Seventh FRAMEWORK PROGRAMME
FP7-1CT-2009-5 - ICT-2007-1.6
New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D3.4

“Measurement data analysis/mining”

Project description

Project acronymEULER
Project full title: Experimental UpdateLess Evolutive Routing
Grant Agreement no258307

Document Properties

Number:FP7-ICT-2009-51CT-2009-1.6(258307)D3.4
Title: Measurement data analysis/mining
ResponsibleUPMC

Editor(s): Matthieu Latapy, Fabien Tarissan
Contributor(s) listed in alphabetical ordeAlbert Cabellos (UPC/CAT), Davide Careglio (UPC/CAT)

Jean-Charles Delvenne (UCL), Julien Hendrickx (UCL), Matthieu Latapy (UPMC), Albert Lopez
(UPC/CAT), Bivas Mitra (UCL), Dimitri Papadimitriou (ALB) , Fabien Tarissan (UPMC)
Dissemination levelPublic (PU)

Date of preparationSep.2012

Version: 1.1




Contents

2.1
2.2
2.3

2.4
2.5
2.6

2.7

3.1

3.2

3.3

3.4

3.5

4.1

Introduction

Inference of the degree distribution of core routers
Theapproach . . . . . . . . .. . . e e
Proofofconcept. . . . . . . . . . . e e
MONItOrs . . . . . . . e e
23.1 Similarity . . . ..
2.3.2 Colocation . . . . . . ..
Targets . . . . e e e
Bias correction . . . . . . ... e
Measurement . . . . . . . e e
2.6.1 Datacollection . . .. ... .. ... ... e
2.6.2 Datacleaningandfiltering . . . . . . . . ... . e
Firstresults . . . . . . . e
2.7.1 Observeddegreedistribution . . . . ... ... ... ... .. .........
2.7.2 Assessmentofresults. . . . . . .. ...

Determining the nature of the degree distribution

Challenges. . . . . . . . . e e
3.1.1 Independentsamples and post-processing . . . . . . i oL
3.1.2 Parameterestimation . . . . . . .. ... e .
Hypothesis: Power law distribution . . . . . . ... .. ... ... 0 0oL
3.2.1 Parameterestimation . . . . . . . ... e
3.2.2 Hypothesistesting . . . .. .. ... . ... e
3.23 Validation . . . . ... e
3.2.4 Measured degree distribution . . . . . . ... L L
Hypothesis: Exponential distribution . . . . . . . ... .. ... ... ..
3.3.1 Parameterestimation . . . . . . . ... ... e
3.3.2 Validation and parameter estimation . . . . . . ... .. ... ...
3.3.3 Hypothesistest . . . . . .. .. ...
Hypothesis: Lognormal distribution . . . . . . . ... ... ... ... . ...
3.4.1 Parameterestimation . . . . . . .. ... e
3.4.2 Hypothesistest . . . . . . . . . . e
Results summary . . . . . . . . . e

Analysing the routing topology dynamic
Study of the IP-level routing dynamics over Radardata. .. .. . . . ... ... ...
4.1.1 IP-level routing topology dynamics . . . . . .. .. . ... ... .. .. ..
4.1.2 Model . . . . e
4.1.3 Simulationresults . . . . .. .. e
4.1.3.1 Reproducing the evolutionefaddresses discovery . . . . . . ..
4.1.3.2 Finding relations between simulation parameters . . . . . . . ..
4.1.3.3 Reproducing the parabolic shape on the occurrdneeaddresses . .
4.1.4 Exploring the differences betweBh andERgraphs . . . . . . ... ... ..



415 Relatedwork . . . . . . . e 44

4.1.6 ResultssummaryandNextsteps . . . . . ... . .. ... ... ..., 44
4.2 Routing stabilityanalysis . . . . . . . . ... .. e 45
421 Introduction. . . . . . . . ... e 45
4.2.2 Alignmentofthedata. . . . . ... ... ... ... ... . ... ... 46
4.2.3 Matching IP addressto ASNumber . . . ... ... .. ... ... ..., 46
4.2.3.1 IP address prefix owner vs. IP address allocation . . . . . .. .. 46
4.2.3.2 Concatenation of non-routable IP addresses aactfiliP addresses . 46
4.2.3.3 PathswithASloop .. ... ... ... ... ... . ... . ..... 47
4.2.3.4 Paths to the same destination prefix but with diffeAs sequence . . 47
424 DataProCessing. . . . . . . i 48
425 Resultsand Analysis . . . . . . ... 49
5 Detecting events in samples and time series 51
5.1 Introduction . . . . . . . . L e 51
5.2 TheOutskewer Method . . . . . . . . . . . . . 53
521 SKEWNESS . . . . . . 53
5.2.2 SkewnessSignature. . . . . . . . . . e 53
5.2.3 OQutliersDetection . . . . . . . . .. . ... e 55
5.2.4 DynamicExtension. . . . . . ... e 55
5.3 Experimental Validation . . . . ... ... ... .. 56
53.1 Relevance . . . . . . .. 56
5.3.2 Performance . . . . . . .. . 57
5.3.3 Regime Changes . . . . . . . . . . . i i e 59
5.4 Real-World Applications . . . . . . . . . . e e 59
5.4.1 Dynamicsof Internet Topology . . . . . ... ... ... ... ....... 59
5.4.2 SearchEngineQueries . . . . . . . . . . . . . e 60
5.5 Resultssummaryand Nextsteps . . . . . . . . . . . . . e 61
6 Anaysis of P2P data 66
6.1 Cascade properties . . . . . . . . . e e 66
6.1.1 Introduction. . . . . . . . ... e 66
6.1.2 Datasetandframework . . . . . . . .. ... 67
6.1.2.1 Underlyingnetwork . . . . ... ... ... ... ... ... 67
6.1.2.2 Observed network structure . . . . . ... ... ... ... ... 68
6.1.3 Spreadinginourdata . . . . . . . ... 70
6.1.4 SimpleSIRmodel . .. ... ... . . . . .. 70
6.1.4.1 Theunderlying networkinfluence . . . . ... ... ... ..... 72
6.1.4.2 File spreading simulation . . . . ... ... ... ... . ... 72
6.1.5 HeterogeneousSIRmodels. . . . . .. .. ... .. e 73
6.1.5.1 Filepopularity . . . . . ... 73
6.1.5.2 Peerbehavior . ... ... .. ... 74
6.1.5.3 File spreadingsimulation . . . ... ... ... ... ... . ... 74
6.1.6 Conclusionand perspectives . . . . . . . . . . .. e 76
6.2 Statistical properties of the file exchange times seties. . . . . . .. ... ... ... 76
6.2.1 Activity and popularity distributions . . . . .. . ... oL 76
6.2.2 Circadianrhythm . . . . . . . . . .. ... .. 78
6.2.3 BuUrstiness . . . . . . .. e 78
6.2.3.1 Measureofburstiness . . . ... ... ... ... .. . 78
6.2.3.2 Burstiness analysis on peer-to-peernetworks . . . .. .. .. .. 78
6.2.3.3 Burstiness of trafficdemand . . . . . ... .. ... L 79
6.2.4 Goodpeersandfreeriders . . . . . . . . ... e . 80
6.3 Traffic simulationonaP2P network . . . . . .. ... . ... .. ... 80
6.3.1 Introduction. . . . . . . . ... e 80
6.3.2 Markovian transitionbasedmodel . . . . ... ... ... oL 80
6.3.3 Synthetic statistics generation . . . . . ... ... oo 81



