 6.3(a)).
Let us consider first the set ofclients C∈P such that(·, ·,C, ·) ∈ D: i.e., peers having requested files
during our measurements. Their degree distribution superposes the degree distribution of all nodes. This
is due to the fact that 99.63% of peers in our observations have requested at least one file, so the clients
degree distribution is essentially the global degree distribution. A much more restrictive category is the
set ofproviders Psuch that(·,P, ·, ·) ∈D, i.e., peers having supplied files during our measurements.They
account for 4.33% of the peers inP. Their degree distribution has a similar shape, but it is concentrated
on larger values, indicated by a median of 1821 and an averagedegree of 2906.54 – with corresponding
standard deviation of 3471.80. The last curve, superposingthe curve corresponding to the providers,
represents the degree distribution of a particular subset of providers calledinitial providers, which will
be detailed in the next section.

We close this section with a brief summary of our dataset. Using the framework introduced, we were
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able to reconstruct the interest graph of the peers, where the spreading of files takes place. This graph
connects essentially all peers, which can be grouped in two categories: providers and clients. Most peers
in our observations are clients, but only a small fraction supply files: this revels a high proportion of
free-riders(peers obtain files and do not share back) in the P2P-network observed. Furthermore, there is
a sharp distinction between clients and providers in terms of their degree distribution.

6.1.3 Spreading in our data

In this work we analyze thespreading cascaderepresenting the diffusion of each file in the P2P network.
For a fileF, the spreading cascade is a directed graph featuring the setPF of peers who have participated
in the spread ofF (as clients and/or providers) and linksP→C, connecting each clientC with the first
peer(s) who providedF to it. More formally, letτF(C) = inf{t : (t, ·,C,F) ∈ D} be the first instantC
obtainedF and let the directed graphKF = (PF ,LF) be the spreading cascade ofF, with

PF = {P∈P : (P,F) ∈A }

LF = ∪C∈PF {(P,C) ∈PF ×PF : (τF(C),P,C,F) ∈ D}
A client requesting a file may receive a response from potentially several providers simultaneously,

which implies that nodes in the cascade graph not only have multiple outgoing links, but also multiple
incoming links in general. The causality induced by the factthat we only consider the links correspond-
ing to the first time a node receivedF prevents the appearance of cycles. Hence the cascade is in fact a
directed acyclic graph (DAG).

The first key property encoded in the spreading cascade of a given fileF is the number of nodes who
possess it at the end of the observed period, which is given bythe sizeof the cascade|PF |. We also
explore two other key topological properties of the cascade, namely itsdepthandnumber of links. The
former is defined as the length of the longest path on the cascade and captures the maximum number of
hops from peer to peer that the file has undergo before it was relayed from a provider to a client. The
number of links, given by|LF |, combined with the size of the cascade gives information on the sharing
pattern of the network. An example of observed trace and constructed spreading cascade is given in Fig-
ure 6.2: the spreading cascade has size 7, depth 3 and 6 links.

Another relevant spreading data concerns theinitial providersfor each fileF, namely the set of peers
that possessed it prior to any transfer activity on the observed trace. These nodes are the origin of the
spreading cascade, triggering the diffusion of the fileF. This information can also be inferred from the
request log and be determined in the following way. LetCF(t) = {C∈P : (t ′, ·,C,F) ∈D, t ′ < t} be the
set of peers who requestedF prior to t. We define the set of initial providers ofF as the set of peersP who
have providedF at some timet, without having obtained it beforet from another peer in the network:

IF = {P∈P : (t,P, ·,F) ∈D,P /∈ CF (t)}

Plotting the complementary cumulative distribution of thenumber of initial providers for the spread-
ing cascades (Figure 6.3(c)) we obtain an interesting curve, revealing a scale-free distribution. This means
that although most spreading cascades in our observation have few initial providers, there is a non negli-
gible fraction of cascades with a large number of initial providers.

6.1.4 Simple SIR model

As mentioned in the introduction, we have decided to investigate the file spreading in the light of the
simple SIR model. In our setting, each file spreading corresponds to an independent epidemic in the in-
terest graph, in which each node is in one of the following states:susceptible, infectedor non-interacting
(sometimes denotedremoved, hence the acronym SIR). Susceptible nodes do not possess the file and
may receive it from an infected node, thus becoming infected. Infected nodes, in turn, spread the file to
each of its neighbors, independently, with probabilityp and become promptly non-interacting thereafter.
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Figure 6.4: Simulation of file spreading on different underlying networks: complementary cumulative
distribution of cascade properties

Although non-interacting nodes remain in this state, infected nodes may unsuccessfully try to infect them
sending the file.

Supposing the observed diffusion trace was the result of such a simple SIR epidemic we may estimate
the spreading parameterp. Each neighbor-to-neighbor transmission trial can be seenas a Bernoulli
random variable, whose value is 1 in case of success and 0 otherwise and whose expected value isp.
Assuming each trial is independent and the parameterp is homogeneous for eachP and F , we may
estimate it by the empirical proportion of successes over all trials. Since each tuple inD accounts for
a successful neighbor-to-neighbor transmission,|D| is the number of successful trials for all diffusion
cascades. The total number of trials, in turn, is given by thesum of the degrees of all nodes involved
in the spreading of each file. Hence, we obtain the following estimate, with a 95% confidence interval
p̂±10−6:

p̂= |D| / ∑
F∈F

∑
P∈PF

d(P) = 1.063×10−3

Since the simple SIR model depends upon a single parameter, namely the spreading probabilityp, we
have fully characterized it with the preceding estimation.
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6.1.4.1 The underlying network influence

The goal of simulating the standard SIR model and comparing the simulated cascades with the observed
ones is primarily to assess how realistic this model would perform on the interest graph, in terms of size,
depth and number of links of the spreading cascades. Secondly, we wish to compare the results with
simulations on random networks to understand the role of thenetwork topological structure on the shape
of the spreading cascades generated with the SIR model. Withthis aim, we have considered the spreading
of files in a sequence of random networks derived from the interest graph, with increasing topological
complexity. More precisely we begin considering an Erds-Rnyi (ER) random graph with the same density
of our interest graph, the simplest random graph in our sequence. Then we have chosen a random graph
with the same density and degree distribution using the Configuration Model (CM) approach [91]. Next
we have generated a Random Bipartite (RB) graph, with the same density and degree distribution as our
original bipartite graphB of peers and files [60]. Compared to the interest graph, the projection of this
random bipartite graph has similar density, degree distribution and clustering coefficient. In sum, for
each new element of this sequence of (uniformly chosen) random graphs we introduce a new constraint
to make it more realistic – in the sense that its topological properties will be closer to the interest graph.