6.3.3.1 P2P Trafficmodel . . .. ... .. . . . ... . ... 81

6.3.3.2 Simulationresults . . . ... .. . 83
6.3.4 Agentbasedmodel . ... ... .. ... ... ... 83
6.3.5 Advantages of the Markovian model over agent baseeéimod . . . . . . . .. 85
7 Conclusion 87
A Supplementary tests for degree distribution of Internet £5)
Al Context . . . . . . e e 95
A.2 Methodology . . . . . . . . . . . . e e 96
A.2.1 Hypothesistesting . . . . . . . . . . . . ... e 96
A.2.2 Newestimatoroftheslog®. . . . . . . ... ... .. ... ... . ... 96
A3 Validation . . . . . . e 96
Ad ResUlts. . . . . . e 97
A.4.1 Consistencyofdatasets . . ... ... ... . ... . ... 97
A.4.2 Hypothesistesting . . . . . . . . . .. ... e 97
A.4.3 Estimationof3 . . . . . . . .. ... e 98
AL Conclusions . . . . . . . e 98



Chapter 1

Introduction

Our understanding of the structure of the Internet topolgy its dynamics is extremely important, as it
has much impact on our ability to extend and manage the nkpémimprove its reliability and efficiency,
and to design appropriate protocols for its various appéica. Indeed, such works rely on theoretical
studies and simulations conducted on artificial graphsioétsfrom models of the Internet topology.

However, due to its decentralized nature and fast evoldtoseveral decades, a global view of the
Internet is not directly available. Instead, one relies @apmof its topology obtained through intricate
and expensive measurement procedures. These measurgpiatity rely on the traceroute tool, which
basically gives a path from a given node to another node. erehuilds maps of the Internet by running
traceroute from several nodes to many others, and then ngettgg obtained paths. Much effort is devoted
to making these maps as complete and reliable as possibleyathen generally makes the assumption
that they are representative of the true network. Indeede @uch a map is obtained, one generally
considers that properties of the map are properties of theltiternet. As a consequence, models try
capturing properties of the maps, and generate graphssitnithese maps.

This general approach may seem reasonable but it facesretyrehallenging issues. The most
important one certainly is that measurements give veryglaiews of the network, which are in addition
biased by the measurement process. For instance [75, 5] sbttwexperimentally and formally that
the degree distribution (fraction of nodes with k links, &k k) observed on measurements may differ
significantly from the actual one. Similar problems occurdther properties and other networks [61, 79,
112, 111]. In addition, measurement tools themselves gpeiifact and prone to errors.

These issues have crucial consequences for the field, as m@ #now whether observed properties
should be trusted or are only properties of partial, biasetearoneous maps currently available. As a
consequence, current knowledge of key properties of theahtiiternet topology, even the most basic
ones like its degree distribution, remains very limitedisTib subject to controversy [120] with a strong
impact on applications. For instance, famous results déteyrihat the Internet is very resilient to failures
but sensitive to attacks [11, 28, 36, 37] rely on the asswnyitiat the Internet has a power-law degree
distribution with a given exponent, observed from measem@s The fact that the true network may
actually have a totally different degree distribution nmelkiee relevance of such results unclear. This
leads to difficult discussions and analyses of the extentiiocwthe observed degree distribution may be
trusted [44, 61].

Of course, the degree is only one of the many properties usefilescribe and model a complex
object like the Internet topology. Problems encounterethdithe measurement and study of these other
properties are in general just as challenging, or even marparticular, if studying the structure of the
Internet topology at a given moment is difficult, studying dynamics is even harder. Indeed, trying
to cope with this dynamics leads to new obstacles raised dwting the measurement and during the
analysis. First, there is no measurement tool enablingractlly grab information on the dynamics and
studies often rely on comparing static views of the Inteaeguired at different times. Second, when
comparing two collections of routes it is difficult to disginish between modifications of the routing and
modifications of the underlying topology. As a consequenaerent knowledge of the dynamics of the
Internet topology is even more limited than knowledge o$tttic properties.

The goal of Task 3.2 has been to change this situation byciegigew tools, methods and approaches



to accurately and reliably measure key properties of therett topology and its dynamics. Consistently
with these measurements, we designed models able to cajseeved properties, thus leading to artifi-
cial graphs more realistic than any map currently availalideed, these graphs will have the same key
properties as the true topology, while maps are partiakdalaand erroneous. In addition to the funda-
mental need for a true understanding of the Internet, sudice graphs are crucial for formal studies
and simulations of protocols.

Outline of the document

In Deliverable D3.2 we already reported the measuremeis toal the dataset provided during the first
year of the project. The purpose of the present deliverattie rely on those dataset to extract relevant
information.

As outlined above, one of the key characteristic of the heproperties is the degree distribution of
the routers. This is why we dedicated effort to develop a wefiroviding key insight on this property.
While Deliverable D3.2 we already presented the tools dge in order to implement the method, we
focus here on how one could exploit the data obtained withnbasurement tools and apply it on the
dataset obtained during the first year of the project. Moeeigely, in Chapter 2, we explore all details of
this approach, including its expected outcome through ksitimns, technical difficulties, and assessment
of results. In Chapter 3, we turn to the determination of theire of the distribution obtained with this
method.

A second contribution of Task 3.2 has been to address thentigaaon the Internet. During the
first year of the project, we presented the data obtained frmRadar tool that enables to study par-
tially the routing topology dynamics in Internet and we peed a first model able to account for the
observed properties. Two main contributions emerged fioisywork. First, we investigated in depth
the differences between different types of random grapkerins of forwarding paths. Second, we tried
to confront those observation to the one performed on BGBngdata. All those aspects are reported
Chapter 4.

Besides, as a complementary approach to the detectionafamt in the routing topology dynamics
documented in Chapter 4, we have also designed differertadstfor detecting events in times series
data and applied them using the tool obtained from the Ra@asorement performed in EULER. De-
scription of the methods, their application, and obtairesilitts are described in Chapter 5.

Finally, in ordre to help the preparation of realistic sagmsof trafic demands over the Internet, we
also focused on p2p systems which have driven a lot of atteimithe past decade as they have become a
major source of internet traffic. Indeed, this developmest¢rucial implications for traffic engineering
and information diffusion at the same time. Thus, models édblgenerate synthetic traffic and diffusion
data which mimic accurately real p2p activity. Chapter 6radges this question, by analysing the p2p
traffic dataset presented in Deliverable D3.2 that reco2gsgativity at a remarkable scale. We show how
relevant properties extracted from the dataset may brisiglts of how to model relevant diffusion and
traffic demands.



Chapter 2

Inference of the degree distribution of
core routers

Active measurements to study the Internet topology have e and extensively studied since the
seminal papers of Pansiet al. [95] and of Faloutsos [53]. The classic method, to build maps
mergingtraceroutelike paths from a limited number of monitors to many targfd$, 53, 87] has been
shown to lead to intrinsically biased results [120, 76, 5,6M 62, 79]. The hope that increasing the size
and the quality of the measurement data set would overcoinids has led to multiple other studies
[18]. But the work of Lakhinaet al, first experimentally [76], and then formally in the case diirgle
source [5], revealed that the Power law (and even the hetasmys) shape of the degree distribution
found by the classic method may baly a measurement bias, since actual homogeneous graphs could
display heterogeneous degree distribution with the patesging map method, even with a very large
dataset.

We present in this chapter the advantage of a new approaploged in the EULER project, which
makes it possible to accurately infer the actual degreeildigion of the core Internet topology. In
order to make it effective in practice, we explore all detaif this approach, including its expected
outcome through simulations, technical difficulties, asdessment of results. We implement it using
PlanetLab and finally obtain the first reliable estimate @ degree distribution of routers in the core
Internet topology.

2.1 The approach
Both RFC 1122 and 1812 state that when a monit@ends an UDP packet to a target IP addtess

an unallocated port, then the targeshould answer with an ICMP Destination Unreachable (CoBers/
unreachable) packet to. An important detail is that the source of this ICMP packétigrinciple the IP

Figure 2.1: Left: an example of targein the core. The routes coming from the set of monitors go
through all of its neighbors. Right: an example of tarjeh the border. Only the neighbarof t’ is
accessible from the core. In the two figures, the light cal@quares stand for the monitors, the big
nodes denote a node in the core while the small ones repsettenhodes in the border and the black
links belong to a route from a monitor to the target.
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Figure 2.2: UDP Ping send an UDP message frotowards a router designed by one of its addresses
t towards an unallocated port. The routél) replies using its interface

Figure 2.3: A graph can be divided into three parts: the citve@ border, and the core-border. Border
nodes are the ones removed when we iteratively remove ndd#eggoee one. Core node are the one
remaining after this process. Core-border are core nodestlyi connected to border nodes.

address of the interface by whitkends the packet. As a consequence, if dset monitors succeeds in
sending such UDP probes in a way such that for each interfaicethere is inM a monitorm; to which

t answers through its interfacethe setM of monitors is able to discovell interfaces of. We will use
this as our basic measurement primitive, see Figure 2.2.

Now let us divide the Internet topology into three parts: bieeder, the core, and the core-border
(included in the core), see Figure 2.3. Border nodes arerikes cemoved when we iteratively remove
nodes of degree one, i.e. the nodes of initial degree onaydtles which have degree one when these
have been removed, and so on. The core nodes are the remadtiag. Among them, some are linked
to a border node, and we call them core-border nodes. Ndiatddr each border and core-border router
r there is a set of nodes which necessarily go thraugireach the core (these are trees routeq.at/e
denote this seB; for all r.

If we target a core routarwith a reasonably low degree, then it seems reasonably edmyitl a set
of monitorsM able to measure it. For instancer ihas degree 3 we only require that the monitorsin
are distributed enough to get answers from all 3 interfaées However, ifr has degre& then getting
answers from all its interfaces requires at ldashonitors, and certainly significantly more as several
monitors may get answers from a same interface. If thé/sistnot large enough, or poorly distributed,
then one may underestimate the degree of

If we target a border routar, then appropriately determining its degree requires ttehave inM
at least as many monitors By asr has border interfaces, which is not feasible in generals hwhy
our method is not suited for degree estimation of borderensytand we aim at estimating the degree
distribution of core routers only.

The particular case of border-core routers deserves dpmtzation, see Figure 2.3. In such cases,
one may easily estimate the core-degree @fe. its number of interfaces connected to core nodes) but
not its border-degree (i.e. its number of interfaces cotatkto nodes irB;).

Finally, our method consists in the following steps:

1. Build a setM of monitors as large and distributed in the Internet as ptessi
2. Build a large seT of target core routers chosen uniformly at random;

3. Estimate the degree of each targiet T using distributed measurement fravh
4

. Assess the quality of the obtained estimate.
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Figure 2.4: Simulations on a Poisson graph with 2.5 milliodes and mean degree 25

The degree distribution of the nodesTinthen gives an estimate of the actual degree distributiorl of a
core routers. The lagér is, the more accurate this estimation will be. In additite tegree of some
targets may be underestimated, dependinlylpand so we must carefully assess the quality of obtained
estimates.