6.1.4.2 File spreading simulation

Combining the network topology, the initial condition information (the list of initial providersIF cal-
culated for each fileF) and the calibrated spreading parameter ˆp we can proceed to the simulations for
each underlying network: for eachF , we begin with the initial providers in an infected state andthe other
nodes in a susceptible state. At each step, infected nodes will infect each of its neighbors with probabil-
ity p̂, becoming non-interacting afterwards. The epidemic continues as long as there are active infected
nodes.

The first observation concerning the model simulation is that the observed time (measured in seconds)
has no direct relation with the simulation time (number of steps). Furthermore, our dataset corresponds
to an observation in a bounded window of time of six hours, so that we have no reason to suppose that
the file spreading cascades we observe correspond to the whole spreading cascade of a file. In other
words, if we had measured a longer time window we would likelyobserve bigger cascades (in terms of
size and depth) for the same files – due to, among other reasons, new users who could eventually request
the same files. This is also true for our SIR model: we observe increasingly bigger cascades as time
increases. In fact performing unconstrained simulations we have obtained a distribution of significantly
bigger cascades than the ones we have observed in the real trace. Thus, in order to perform a suitable
comparison with the observed cascades, we have decided to hold one property fixed and compare the
other properties. More precisely for each file we generate a simulated cascade with the same size (resp.
depth) as the corresponding observed cascade and compare the depth (resp. size) and number of links. In
practice, for each file we simulate the SIR epidemic as described earlier and halt it when it reaches the
size (resp. depth) of the corresponding observed cascade.

We have generated populations of simulated cascades for each underlying network and constraint (on
depth and size). We have performed 801 280 file spreading simulations (one for each file inF ) for each
network and have selected every simulated file spreading cascade which attained the depth (resp. size) of
the real spreading cascade for the same file – and have rejected the others for purpose of comparison. With
this procedure, each underlying network yields a differentpopulation of file spreading cascades, since the
rejected cascades may be different in each case. However 93.80% of the files have generated simulated
cascades with the same depth as the corresponding real cascades, for all networks. Similarly, 85.64% of
the files have generated simulated cascades with the same size as the corresponding real cascades, for all
networks – except the ER network. Indeed, only 21.76% of the files have generated the contemplated
size in the ER graph. Furthermore the properties of these simulated cascades on the ER graph deviated
significantly from the properties of the cascades on the other graphs. Hence, in the following analysis we
do not include the simulations for the ER graph. Rather, we focus on the properties of the of files with
comparable spreading cascade depth (resp. size) on all networks but ER.

In Figure 6.4(a) we plotted the complementary cumulative distribution of the size of cascades with
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comparable depth. We observe a divergence of the cascade size from the observed cascades: simulated
cascades are typically much bigger in size for a given depth compared to real cascades. The range of val-
ues in both categories is also striking: the biggest real cascade is at least two orders of magnitude smaller
than the biggest simulated ones. Among the simulated cascades, there is a remarkable matching in size
values for the simulation on the CM and the interest graph (curves are superposed). In Figure 6.4(c) we
plot the complementary cumulative distribution of the depth of cascades with fixed size. Real cascades
feature a much higher depth compared to simulations, holding cascade size constant. In particular there
is a cutoff on the cascade depth for the simulations: we do notobserve any cascade depth bigger than 11
in the simulations. As for the number of links, we have two interesting situations. If we fix the depth
(Figure 6.4(b)) the number of links distribution resemblesclosely the size distribution (Figure 6.4(a)).
This is not completely surprising, since the two quantitiesare related. In this case we observe a larger
number of links for all simulations compared to the number oflinks in the real cascades since the simu-
lated cascades itselves are bigger. If, in constrast, we fix the cascade size to fit the observed cascades size
(Figure 6.4(d)), we observe a typically smaller number of links. Combining these observations on both
plots we conclude that real spreading cascades are denser than simulated ones, a clear qualitative feature
not captured by the simple SIR model. Finally we note that most cascades are simple, featuring depth
equal to one and correspondingly small size.

To sum up, we have compared simple topological properties ofreal spreading cascades and simulated
cascades from a calibrated SIR model, with comparable depthand size. We have observed that simulated
cascades are relatively “wider” whereas real cascades are relatively “elongated”, that is, real cascades
have a smaller size per depth ratio. Moreover, real cascadesare typically denser than simulated ones.
In terms of interplay between underlying network structureand the simple SIR spreading cascades, we
have observed that respecting the interest graph degree distribution was the only property that caused a
striking change in simulations behavior on the considered random networks. Indeed we have observed
sharp qualitative dissimilarities between the simulations on the ER graph (different degree distribution)
and no sensible dissimilarities between the simulations onthe CM, RB and the interest graphs.

6.1.5 Heterogeneous SIR models

In the previous section we have examined the adequacy of the simple SIR model to generate verisimi-
lar file spreading cascades. We have also inspected the interplay between the underlying network and
the model simulating file spreading in different networks. In this section we perform a complementary
analysis, focusing on a single underlying network and examining different extensions of the SIR model
considered previously. In particular we consider two heterogeneous versions of the SIR model, char-
acterized by a distribution of spreading probabilities, instead of a single homogeneous parameter. The
natural choice in this case for the underlying network is theinterest graph, which is the most complete
and realistic graph among the ones tested in the previous section.

6.1.5.1 File popularity

A first refinement of the simple SIR model consists in introducing different spreading probabilities ac-
cording to the file being spread. The rationale in this case isto account for different levels of popularity
depending on the file. Exogenous reasons – such as a movie release or the death of an an artist – can
change the supply and demand of a given file and consequently alter its spreading probability. The
knowledge of the actual reasons that explain the heterogeneity in file popularity are irrelevant to the char-
acterization of this model, if we know the spreading probabilities for each file, i.e.,{p(F) : F ∈F}. An
estimate of these probabilities, in turn, can be obtained from the traceD if we suppose it was generated
by a process following this extended SIR model. Indeed, since each file spreading is independent of the
others, it is possible to estimatep(F) for eachF separately, with the same method used to derive the
homogeneous parameter. Restricting the calculations to the spreading cascade ofF , p̂(F) will be given
by the empirical proportion of successful transmissions ofF over all possible transmissions ofF :

p̂(F) = |{(·, ·, ·,F) ∈ D}| / ∑
P∈PF

d(P)
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Figure 6.5: Heterogeneous spreading parameter distributions

In Figure 6.5(a) we plot the distribution of the heterogeneous spreading parameters depending on the
files. The values of ˆp are concentrated on the range 10−5 to 10−2, indicating that there is a considerable
fraction of cascades with a significantly different spreading regime (bigger than one order of magnitude).
This distribution characterizes the extended SIR model we use in the following simulations.