2.2 Proof of concept

The goal of this section is to estimate the theoretical elee of our approach by means of simulations.
Assuming that we are able to build an appropriate set of rmon#nd targets, the key questions we want
to answer are: what is the risk that our estimate of the degfragyiven node is different from its actual
degree, and how many monitors do we need to have an accutiatatesof the degree distribution?

For this purpose, we conduct simulations as follows (sepfptinore details): we consider different
kinds of artificial graphs to model the topology; we use as itoos random nodes with degree one
(representing end-hosts); and we wdlecore targets (i.e. nodes in the graph obtained by iterativel
removing degree one nodes). We then assume that each tasyatra to probes from each monitor
randomly using one of its interface which starts a shorta#it from the target to the monitor. We use
two different kind of topology: one with a Poisson degredrdiation, which is a typical homogeneous
distribution, and one with a Power law degree distributighich is a typical heterogeneous distribution.

Figure 2.4(a) shows the observed degree distributions fwisson graph of 2.5 million nodes and
mean degree 25, using respectively 12, 25, 50, 100, 200, 4@@@0 monitors. As one could expect,
with 12 monitors (which is less than the average degree) duged distribution is poorly estimated.
Nevertheless, it is remarkable that, even with this pooelle¥ quality, the nature of the distribution is
properly discovered: though its parameter are modifiedotserved degree distribution is still Poisson-
like. When the number of monitors increases, so does thétgjoathe observed degree distribution, and
the observed distribution and the real distribution becowigually indistinguishable with 200 monitors.
This is strengthened by the plot on Figure 2.4(b) which shithwesscatter plot of real degree (on the x-
axis) and observed degree (on the y-axis) for all targetsarcore. We can see that using 200 monitors,
the estimate degree of all nodes is quite close to its reakéed hus, we can conclude that our method
performs very well on Poisson graphs.

The situation with Power law distribution is similar. Figu2.5(a) shows the results of the simulation
we conduct on a Power law graph with 10 million nodes and egpb2.1. Again, we can see that
the quality of the observed distribution, which is poor @sir®? monitors, increases with the number of
monitors. When this number is sufficient, the distributismproperly observed, except for very large
degrees where we observe a cut-off in the distribution,ectosthe number of monitors we use. As
we mentioned previously, this comes from the limitation af smethod that we identified a priori: the
observed degree cannot exceed the number of monitors, arelgenerally, the observation becomes
inaccurate for targets whose degree is too closed to the aunftmonitors. On the other hand, for
reasonably low-degree targets, let say up to 20, the olde@lig&ibution and the real one are visually
indistinguishable when using 200 monitors. This fact ismageinforced by the scatter plot of real degree
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and observed degree for all targets in the core (Figure®§.8(/e can see that using 200 monitors, the
estimate degree of low-degree nodes is quite close to thialamte, showing that for this type of nodes,
our method performs very well for Power law graphs as well.

One may wonder if these results still hold for graphs of défe size and with different parameters,
average degree for Poisson graphs and exponent for Powegraghis. These questions were investigat-
ing in [41], as well as the influence of some other parametkteesimulations. It turns out that the
conclusions we derive here are still valid for differentesand parameters. In particular, [41] shows that
the size has very little effect, if any, on the quality of tHeservation, both for Poisson graphs and Power
law graphs. Then, the conclusion obtained by simulationgraphs of some millions of nodes must still
hold for graphs of the size of the Internet, with hundreds itfions of nodes.

To summarize, we observe that both for Poisson graphs andrPaw graphs, the degree distribution
is correctly observed by our method as the observed disiibfastly tends to the actual one when the
number of monitors augments. This conclusions have to bpdesd with for the high-degree nodes in
Power law graphs, for which we obtain a cut-off in the obsédwlistribution. This is not a real obstruction
since we do not intend to observe high degree nodes with othhadeand the part of the distribution
corresponding to low-degree nodes is quite accuratelyrebde Moreover, the simulations show that
not only the degree distribution is properly estimated, ddab the degree of each node as far as this
degree remains reasonably low, which is precisely the rahdegree we are interested in observing in
the Internet.

2.3 Monitors

Our method relies on the use of a large Bebf monitors distributed in the Internet. It is crucial that
this set is large because the observed degree of targetsisieéod by|M| (each monitor observes only
one interface, with several monitors observing the sameimgneral). It is also crucial that these
monitors are well distributed in the Internet, because thseoved interfaces are the ones used by the
target to answer probe packets; monitors located at a saaae plobably lead to the observation of a
same interface.

However, it is not easy to have a monitor set that is both largewell distributed: for example, it
is straightforward to add monitors by multiplying machimmesa given observation site, but this will not
increase the global quality of the measurement. Our mosé@bcould be biased by construction: it may
be easier to obtain monitors in the same region than dis&ribaver the whole Internet. Therefore, we
need tools to assess the quality of a set of monitors, andifig@rhich monitors are actually co-located.
This also plays a key role in our target selection methodritesd in Section 2.4.

2.3.1 Similarity

Intuitively, two close monitorsn andn in monitor setM lead to similar observations in our measure-
ments: most targets will answer to their probes using theesiamerface. Conversely, if most targets

10



answer with the exact same interface to two given monitben) they can be considered redundant re-
garding the quality of the monitor set.

However, given that a target can (and often will) have lessriaces than the size of the monitor
set, two monitors may observe the same interfagehance while not being co-located at all. And
the lower the degree of the target, the higher the chancestbanon-colocated monitors, observe the
same interface. For example, if a targétas exactly two interfacdsandi’, and uses them exactly as
much in general, then one given monitoihas a prior probability of observing each interface of elyact
P(m(t) =i)=P(m(t)=1i") = % More importantly, two non-colocated (or independent) itays m and
m’ have a significant probability of both observing one givariface oft, equal to%.

In general, for a targat with exactlyd interfaces equally used, two independent monitors have a
probability of observing one given interface oéqual tod—lz. Therefore, the higher the degree of the
target, the less likely it is for two monitors to observe tlegwsame given interface for this particular
target.