6.1.5.2 Peer behavior

A second possible refinement is motivated by the fact that peers might have intrinsically distinct levels of
“generosity” regarding file sharing. Under this hypothesiswe extend the standard SIR model assigning an
heterogeneous spreading probability to each peer, regardless of which file it is sharing. Thus, we do not
need any other information but the spreading probability distribution to characterize the model. In this
context altruistic peers, who typically spread files to a large proportion of their neighbors, would feature
a bigger spreading probability compared to the homogeneousspreading probability corresponding to the
diffusion aggregates of all peers. By the same token, the extreme case of free-riders would have their
spreading probability assigned to zero. Again we can study transmissions as outcomes of Bernoulli trials
to estimate the spreading probabilities. LetFP = {F ∈F : (P,F) ∈A } be the files carried by the peer
P; for each such file the number of transmission trialsP could perform corresponds to its degree in the
interest graph, namelyd(P). Hence, to obtain ˆp(P) for each peerP we divide the number of successful
transmissions ofP to other peers (of any file carried byP) over the total number of potential trials:

p̂(P) =
|{(·,P, ·, ·) ∈ D}|
|FP|×d(P)

We have plotted the distribution of the positive spreading probabilities estimates in this case (Fig-
ure 6.5(b)). They account for small fraction of all the peers, since the only peers who have a positive
spreading probability are those who provided a file at least once – 4.33% cf. observations made in sec-
tion 6.1.2. Conversely, a large fraction of the peers do not share the file in this model. We observe a
marked range of values, which is significantly greater than the one calculated for the homogeneous SIR.

6.1.5.3 File spreading simulation

Our aim is to generate simulated cascades following both extensions of the SIR model presented – with
heterogeneous spreading probability depending on the filesand on the peers – and compare their proper-
ties with the simulated cascade of the simple SIR model and the real observed cascades. In this sense, we
apply the same methodology of the previous simulations: we fix the depth (resp. size) for the simulated
cascades and examine the other two properties – the idea is tocompare similar spreading cascades in
terms of the chosen property. As discussed previously, the great majority of the cascades is simple, with
depth equal to one and a small size. Hence the simulated cascades corresponding to the simple observed
cascades will likely correspond in terms of depth, size and number of links. For this reason, we have
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(c) Depth of cascades with fixed size.
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Figure 6.6: Simulation of file spreading on the interest graph with different SIR processes: complemen-
tary cumulative distribution of cascade properties

decided in this section to focus on the spreading cascades with depth greater than one.

The simulation results are plotted in Figure 6.6: we have plotted the complementary cumulative dis-
tributions of the spreading cascade depth, size and number of links. Imposing a constrain on the depth
for the simulated cascades and comparing their size (Figure6.6(a)) we observe the contrast between the
simulated and the real observed cascades with the same depth: the former have a typically bigger size
compared to latter. What is remarkable, however, is the agreement among all the simulated cascade dis-
tributions – curves superposed in Figure 6.6(a). Next, if wefix the size for the simulated cascades and
examine their depth, we are faced with the same qualitative similarity among simulated curves. Indeed,
the curves corresponding to the heterogeneous SIR models also feature a cutoff in depth, failing to repro-
duce the scale-free curve representing the depth of the observed real cascades. Finally, the cascade links
distribution plotted in Figure 6.6(b) and Figure 6.6(d) reveals the pattern observed previously, namely
that the observed spreading cascades are typically denser than corresponding simulated cascades.

Inspite of the improvements in the SIR model, introducing anheterogeneous spreading parameter to
account for different profile of files (respectively peers),the simulations indicate that this refinement does
not change qualitatively the basic properties of the simulated spreading cascades. Indeed we observe a
surprising agreement between the three SIR models compared, notwithstanding the particularities of each
model.
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6.1.6 Conclusion and perspectives

We have presented a large-scale dataset from a real-world peer-to-peer network, featuring diffusion of
files among peers. We have proposed a framework to study this dataset which allows us to obtain, si-
multaneously, the interest graph of peers – where the diffusion of content takes place – and the spreading
cascade. Guided by simulations we have examined spreading cascades generated by the simple SIR
model and have analyzed the interplay between this model andthe network topology. We concluded that
simulated file spreadings do not capture key qualitative properties of the observed spreading cascades.
Furthermore, in terms of the studied properties, the simpleSIR model generates similar cascades on ran-
dom networks having the same degree distribution as the interest graph. Next we have focused on the
spreading of files on the interest graph and studied extendedversions of the SIR model featuring an het-
erogeneous spreading parameter. Surprisingly enough, simulated cascades using both extensions of the
SIR model show similar properties as the simple homogeneousSIR model – and thus, fail to reproduce
qualitative features of the observed cascades.

The SIR model is an attractive choice to model the information spreading in complex networks: it
is based on classical epidemiological models, it is based upon few assumptions and can be character-
ized with one parameter. However, the results suggest that this model might not be suited to describe
file spreading in our data. Furthermore, extensions of this epidemic model to make it more realistic,
featuring heterogeneous spreading probabilities do not offer a better alternative in terms of the proper-
ties we observed. At this point, we consider two main exploration tracks. The first possibility consists
in constructing a weighted interest graph, which takes intoaccount the number of interactions (file ex-
changes) between peers. In this case the same analysis may beperformed and a comparison with the
results presented here would be pertinent. The second possibility is to contrast epidemiological models
to adoption/threshold models [38, 58].

6.2 Statistical properties of the file exchange times series

A key step to characterise information supply and demand on an overlay network such as the P2P network
considered here is the study of statistical properties of file request times from peers.

As a preliminary illustration, Figure 6.7 shows the evolution of cumulated number of requests for a
few selected files. One can see regular progression, indicating a constant rate of requests, interspaced in
some cases with short or long plateaux, suggesting that no provider (by provider, we mean a peer owning
the file and ready to share it) is online at that time interval ;the unsuccessful requests are unrecorded in
the data.

In a first part we notice that peers show a wide range of activity, as well as files show a wide range of
popularity. We then show the time evolution of the intensityof requests, suggesting a marked circadian
rhythm. Then we study the burstiness of the data, showing a slight burstiness in the requests emitted by a
given typical peer, and no evident burstiness for the requests of a given typical file. Therefore it suggests
that the requests of peers for files can be correctly approximated by Poisson processes with arrival rates
that follow a circadian rhythm. Finally, we estimate from simple assumptions the number of peers that
own a file and the number of peers that offer the file for sharing. In this way we can estimate the number
of ‘good peers’, who transmit back the files they download, asopposed to the ‘free riders’ who do not
contribute widely to the distribution of files in the system.

6.2.1 Activity and popularity distributions

By activity of a peer, we mean the total number of different requested files over the observation period.
In other words several requests by the peer for a same file are counted as one. By popularity of a file we
mean the total number of distinct peers that have requested the file. Here again multiple requests from
one peer are counted as one. Note that activity and popularity are precisely the degree of nodes in the
bipartite graph defined in Section??.

We show in Figure 6.8 the distribution of activity among users, and the distribution of popularity
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Figure 6.7: Cumulative request curves for several files, each normalized by the total number of arrivals
in the 2-days time-window.

among files. It can be observed that those distributions, if not properly scale-free, seem to be heavy-
tailed.

Figure 6.8: The distribution of activity (left) and popularity (right) in loglog scale.

It should be noted that the data for small values of popularity and activity can be corrected in the
following way. Suppose in first approximation that the arrival of requests for a given file is a Poisson
process with an average ofλ arrivals in the observation period. Then the popularity actually observed for
this file may be more or less thanλ , and those fluctuations around the expected value will be averaged
out if a sufficient number of files are present with the same parameterλ (which is certainly the case for
not-too-popular files). However there is also a probabilitye−λ that the file will not be observed at all,
thus will not be represented in the Figure, introducing a bias that tends to underestimate the number of
unpopular files. Therefore, each point of this curve corresponding to popularityλ should have its number
of occurences multiplied by(1−e−λ )−1. A similar effect takes place for the activity distributionamong
users, of course. However it would lead to only a small correction of the curves, especially in the log-log
scale used here.

Note that alternative measure for activity (resp. popularity) would be to normalize the above-defined
measure by the total online time (resp. availability time) of the considered client (resp. file). These
normalized measure would give a better indicator of how a client is active when connected or how a file
is popular when available. However they are less accessibleas the evaluation the online time (availability
time) cannot made reliably.
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6.2.2 Circadian rhythm

Counting the number of requests of all peers for all files altogether at every time instant (Figure 6.9)
shows the existence of a rhythm that probably corresponds toa circadian rhythm of the peers using the
observed eDonkey server. This shows that the random processmeant to be a model of the time series
of requests must be non stationary, with a cyclic variation of the parameter across the day. The data we
have, covering only 48 hours, does not allow us to extrapolate to a weekly cycle.

Figure 6.9: The circadian rhythm averaged for different time scales (seconds, minutes and hours). Nights
and days are clearly visible.

6.2.3 Burstiness

6.2.3.1 Measure of burstiness

In general, burstiness is meant as a particular deviation from Poisson behaviour in a series of arrivals
or ‘events’ (note that the word ‘event’ is overloaded in probability theory so we avoid to use it in the
following).

Suppose that an arrival occurred at time zero. For a Poisson arrival process, the probability of an
arrival in a short time interval[t, t +∆t] (conditionnally on the fact that no arrival has occurred in[0, t])
is λ ∆t + o(∆t), not function of the timet elapsed since the last arrival. This leads to an exponential
probabilitye−λ ∆tλ ∆t of an unconditionnal first arrival occurring in the interval[t, t +∆t], an expected
time τ = λ−1 for the first arrival, and a number of arrivals in]0, t] following a Poisson law (with a

probability (λ t)k

k! e−λ t of k arrivals in that interval).
The assumption that the probability rate for arrivalsλ is a constant function oft is not always verified

for various kinds of arrival processes associated to various social contact networks, see for instance phone
networks, e-mail networks or sexual contact networks [67, 70, 116, 105]. Note that those contact networks
can be directed, in the sense that one node takes the initiative of a contact (e.g. phone call) with another
node, which receives the contact. The directedness can be preserved or ignored following the kind of
process that is studied on the network (e.g. the spreading ofinformation or of a disease).

6.2.3.2 Burstiness analysis on peer-to-peer networks

We want to test the existence of burstiness on the peer-to-peer data in order to shed some light on the
behaviour of users of the Internet, at least in the P2P application. One may think that the activity of
users will happen in bursts: a user who decides to request a file is likely to download another one shortly
afterwards. Similarly, a small number of requests for an initially unpopular file may unlock other requests
thus creating a burst of interest for that file.

For every node, or at least the most active/popular among them, we can study the inter-request time
through its average and its variance, and compute its burstiness as defined above. Since we cannot expect
to have an homogeneous Poisson process on the 2 days time interval, we limit ourself to time windows
of limited length (e.g., 1 hour). This also has the advantagethat it smoothes the effect of the circadian
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rythm. For each time window, we compare the average inter-event time with its standard deviation : if
both measures are close, then it means that the burstiness islow on that window.

On Figure 6.10 we represented the mean and variance of the arrival rate of requests from a given peer,
on a moving window of one hour-length. We show a remarkable correspondance for all the files that we
have looked at.

Figure 6.10: Left : we compare the average inter-request time of a typical active client (blue) with its
standard deviation (red). Each point corresponds to a measure estimation on a 1-hour time-window. The
chosen client appears 3077 times in the data. Right : the samefor a typical popular file that was requested
3014 times in the data. Clearly, blue and red curves seem to besimilar (especially for files) which suggests
local non-burstiness.

The burstiness of the number of requests for a given peer is however a little more pronouced (Figure
6.10). Nevertheless it seems fair to conclude that burstiness is not a dominant property for those time
series, which can therefore be represented by a Poisson process whose value is proportional to the activity
of the given peer/the popularity of the given file, modulatedby the time of the day according to the
circadian rhythm.

6.2.3.3 Burstiness of traffic demand

The models we draw on P2P modelling can be used as generators of end-to-end traffic demand taking
place on a physical model of the Internet. The conclusions above show that it is not unreasonable to
model those with Poisson processes whose parameters vary intime according to the time zone of the
user. Of course this requires an extrapolation from the traffic characteristics of P2P application to any
kind of traffic, but again this extrapolation does not seem unreasonable.

The modelling of activity of users by a Poissonian process instead of a bursty process calls for some
comments here. It has been showed, in the last two decades more particularly, that many probability
distributions characterising human activities are sometimes heavy tailed, e.g. described by a power law,
also called Pareto distribution. However later on it has been noticed that some of those distributions
were only apparently heavy tailed, and that a proper statistical hypothesis testing was not conclusive
[34, 101, 50].

This debate has found a particular resonance in the case of human-generated stochastic processes. E-
mail activity data has been found and explained to have time-invariant Pareto-like inter-arrival times [17].
It was later argued that the data was better fitted and more simply explained by a time-varying Poisson
process, with a parameter following weekly and daily patterns [88]. Albeit illustrated by e-mail data,
the discussion of these two papers were of a general nature. This shows the difficulty of distinguishing
between a time-invariant bursty model and a time-varying Poisson process.