To capture the similarity between observations of the cgrsvo monitors, we compute what we call
their similarity as the expression of the number of times they observe the isdentaces for the targets
over the course of the measurement, weighted with a factmuexting for the unlikeliness to observe the
same interface without being colocated.

omm)= 5  degt)?
teT,m(t)=m (t)

To enhance this key element of the monitor set evaluatioriuviieer extend this definition to iterated
measurements using the same sets of monitors and targeteaMé&ni(t) the union of the interfaces
observed byn over the multiple iterations of the measurement (which aadifierent from{m(t)), and
degt) = |Umem M(t)]. And we extend the definition of similarity between monitass:

5 IMOOTO]
(&t Mty un'(t)]
Notice that two co-located monitonsusthave a very high similarity; however, it is possible that two
non-colocated monitors have a very high similarity. Ouramtption, confirmed in Section 2.6 is that it
is necessary to strengthen the very high similarity ciotervith ana priori knowledge of the monitor set
to clearly draw classes of colocated monitors, that obsthieyeore very similarly.
In order to identify colocated monitors, and to check thaytindeed lead to very similar observations,
we use their IP address prefixes. We deriitee length of the longest common prefix of their IP addresses
(expressed in their 32 bits form) :

a(m,m)

B(m,m') = LCP(l Poinary(m), |Pbinary(”{))

We state tham andm’ are colocated iB(m,m’) > 24, as measurement in Section 2.6 shows that
ensures very high similarity, and very high confidence thandm' are actually colocated. Since the
relation defined by having a longest common prefix higher théris an equivalence relation, , we
compute the equivalence class of each monbe- M/ = {mme M}.

M| is the number of non-colocated monitors of the monitor setl i therefore a more precise
indication of the quality of the monitor set thév|.

Finally, notice that some monitors M may be deficient or may experience problems like failures or
network shutdowns during the measurement. We identifyeth&snitors by computing for each monitor
mthe number of targets from whighreceived an answer. If this number is too low (which we debige
observing the distribution of obtained values, see Se@i6j we discaran. In this way, we ensure that
all remaining monitors significantly contribute to the me@snent.

2.3.2 Colocation

Besides observed, posteriorisimilarity, monitors may or may not be actually colocasegriori, i.e., be
connected to the Internet, and to the Internet core in pdaticin a very similar way. Formallyn andm/
arecolocatedff they are leaves of the same tree on the IP graph. This cexfessed in terms of routes
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[ @ corerouters

™ Colocated monitors
Shared subroute
towards the core

Figure 2.6: If multiple monitors are colocated, then thelf share a common subroute towards reaching
the core. If one is able to detect such subroutes for a givieseswof monitors, then one can assume this
subset is a colocation class.

: mandnt are colocated iff all the routes fromandm truncated when they reach the Internet core have
a non-empty common suffix.

To decide whether two monitors are colocated, we use aneaptivhing method resembling UDP
ping (and UDP traceroute), which we call UDP explore. UDP IBspfloods the IP neighborhood of a
monitor with increasing TTLs probes targeted at random Ifreskes, in order to reaeli the routers
between a monitor and the Internet core. The flooding stopeneser more than exactly one router
replies to a given TTL, meaning that the monitor is a thatadiise (in terms of IP hops) to the core. The
output of UDP explore is a chain of hosts (either a star (“*)ao IP address)un(m)) such that all the
probes sent at TTh replied with a star (“*”, ie timeout) or withup.

Measuring these chains for all the monitors allows us totifieprecisely which monitors are colo-
cated, since then two monitansandn iff (u,(m)) and(un(m') have a common suffix. See Figure 2.6.

2.4 Targets

The method described above relies on our ability to selefoumly at random a core router in the
Internet’. There is no direct way to do so, though. On the contrary, @asy to select uniformly at
random IP addresses, as they are nothing but 32 bit inte@éiourse, sampling such a random integer
does not necessarily lead tovalid IP address: the address may belong to unallocated or pravagges,
and more generally the address may not be associated to aymaan the Internet. Going further, the
address may belong to a machine which does not give any atswer probes (UDP packets) and/or
does not belong to the core of the Internet (it may for instdmelong to an end-host).

More precisely, given any IP addrdsthe possible situations at a given momentin time are asvst!

* i is not a routable address (private address, address in #oaatad range, ...),

* i is aroutable address but is not associated to a machine inttéreet,

* i is aroutable address associated to a machine in the Intehieht does not answer to our probes,
* i is aroutable address associated to a core Internet routelh wbes answer to our probes.

* i is a routable address associated to another machine (estaxhborder router) in the Internet
which does answer to our probes.

The first situation may be identified easily using known aassf reserved addresses. The second
and third situations are identified by sending one probe aiihg no answer for it. We will see in the
following how to distinguish between the two last cases,ches where we receive an answer from a
core router or another machine in the Internet (end-hosbouaidy router).

Before this, let us notice that when a given core router da@sinswer to our probes, the absence
of answer isa priori not related to its degree. As a consequence, the degreestotete routers are
representative of the ones of all core routers, and in paatithey have the same distribution. We may
therefore obtain the degree distribution of core routersieasuring the number of core routers which
answer to our queries.

1Uniformly at randonmeans that all routers are selected with the same prolyabilit
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To do so, we still have to distinguish between answers frone couters and answers from other
machines in the Internet (end-hosts or border routers3t Ratice that a core router necessarily has more
than just one interface or else it cannmotite Moreover, from the definition of a core router, at least two
of its interfaces are connected to core routers and our me@asunt method will see at least two of them
if the monitors are reasonably well distributed. Insteadgad-host has only one interface, which will be
discovered by our probes.

Let us now consider a routerwhich is either a border-core router or a border router. Reber
(Section 2.1) that this means that routdielongs to a tree between a border-core router (root of geg tr
and end-hosts (its leaves). When we measure the degregoé saater, several situations may occur. In
the vast majority of cases, as long as our monitor set is al $raation of all possible ones, none of the
machines in sdB; is a monitor. Then, our measurement method is able to obsetyehe interfaces of
r that aredirected toward the corehat is those interfaces used to send packets to core souteris a
border router then it has only one interface directed towlagdcore (o on the figure), which is the only
interface ofr we discover with our probes. Thus, we may make no differeetederr and an end-host,
which is quite satisfying for us as we intend to discard batt-Bosts and border routers from our data
set. In the other case, wherés not a border router but a border-core router, we may desceeveral
interfaces ofr. But, since none of our monitors belongs to Betthen we can only discover the core
interfaces of, which is again precisely our goal.

The difficult case to be carefully examined is the one whemsesof our monitors belong to s&t:
as our monitor set is large, and as the number of targetsasese the probability that we have in our
target set a routarwith one or several monitors i, increases. In this case, an interface ,afonnected
towardsB, is observed by the monitors B}.

Fortunately, in this case we are able to detect when an &uerit actually not directed towards the
core. While we use UDP Explore mainly to detect colocateditoos) we can also use its output to list all
such interfaces. Indeed, the output of UDP Explore from aitoois exactly the list of all the interfaces
oriented towards the monitor that are not in the core, thdbisa given monitor, all the interfaces not
oriented towards the core that may be observed by Distddui2P Ping. We use this observation to build
a blacklist, which is the reunion of all the interfaces obedrby UDP Explore. Whenever an interface is
observed that is on the blacklist, it is discarded for nohgein interface in the core.

Fortunately, in this case we are able to distinguish betwleemterfaces of that are directed towards
the core and those that are not. Indeed, consider the case séeral machines By are in our monitor
set. Then they clearly are what we have catletbcated monitors Section 2.3. Thanks to the previously
described method, we are able to identify these colocatedtors, and we are able to detect when an
interface is observed only by monitors that are colocateth@ same colocation equivalence class). Since
all the other interfaces afare observed by monitors that are noBj we only have to discard interfaces
that are seen by at most 1 colocation class of monitors. Thaireng interfaces of after removing such
interfaces are called ttmoreinterfaces of.

Finally, we build our target list as follows. We sample rand82 bit integers and discard the corre-
sponding IP addressf one of the following is true:

e iisin an unallocated or private range,
 a probe sent todoes not lead to a valid answer,
« our method observes only one interfaceif@t is an end-host or a border router),

 our method observes more than one interface, fout only 0 or 1 of these interfaces remains after
removing the non-core interfaces.

Additionally, after the measurement, interfaces from tlaeklist are discarded.

2.5 Bias correction

The procedure above (Section 2.4) selects uniformly ataaniiP addresses of core routers (among the
ones answering to our probes, representative of all coters)u It however does not select uniformly at
randomcore routershemselves: a core router wikhinterfaces hak possibility to be chosen, so there is
a bias due to degree. More preciselypjfis the fraction of core routers with degrieethe probabilitypy
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to choose a core router of degrieés proportional tokpg. Thus, if we knew the number of interfackes
of the core router to which corresponds each of the IP adelsess selected, then we could easily infer
the true degree distribution by applying the correctiomfola px = px/(k-Zi>2fi/i), wherepy is the real
proportion of routers of degrdein the core of Internet anpy is the observed proportion in our sample.

The obstruction to proceed tis way is that we do not know thmler of interface of the core
routers in our sample since we cannot discover all of their-care interfaces. On the other hand, we
hopefully observe all of their core interfaces and, as énplhearlier, we are able to decide for each of the
observed interface whether itis a core interface (obsdryesgveral monitors) or a non-core interface (not
observed or observed only once after choosing a uniqueseptative for each set of colocated monitors,
which we call quotienting). Then, we artificially change sefection method so that the probability of
selecting a core router is proportional to its number ofrfiaimes in the core instead of its total number
of interfaces : we simply decide to discard all routers treatehbeen selected by an interface that we do
not observe or that we observe with only one monitor aftenshw a representative for sets of colocated
monitors. In this way, we obtain the desire property and threection formula given above becomes
valid, up to substituting the degr&ef routers by their core degréé

Proceeding this way even offers a subtle but very intergsdivantage: it improves the accuracy
of our sampling for the high-degree routers, which are thetrddficult to obtain since they are less
numerous. Indeed, the statistical relevance of a sampiatoate the rate of a given category of elements
is directly related to the number of such elemenisontained in the sample. tif >> 1 then the accuracy
of the observation is good, while on the oppositenjit~ 1 one can have only low confidence in the
observed proportion of the referred category of elementarns out that, with our sampling method, the
presence of degrees in our sample is biased toward the hidégee, since the probability to choose a
core interface of a given core router is proportionak't@,, wherek' is the core degree. This augments
the accuracy of observation of the proportion of these nodlese number is very low in the InterAet
while the accuracy of observation of the proportion of loegtee nodes is guaranteed by their high
number.

2.6 Measurement

To confirm the feasibility of our method and to get first resultte have conducted actual, real-world
measurement.

2.6.1 Data collection

The monitor set was composed 8700 machines from the PlanetLab platform, capable of sendin
receiving and processing UDP and ICMP packets towards tge feumber of targets, as required by our
method (2.3). The target set was composed & millions UDP ping responding, uniformly randomly
chosen among routable IP addresses, as described preyi49!

The most lengthy part was the creation of the target set egialatively few routable IP addresses
respond to UDP ping, a large number of addresses must bedtoloenstruct a suitable target set, and
this part took about 10 hours, while each single measurepassttook no more than 4 hours. The whole
measurement (creation of the list, three rounds of measnmgrtasted less than 24h hours. Each pass
is considered an independent data set for the first step afpaet-processing, and the three rounds are
merged for the last step of data post-processing.

2.6.2 Data cleaning and filtering

To meet the requirements described in the previous sed{®#es2.3 and 2.4), we had to apply both data
pre- and post-processing.

Invalid IP addresses, or IP addresses filtering UDP or ICMRevilemediately discarded upon the
target list creation. The distributed measurement was éxecuted and the data retrieved for further
post-processing. Monitors and targets producing a suampti low amount of data (monitors observing
less than 80% of the targets, and targets being observedbthien 80% of the monitors) were purged for

2This is a widely acknowledged fact, which we confirm in theutesection 2.7.
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Figure 2.7: Inverse cumulative function of the distribuatiaf the number of monitors that get responded
at least once, per target. We keep 80% of the targets from @atehset, cuttin g at a point where the

number of monitors that get responded is high enough (réspgc2025391, 1928313 and 1901725).
All other targets are considered suspicious and are diedard

being unreliable. Targets generating multiple resporrsss §ingle probes, or not answering at least once
with the interface they are designated by (threiminalinterface), or not answering at least once with an
interface different from the one they are designated by (emte being of degree 1, and therefore not in
the core), are all removed from the data set for the reasqiaiard in 2.4.