Peer-to-peer inter-packet time has been found to fit acurately a heavy tailed hybrid Weibul-Pareto
distribution e.g. in [21], while the statistics we measuredare fully compatible with a time-varying Poisson
process for the inter-request time. This apparent contradiction may be seen as a further instance of the
dichotomy above, but also of the fact that a Poissonian flow ofrequests may lead to a non-Poissonian
flow of packets, due to the fact that files sizes may themselvesbe approximated by a Pareto distribution
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[42, 89]. A model of requests, together with a distribution of file sizes and the assumption that every
request is followed by a file download, therefore induce a model of Internet traffic.

6.2.4 Good peers and free riders

The presence of relatively long plateaux in Figure 6.7 in thecumulated request curve even for not-so-
unpopular files suggests that only a fraction of requests translate into sources for the further propagation
of the file. This may be explained by the fact that not all requests for a file are followed by a successful
download, or that the peer having proceeded to the download does not offer the file for further sharing
on the network (thus called ’free riders’). It is hard to distinguish between those two phenomena, but by
simplicity we call free riders all peers that for one reason or another do not share their file.

To estimate the numberp(0) of peers owning a file and ready to share it at time zero, whether or not
they are online, we count the number of peers appearing as providers at least once in the time interval, that
never appear as requesters for this file. Then we increment this number of potentially available providers
p(t) with time t, as requesters are subsequently observed as a provider for the first time before timet.

We then estimate the total numberd(t) of peers owning the file (whether they are willing to share it or
not) at timet as the sum ofs(0) and the number of peers having requested the file for the first time before
time t.

The comparison of the two curves for several files (Figure 6.11) shows very similar profiles for the
evolution ofp(t) andd(t), with a ratio of the slopes of approximately 8. This suggests, according to the
above assumptions, seventy-eight percent of free riders for only twelve percent of ’good peers’.

Figure 6.11: The blue curve is an estimation of the evolutionof the number of providers while the red
curve is the evolution of the number of clients. By looking atthe slopes, there seems to be 8 times more
new clients than new providers.

6.3 Traffic simulation on a P2P network

6.3.1 Introduction

In this section, we describe two different models which aim to generate synthetic traffic in the peer-to-
peer networks. These models take a set of peersN and a set of filesF as the input and generate traffic
for any desirable time window of lengthT. First we propose our model which is based on the Markovian
transitions and illustrate the outline of the implementation. Next, we describe an agent based model
which is adapted from an existing framework proposed in [55]. Finally we show the results of both of
these models and highlight the improvements of the proposedmodel over the agent based model.

6.3.2 Markovian transition based model

This model is based on the following statistics which can be obtained from the empirical dataset.
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1. Popularity distribution of files

2. Activity distribution of the peers

3. Login-logout frequency distribution of the peers

4. Proportion of free riders

Ideally, these statistics should be obtained from the empirical dataset. However, first we synthetically
generate these statistics based on some realistic assumptions in order to simulate our model. The details
of this synthetic statistics generation methodology is illustrated in the next section.

Our model relies on the following assumptions

1. We ignore the client preferences towards specific files andsubsequent community effects

2. We assume that downloading a file is instantaneous

3. Each peer can request/download one file at a time. However multiple peers can download a given
file simultaneously.

Assumption 2 may be easily relaxed later by using the size of files as an indicator of the download time.
In that case, it could be useful to assume that the file size to be independent from the file popularity. Note
that assumption 1 can also be handled by tuning the preference vector of peers.

We split the rest of the section in two parts; in the first segment, we describe the synthetic generation
of the statistics (such as login-logout frequency, peer activity distribution, file popularity distributions,
etc.) and the second segment illustrates the traffic model and its implementation.

6.3.3 Synthetic statistics generation

In this section, we aim at synthetically computing the following statistical parameters.
a. Login-logout frequency of peers:We assume that the online and off-line slots of a peer node

follow exponential distribution (see Fig. 6.12). Hence, the durations of the online slots Oni of peeri can
be assigned based on the exponential distribution with parameterλoni (λoni is a random number< 0.2).
Similarly, we generate offline slots Offi following another exponential distribution with parameter λoffi .
We continue to generate these slots (periodically online and offline) until we reach the end of the timespan
T. From this statistics, we compute the average online (and offline) time of a peeri and subsequently
compute their login and logout transition probabilities.

b. Peer activity distribution: For each peeri, we assign the total number of queries generated by that
peer following a power law distribution (with exponentα) and suitably normalize it by the total online
time of that peer. This eventually provides us the ‘true’ or ‘a priori’ peer activity distribution.

c. File popularity distribution: For each filef , we assign the popularity of that file (i.e. total number
of queries for that file) following power law distribution (with exponentβ ). We normalize this quantity
by the total number of queries made for all the files.

6.3.3.1 P2P Traffic model

We propose a Markovian transition based traffic model (see Fig. 6.13) where each peer node at any point
of time can be in one the three states (such as ‘Online’, ‘Off-line’ and ‘File download’). At each timestep,
a peer node can switch from one state to another (or remain at its current state) based on the input statistics
(login-logout frequency, peer activity distribution, filepopularity etc). All the peers are independent in
nature, hence they are allowed to act simultaneously. At time t, a peer nodei may be in ‘Offline’ state
O f fi or in ‘Online’ stateOni and the transition probabilities to switch from one state toanother (and also
to remain at its current state) in the next timestept +1 is directed by the login-logout frequency of peer
i. Moreover, while in the online stateOni, a peeri may initiate a file download based on its peer activity
profile (obtained from peer activity distribution). The selection of the file is based on the(a.) popularity
of that file and(b.) availability of the providers for that file. While downloading, the peer node switches
from the ‘Online’ state to ‘File download’ state and it remains in the download state for one time unit
(for simplicity, we assume that it takes one unit of time to download a file and this is fixed for all the
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Figure 6.13: The life cycle of a peer nodei. All the peers in the network follow similar state transition
protocol.

files). After download, the peer again moves to the online state. This model also takes into account the
cooperative peers and the free riders. The model assumes that the cooperative peers share their files after
logging in whereas free rides do not share them (except when they are downloading a file).

The information about the shared files and their providers are maintained in am×n state matrix where
m is the number of peers (|N|) andn is the number of files (|F|). At each timestept, we update the state
matrix A(t) such that it reflects the information of files shared by different peers, current state of a peer
(online/offline), availability of providers for a file etc. We assume thatAi j (t) = 0 if peeri doesn’t possess
file j at timet. Ai j (t) = 1 if peeri possesses filej and online at timet. Ai j (t) =−1 if peeri possesses file
j and offline at timet.

After each timestep, we update the state matrixA based on the activities of the peers.