Dataset M1 M2 M3
Initial number of monitors 619 625 622
Initial number of targets 2849740 2734548 2699642

Total  dataset size  (monir 1082691302 1100694241 1077678410
tor/interface/target triplets)

Targets generation multiple re- 10150 9842 11048
sponses for single probes
Monitors observing too few target§ 65 73 72

Targets being observed atleast onc®641485 2526446 2491990
by their nominal interface

Targets being observed atleast onc@15514 215228 215159
by an other interface

Targets being observed by atleasf’259 7126 7507
two different interfaces

Remaining targets after target filtef- 5593 5623 5619
ing

Remaining monitors after monitar 421 442 442
filtering

UDP Explore blacklist length 440 440 440
Blacklisted interfaces in the unfily 1040 1107 1097
tered data

Blacklisted interfaces in the filteregl 0 0 0
data

Some targets generated more than one response for at leastanitor. We consider this as sus-
picious, probably being due to packet duplication or imgrogonfiguration. Since the number of such
targets is low, we deny them the benefit of the doubt and rerti@ra from our data set. About 48uch
targets are removed from each data set.

Targets that respond significantly less than the other, aordtor that get responded significantly less
than the others, are also considered suspicious and distatbout 5x 10° targets (see Fig 2.7) and 70
monitors (see Fig 2.8) are removed from the data set.

Finally, targets that have only one observed interfaceiatgbint, or that never use the interface by
which they have been selected (to prevent the selectioh dniasliscarded, for a total of abouB2« 10°)
for each data set.

After this post-processing, the data is assumed to be ddmhvalid for the representative remaining
~ 5600 targets.
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Figure 2.8: Inverse cumulative function of the distributiof the number of targets that respond at least
once per monitor. We keep 80% of the monitors from each datasting at a point where the number
of responding targets is high enough (respectively 376,a4@D397). All other monitors are considered
suspicious and are discarded.
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Figure 2.9: Observed degree distribution for the three omeasents, before selection bias correction
(lin-log scale).

2.7 Firstresults

2.7.1 Observed degree distribution

The computation of the number of different observed intaréaof each of the targets allows us to draw
the number of interfaces distribution of our target set 2.9.

However, this distribution does not account for the sedectiias described previously (2.5). To
derive a proper estimation of the distribution of the numiifeinterfaces of the Internet core, we apply
the distribution transformatiofk, px) — (k, pk/K). 2.10

2.7.2 Assessment of results

We explore here several approaches to assess the qualbyadfied results.

Colocation Using the UDP Explore method presented in 2.3.2, we weretalidientify classes of colo-
cated monitors, as defined previously, that is the numbectabadifferent vantage points in the monitor
set. From the total number of monitors, 203 actual classes eitracted, of average size 2.11. Most
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Degree distribution of Internet core routers (after selection bias correction)
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Figure 2.10: Observed degree distribution for the threesmeanents, after selection bias correction
(lin-log scale).
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Figure 2.11: Convergence of the fraction of nodes of degreith the number of monitors

classes regroup monitors obviously from the same Planegigibtered institution, typically matching a
*.domain.ext-like pattern. We have used these classestioefuanalyze the quality of the monitor set.

Impact of the number of monitors A crucial issue with the method we have presented is to use a
monitor set that is large enough and distributed enough tiwallg observeall the interfaces of each
given target. We do not have a direct method to support tisisrisn, but we can at least check that our
monitor set isconvergent More specifically, we check that the marginal addition afzmaonitors from
our monitor pool does not affect a lot the shape of the meddlistribution. To do so, at post-processing,
we re-sample monitors from our monitor pool and extract thetfon of nodes of every degree observed
in average for every number of monitors between 1 and themmaxi number of monitors in our pool.
We then plot the evolution of the average fraction (over italfvalue, observed when all the monitors are
included in the monitor set) and verify that this fractiomeerge. (Figures 2.11, 2.12)

Although it provides merely an indication of local optintgland not a global validation, the conver-
gence of the fraction of nodes of a given degree (and to ameéxte the degree distribution itself) with
the number of monitors proves the stability of the methodhwlie addition of marginal monitors to the
monitor set.

Balance between interfaces As a validation of our method to decide whether an observedface is in

the core or not, we compare the number of the interfacesfitasas non-core by our method for monitors
observed with degree two, with a rough estimation of the etggtenumber of such interfaces in our
sample. Let us suppose that the routes from every repréisenteonitor to the core of Internet are distinct
and of average length 5. Since there are about 400 représemtenitor in our measurement, there are
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about 2000 routers for which we can observe a non-core ageriMoreover, since we discard the targets
that do not respond with the interface we selected, therel 868 interfaces that lead to the presence
of these 2000 routers in our sampling : each of them can betsédléy its unique core interface (we
consider only monitors of observed degree two in the estimpbr by its unique interface directed toward
a representative monitor. This gives a number of 4002 IP addresses out of2IP addresses. Our
sample of IP addresses for a 3000000-targets measurememadge by randomly generating roughly
80000000~ 80.220 32-bit integers. Our sampling should then contain abo@8@'2/232 = 80 routers

of degree two having one non-core interface. This numbegindd by a rough estimation, is to be
compared with the number of interfaces of routers of obskdagree two that were classified as non-
core interfaces by our selection method.

Iterated measurements In order to corroborate the former results, we propose mgbction another
validation based on the simulation framework discussedeicti®8n 2.2. The purpose is to answer the
following question: let us suppose that the real degreeilbligion is exactly the one measured above,
then how our measurement techniques would perform? Thdaiimuenables to investigate in particular
whether it respects the shape of the distribution or not awd dccurate is the method according to the
real degree of the nodes.

Note that the validation presented in this section diffesgfthe one proposed in Section 2.2 since the
graphs used previously belonged to two very specific clagshewing either a Powerlaw or a Poisson
distribution. In this section, the distribution cannot bemally characterized as one of those two possible
types and it seems then natural to assess the relevance mithed by means of the same simulation
framework.

Simulations The simulation setup consists in the following: we geneaté&telifferent graphs of 1 mil-
lion nodes according to each of the 3 measured distribytfonsach of the graphs, we chose 5 different
sets of nodes defined as the virtual monitors and simulatech#asurement process from those monitors
towards all the other nodes. This represents 75 differemtilsitions for which we tested sets of 12, 25,
50, 100, 200, 400 and 800 monitors.