• 1. If a peeri launches a download for a filej at timet, Ai j (t) = 1. Additionally, if i is a bad peer,
assignAi j (t) = |Ai j (t−1)| to ensure that its files are shared at timet

• 2. If a bad peeri finishes downloading filej at timet, Ai j (t) =−Ai j (t−1), ∀ j

• 3. If a good peeri disconnects,Ai j (t) =−Ai j (t−1), ∀ j

• 4. If a good peeri connects,Ai j (t) = |Ai j (t−1)|, ∀ j

• 5. Ai j (t) = Ai j (t−1) for all other cases
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Figure 6.14: Cumulative number of downloads of a popular filein Markovian transition based model.

The number of providersp j(t) for a file j at timet can be computed from the state matrixA(t). Lets
assumeai j (t) = max(Ai j (t),0). Therefore the number of providersp j(t) for file j becomes

p j(t) = ∑
i

ai j (t) (6.1)

6.3.3.2 Simulation results

We implement the traffic model with the help of a discrete event simulator. We simulate the model with
|F|= 500 files and|N|= 500 peers, of which 50% are free riders. We generate the synthetic statistics such
as login-logout frequency of peer nodes, file popularity distribution and peer activity distribution using
the methodology described in section 6.3.3. Fig. 6.14 showsthe cumulative number of queries generated
for a popular file (f ile10) afterT = 5000 timesteps. This is important to note that the slope of the curve
is in general quite steep, which is an evidence of the popularity of that file. However, few plateaus can
be observed possibly due to the unavailability of the onlineproviders for that file. The similar kind of
behavior can be observed for the moderately popular and lesspopular files also (Fig. 6.15(a), 6.15(b)). In
Fig. 6.16(a), we illustrate the popularity distribution offiles, both for the a priori power law distribution
and the distribution obtained from the simulation. This is important to note that although there is an
agreement between the true and observed distributions for the moderate to highly popular files, a strong
discrepancy can be observed for the unpopular files. Since the a priori file popularity distribution follows
power law, we have a large fraction of unpopular files in the network. However, only a few of these
unpopular files gets downloaded by the peers and as a consequence, most of these unpopular files hardly
find any provider for them. This essentially reduces the presence of unpopular files across the peer nodes
in the network. Hence the frequency of unpopular files, although being high in the a priori file popularity
distribution, becomes low across the peers in the network. On the other hand, the frequency of highly
popular files, being low in the a priori file popularity distribution, remains low across the peers also.
Nevertheless, Fig 6.16(b) shows that the observed peer activity distribution from the simulation has a
nice agreement with the true peer activity.

6.3.4 Agent based model

In this section, we propose an agent based traffic model whichis adapted from the framework proposed
in [55]. This model is an alternative to the Markovian transition based traffic model explained above,
and although the latter seems to outperform the former as we shall see, we explain it as a means of
comparison.

The model is based on three basic components or blocks, each of which can be modeled withM/M/∞
queues (see Fig. 6.17). The most simple model consists of 1. Offline block 2. Query generation block. 3.
File download block (see Fig. (6.17)).

At any point of time, peer nodes in the system remain in one of these three blocks. Since this is a
closed network system, the total number of peers in the network remain constant. Peer nodes move from
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Figure 6.15: Cumulative number of downloads for Markovian transition based model
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Figure 6.16: Comparative study between the observed and true (a priori) distributions

one block to another based on the arrival and service rate of the respective queues. The basic assumption
is that, a peer node either remains offline, or in online state. While online, a peer may be in idle state or
it generates query and downloads files. In the idle state, a peer can work as a provider. The details of
different blocks and their functionalities are explained next.

1. Offline block: At any point of time, this block stores all the peers which arein the offline state. We
assign one dedicated queue-server for each individual peernode, which essentially captures the intrinsic
properties of that individual peer (for example, frequencyof login). The arrival rate at queuei is the rate at
which peeri goes offline. We assign a service rate to the peer’s server following a power law distribution.
The service rate of a queue regulates the login rate of nodei. This power law “service rate” emulates the
fact that most of the peers in the Offline block ‘slowly’ move to the online block whereas only a few peers
quickly switch their state from the offline to online.

2. Online-idle and query generation block:This block stores all the peers which are in online state;
either they generate queries or remain idle (i.e., not generating queries, but may work as a provider). A
dedicated queue-server is assigned for each individual peer node, which characterizes the query genera-
tion behavior of that peer (referred as peer activity). The (scale free) service rate assigned to the individual
server results in a heterogeneous peer activity distribution. Arrival rate at queues depends on the login
rate of peers (service rate of offline block). Service rate ofthe server depends on the rate at which peer
node generates query. The peers waiting inside the queue remain idle and may work as a provider.

3. File download block: In this block, we assign one queue-server for each file in the system (all of
them works in parallel). All the peers requesting a specific file arrive at the corresponding queue. The
arrival rate atith queue depends on the popularity of filei in the network. The service rate of a queue
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Figure 6.17: Agent based model for p2p traffic

depends on the number of providers available for that specific file (in edonkey, providers send file chunks
in parallel to the client peer).

Let us show some simulation model. We implement the agent based traffic generation model with the
help of a discrete event simulator. We fix the service rates ofthe servers in the offline and online blocks
following power law distribution with exponentα andβ respectively. Fig. 6.18 shows the cumulative
number of downloads for the highly popular, moderately popular and highly unpopular files. Fig. 6.19
shows the observed file popularity and peer activity distribution afterT = 5000 timesteps.
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Figure 6.18: Cumulative number of downloads for agent basedmodel

6.3.5 Advantages of the Markovian model over agent based model

There are at least two advantages for which the Markovian model must be prefered.

• A significant improvement of the Markovian model over the agent based model is that this model
allows all the peers to work (say file download) in parallel rather than in sequential manner. If
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Figure 6.19: Observed file popularity and peer activity distributions

we carefully observe Fig. 6.14 (cumulative download frequency of a popular filef ile10), we can
identify some special timesteps, when thef ile10 is downloaded by a group of peers simultaneously.
This phenomenon cannot be observed in the agent based model (such as in Fig. 6.18).

• In Markovian model, we can observe plateaus even for the popular files (such as Fig. 6.14) due to
the unavailability of the providers. This is interesting since we noticed similar behavior also in the
empirical dataset. However, in the agent based model, the plateaus can only be observed for the
moderately popular and unpopular files.
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Chapter 7

Conclusion

In this deliverable, we presented the results achieved during Task 3.2 as regard the analyses and the
mining made on the measurement data. Following DeliverableD3.2, in which we presented both the
data obtained through intensive measurement campaigns andthe models one could design in order to
capture the observed properties, we focused here on extracting as much information as possible in order
to validate and provide good comprehension of the differentmechanisms observed on Internet.

In particular, compared to the results presented in Deliverable D3.2:

1. We investigated in depth the data obtained with UDP ping inorder infer the degree distribution of
core routers in order to propose clean samples and validate the method.

2. We performed a rigorous statistical analysis in order to assess the nature of the degree distribution
as observed via UDP Ping.

3. We provided evidences of the impact of the underlying topology on the Internet dynamics as ob-
served by the Radar tool.

4. We captured that the dynamics of the Internet routing and forwarding system (through the analysis
of routing and forwarding path instability) show differentproperties. Our analysis shows that
the main cause of instability results from the forwarding plane; this corroborates the assumption
that the dynamic properties of the forwarding and the routing system are different. Hence, it is
impossible to simply derive the one from the other. However,it can also be observed that a second
order effect correlates forwarding and routing path instability.

5. We developed a new method (completing the one presented inDeliverable D3.2) for detecting
events in time series and we applied it on different dataset in order to validate the approach.

6. We perdomed a careful analyses of a dataset presenting traffic demands and diffusion phenomena at
a very large scale and we propose different models able to reproduce the main observed properties.

Although not completely unified, the different models of theInternet and its dynamics along with the
different analyses we have performed have proven to bring new perspectives in the domain. They consti-
tute a real progress over the state-of-the-art. Indeed, forthe first time, an unbiased measured distribution
of degrees of the core Internet at the physical level has beenproposed and this measurement campaign
has been strengthen by extensive analyses detailed in the present document. The same statement is also
true as regard the model of the dynamics of the IP routing topology.

These results will naturally be used in the other tasks of EULER. The new insights on the properties
of the Internet topology and its dynamics will be used as input for generating synthetic graphs mimicking
the real network structure. This would allow to conduct realistic simulations as foreseen in WP4. Besides,
the work made on the dynamics will also feed both WP2 and WP4 work as they will guide the choice
of relevant scenarios involving dynamic routing topology and policy and help the consortium as regard
the emulation perspective that is planned to be done before the end of the project. This last point will in
particular benefit from the work performed on p2p activity. This work will indeed help the definition of
realistic scenarios of traffic demand as an alternative to the natural one-to-any and any-to-any scenarios.
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Appendix A

Supplementary tests for degree
distribution of Internet

This is an addendum to Deliverable D34 of the Euler project. In response to the recommandation R2.3
of the Technical Review Report for the second period of the projet, we use the (non-parametric) Mann-
Whitney-Wilcoxon tests to perform further study on the datacollected by LIP6 (UPMC partner) regarding
the degree distribution of the Internet. They support the conclusions that obtained from the Clauset-
Shalizi-Newman test and described in the main document of D34, and indicate that the data is compatible
with a power law of exponent around 4.25.

A.1 Context

In the main document of Deliverable D34 (Section 3.2), we seek to test whether the data collected by
LIP6 supports the fact that the degree distribution of Internet at the router level is power law, and if so,
what is the exponent of the power law.

Remember that if the degree distribution is a power law proportional tok−α for degreek and expo-
nent (or ‘slope’)α. The measurement according to LIP6 methodology will produce an observed degree
distribution proportional tok−β , whereβ = α −1. This is due to a bias that high-degree nodes are more
easily observed (hence observed more frequently) than low degree nodes. As in Section 3.2.4, we there-
fore test the hypothesis thatobserveddegree distribution is a power law, and we seek to estimateβ . (See
Section 3.2.4 of the main document for more details.)

In the main document, we test this hypothesis following two methods:

• Pearson’s Chi squared tests which tests whether an observed frequency differs from a theoretical
distribution (in our case, a power law whose exponent was identified using a least-square method).
It is designed for random variables taking their values in a finite set, and the size of this set plays
an explicit role in the test. Applying it to the case of a degree distribution following a power law
requires therefore truncating the distribution by introducing a maximal degree. The value of this
parameter is somewhat arbitrary, and affects the results. Besides, other technical difficulties imply
that the conditions of applicability of this test may not really be satisfied in our case.

• The Clauset-Shalizi-Newman test [35], that is specifically designed to test the power law assump-
tion on collected data, along with computation of the correct exponent.

The Clauset-Shalizi-Newman is non parametric (in the evaluation of the quality of fit ; it outputs a
p-value for the assumption that the data follows a power law atall) and has become a standard in the
complex network literature to test power law assumption, despite its relatively high comutational cost.
We have applied it to the measured degree distribution, and we have concluded that, while thep-values
are not extremely high, they are sufficiently high the forbidthe rejection of the power law hypothesis.
Besides, the exponentα of the power law would be between 4.2 and 4.4. We had also used the validation
part of the Clauset-Shalizi-Newman method to obtain new estimators of the coefficient: we compute the
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p-value obtained by that method for a large number of different values of the coefficient, and select that
with the largestp-values. The results obtained were also in the range 4.2-4.4.

Nevertheless, since thep-values obtained were not entirely conclusive, it is worthwhile to apply other
non-parametric tests from the statistical toolbox to support that conclusion more thoroughly.

Therefore the reviewer’s suggestion is excellent, and we investigate a method based on the non-
parametric Mann-Whitney-Wilcoxon test as suggested by thereviewer.

A.2 Methodology

The test that we use goes by the name of Mann-Whitney-Wilcoxon, Wilcoxon rank-sum test, or Wilcoxon-
Mann-Whitney test. See for instance [119]. It is a version ofKruskal-Wallis test for two samples. It is
non-parametric.

Given two samplesX andY drawn from continuous distributions, the null hypothesis being tested is
the following:P(x> y)+ P(x=y)

2 = 1
2. If we reject the null hypothesis, we therefore reject the possibility

thatX andY come from the same distribution. However if we accept the hypothesis, we cannot deduce
that they come from the same distribution, unless we have more information on the shapes of the distribu-
tions (for instance that the two distributions are the same but for a shift, which can be reasonable in some
circumstances, and is still much weaker that Gaussianity),even though it is an argument in that direction.

We use this test in two ways.

A.2.1 Hypothesis testing

We run the Mann-Whitney-Wilcoxon test on the empirical dataX against a sampleY that follows a
power-law distribution with exponentβ , whereβ is taken from the estimations computed in the main
document of the deliverable (Tables 3.1 to 3.4 of Section 3.2.4). The test outputs ap-value that, if high
enough, allows to conclude that we cannot reject the assumption thatX is indeed distributed according to
aβ -exponent power law. As said above, accepting the null assumption in Mann-Whitney-Wilcoxon does
not formally allow to accept the assumption thatX andY are drawn from the same distribution.

A.2.2 New estimator of the slopeβ
Our goal here is to find a new way of estimatingβ . For this purpose, we run for everyβ in a certain range
the Mann-Whitney-Wilcoxon test between the empirical dataX and a sampleY hat follows a power-law
distribution with exponentβ , and compute the correspondingp-value. We then select as estimator the
valueβ yielding the highestp-value.

We should immediately underline a formal limitation of thisnew estimator. Thep-value should be
understood with caution, as the concept ofp-value is only valid if the two distributions are independent
from each other, while here the sampleY is chosen among a family of samples for its highest resemblance
with X, which destroys the independence assumption. The ’p-values’ should thus here just be considered
as a metric of the distance between the sample and the theoretical distribution. This is already commented
upon in Section 3.2.4 (page 28) of the main document.

A.3 Validation

In view of the limitations of the methods, we have performed experiments to test their efficiency on toy
examples. We chooseX as an artificial data set, drawn from a power law distributionof exponentβ0. We
then perform the test as described in this section, and we recover the rightβ0 with good precision. The
results are better and better as we choose a larger and largersampleY. Nevertheless we see that from a
size of 104, the improvement is marginal. Indeed thep-value obtained for size 105 differs by at most one
or two percent.

We also performed the same procedure with exponentialX, i.e. distributed asγk
0, and test against

samplesY drawn fromγ-exponential laws, for various values ofγ. There again we recover the right value
of γ, with good precision.
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We also test an exponential lawX against power laws forY. In that case, we still find values ofβ for
which thep-value is quite high. This confirms the limitation above thatthe p-value only have a relative
value: they can only say that one value ofβ is more suitable than another value, and is not very reliable
as a test of the power law assumption itself. In other words, our new estimator based on Mann-Whitney-
Wilcoxon test can be seen as essentially a parametric method, where the power law assumption is not
reliably tested per se, but only the value of the exponent. Therefore it comes only as complement to the
other non-parametric methods (Clauset-Shalizi-Newman inthe main document and hypothesis testing in
Section A.2.1).

Finally, another limitation of these methods based on Mann-Whitney-Wilcoxon test is that they apply
a method for continuous variables on discrete data (degrees). Nevertheless the large range of the discrete
variable ensures that the approximation by a continuous variable is acceptable. Applying Mann-Whitney-
Wilcoxon tests on basic discrete distributions showed thatthe results are the one we expect, as soon as
the number of samples is reasonably high.

A.4 Results

A.4.1 Consistency of data sets

The data collected by LIP6 is composed of three samplesX1, X2 andX3.
As a first run, we run the Mann-Whitney-Wilcoxon test of thosesamples one against another, and we

find that we cannot reject the hypothesis that they come from the same distribution. This is of course
good news as they indicate consistency between the three entire data sets:

• for X1 vsX2 we obtain ap-value of 0.7181;

• for X1 vsX3 we obtain ap-value of 0.4637;

• for X2 vsX3 we obtain ap-value of 0.2723;

Remember that in the main document we only test power law hypothesis for degrees higher than five.
Indeed it seems that the power law property is not accurate for the low degree nodes. It is customary in
the literature to asses the power law property for an interval of values, as exreme values may often show
erratic behaviour.

If we repeat the test for the data sets restricted to degrees higher than five, we obtain the following
results, which confirm the validity of the tresholding:

• for X1 vsX2 we obtain ap-value of 0.7590;

• for X1 vsX3 we obtain ap-value of 0.6713;

• for X2 vsX3 we obtain ap-value of 0.9050;

A.4.2 Hypothesis testing

Let us now apply our method for testing hypothesis describedin Section A.2.1, which uses the Mann-
Whitney-Wilcoxon test to assess the quality of the results obtained from the parametric Pearson Chi
squared method and the non-parametric Clauset-Shalizi-Newman method in the main document. Re-
member that those methods were applied on nodes of degrees higher than five.

The test applied to results of Table 3.1 (Section 3.2.4 of themain document) gives:

Experiment β̂ p-value
1 3.245 0.8937
2 3.331 0.7832
3 3.276 0.6178

1+2+3 3.230 0.7968

Applied to the results of Table 3.2 (Section 3.2.4 of the maindocument) we see:
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Experiment β̂ p-value
1 3.386 0.4095
2 3.386 0.5221
3 3.385 0.2219

1+2+3 3.392 0.1214

Applied to Table 3.3 Section 3.2.4 of the main document) we see:

Experiment β̂ p-value
1 3.29 0.8583
2 3.36 0.6386
3 3.31 0.4686

1+2+3 3.26 0.9296

Therefore the these tests tend to support the conclusions ofSection 3.5 of the main section of the
deliverable

A.4.3 Estimation ofβ
Let us now apply the the estimator Mann-Whitney-Wilcoxon-based estimator as explained in Section
A.2.2, consisting in comparing everyXi against power laws of various exponentsβ . We test 1000 values
of β between 2.8 and 3.8.

Here are the results:

Experiment β̂ ‘ p-value’
1 3.265 0.9986
2 3.2906 0.9982
3 3.202 0.9978

1+2+3 3.252 0.9977

As an illustration, thep-value obtained as a function ofβ is plotted on Fig. A.4.3 forX1∪X2∪X3.
It should be recalled here that the very highp-values obtained here should not be intepreted as usualp-
value, for the reason explained above (we selected the best sample among many samples, which destroys
an independence assumption). But it is still interesting inrelative value, as indicating quite sharply the
most reasonable exponent for a power-law, provided that we believe that the data is indeed distributed
according to a power law. The fact that we recover values forβ that are very consistent with those obtained
with other methods in the main document is one more confirmation of the validity of the conclusions.

A.5 Conclusions

The Mann-Whitney-Wilcoxon-based tests that we performed on the data collected by LIP6 allows to
strengthen the conclusions of Section 3.5 of the main document of Deliverable 3.4.

In particular, we could show that

• we cannot reject the hypothesis that the three samples follow the same distribution (Consistency
Tests);

• we cannot reject the hypothesis that the the three samples follow a power law with exponentβ
computed by the methods (Pearson’s Chi-squared tests, Clauset-Shalizi-Newman) of the main doc-
ument (test of Section A.2.1)

• those values ofβ are in the same range of theβ values found by testing many power laws against
the samples (estimator of Section A.2.2).
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Figure A.1: Thep-valued obtained for everyβ on the union of the three samplesX1∪X2∪X3 in the
Second Method.

We therefore feel justified to claim that the degree distribution of the nodes appears to follow a power
law with exponentα = β +1 between 4.1 and 4.4, with 4.25 being the most likely value.

The Mann-Whitney-Wilcoxon-based tests therefore offer a supplementary support to the previous
conclusions to Section of the main document of the Deliverable, which were deduced from the non-
parametric (but computationnaly expensive) Clauset-Shalizi-Newman method.
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