Note that this process avoids the issue of co-located m@rsiace each virtual monitor in the sim-
ulation is chosen as a node of the graph and then would ratied iere as the entry point of a set of
co-located monitors in the measurement framework. As ghehnumber of monitors in the simulation
that would be similar to the one used in the PlanetLab measmeis around 200.

We first present in Figure 2.13 the simulation results reiggrthe assessment of the degree distribu-
tion. In Figure 2.13(a), one can see the inverse cumulagges distribution observed with the different
sets of monitors. It shows that with a number of monitors Bighan 200, the shape the original distribu-
tion seems preserved, even if the proportion of large degpdes tends to be less accurately estimated.
This results is coherent with previous studies. Besidesplbt tends to show that the proportion of small
degree nodes seems to be particularly well estimated. Mamgstigations confirmed this statement for
nodes with degree less or equal to 10 and for sets of monitghghthan 200.
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Figure 2.13: Qualitative assessment of the observedalision

We now analyze the accuracy of the method and in particulas$ess how close the measurement of
a degree is to the real value. Indeed, while the number oéctlyrestimated nodes is very high in the
simulations (963% of the nodes have been correctly estimated over the 73ations), which explains
why the distribution is globally well estimated, one may wenhow the mis-estimated nodes impact the
quality of the estimation.

Figure 2.13(b) presents the correlation between the rehltam estimated degree for all the nodes
(we only plot the 200 monitors case for readability sake).eimphasis is made on the plot to outline the
median value for each degree. This figure shows that the métadso efficient on measuring the degree
of specific nodes. In particular, one can see that the medilre vemains close to the real one, even for
the highest degrees. Moreover, even for the highest dedreegstimation value is never far from the
real one: for instance, 18 has been the worst estimation faa@e29-degree node; 17 for a 27-degree
one and 14 for a 22-degree one.

These analyses confirm that the degree estimation provigéldeoproposed the method is reliable
whether we are interested in the global distribution or edlegree of a specific node in the network.
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Chapter 3

Determining the nature of the degree
distribution

The degree distribution of a network carries a significafdrimation regarding the structural and evo-
lutionary properties of a network. The knowledge of the éegiistribution will be helpful to allow us
to discriminate between various random graph models that haen, could be or will be proposed to
model the Internet. Indeed, one expects that a valid modbkdhternet topology should at least approx-
imately reproduce its degree distribution, among otheperties. Consequently, we can accept or reject
a proposed hypothetical model based on its ability to mitmécdegree distribution of Internet.

Our goal is to select or eliminate explicative and geneeatiodels based on their consistency with
the degree distribution measured in Chapter 2. In this mepfor different classes of distributions
we identify the particular distributio® € I that is the most consistent with the experimental data. We
pre-assume different random graph models which generatasady of hypothetical distributionis such
as power law, exponential and lognormal, and apply a segofous methodologies to test each of them
to accept or reject these candidate conjectures. To be mmecésp, we parameterize a given class of
random graphs by a vectdr, and want to check whether such a random graph for one valhe ekctor
® could represent the Internet. We first estimate the vebtof parameters for which the corresponding
theoretical degree distributioDey matches best our measured degree distribufiQRasureq @and then
test the hypothesis “coul®yeasured have been obtained by randomly selecting degrees accotaling
Do¢". We use different standard methodologies such as maxinketiHood estimator [90], least square
estimator [103] etc to estimate the parameteffsr different hypothetical distribution3¢. Next we use
different statistical hypothesis test methodologies (MdBarlo-based technique [35] ad test [102]
etc) to determine if the measured degree distribub@pRasureqiS Not consistent with the hypothetical
distributionsDg; based on the outcome, we reject some of the hypothetidaldisons.

Classes of distributions considered

Our first and main objective is to determine whether the mrealdegree distribution follows a power law,
which is probably the most popular model that is used to éxpiee evolution of a network. Nevertheless,
recently few other distributions came up as the possibléidaite to model different kinds of networks.
Exponential degree distributions have for example beendanmany real world complex networks [45].
Inspired from the non-equilibrium network theory, Deng le{45] constructed the network according to
two mechanisms: growing and adjacent random attachmergir Tégsults showed that many empirical
datasets, such as the Worldwide Marine Transportation di&t@WWMTN), the Email Network of Univer-
sity at Rovira i Virgili (ENURV) in Spain and the North Amego Power Grid Network (NAPGN) closely
matches with the exponential degree distribution. In [1@la et al. also showed that modeling large
scale online social networks using power law produces afgignt fitting errors, hence they proposed a
more accurate node degree distribution model based onghedonal distribution.

We will therefore test three classes of distributions, Rdass in Section 3.2, Exponential distribu-
tions in Section 3.3 and Lognormal distributions in SecBoh
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3.1 Challenges

In this section, we focus on the challenges that we face toeiiodernet with different hypothetical
distributions.

3.1.1 Independent samples and post-processing

Parameter identification methods and statistical testsiammally designed for experimental data sets
consisting a certain number wfdependent samplebtained from some (a priori unknown) distribution.
This assumption does not hold in our case, as several posegsing steps have been performed in order
to clean the data and to correct biases of the real experaméntparticular, for reasons explained in
Chapter 2, the degree distributiqg resulting from the direct measurements was biased, andedded
be corrected by computingk = px/k (and re-normalizing). The distribution obtained is unbiésbut
does not correspond anymore to a nunibef values for independent samples. In particular, one canno
identify Ngx nodes with degre&. To avoid this issue, we will work directly on the biased datad
transform our hypotheses and distributions accordingly.

Besides, node degrees in a network are never entirely imdiepé: Their sum over the whole net-
work needs for example to be an even number, and we suspéthéna might be stronger dependency
issues. The precise influence of such dependency remainswnkbut it should be absent if the random
selection of samples on which measurements are made is nitdepetitions, which is always approxi-
mately the case when the proportion of selected samplesall, &min Chapter 2. In any case, we believe
that the effect should be negligible with respect to othessfige artifacts of the measurements and the
analysis method.

3.1.2 Parameter estimation

As explained in the introduction of this section, we considiéferent classes of distributiors which
can be proposed as a hypothetical model for the Internet. Wddnlike to stress on this point that
unlike ad hoc and ‘a priori’ hypothesis, these hypothetinablels are suitably parameterized based on
the experimental dataset. Moreover, in one of the predomicendidates called power law distribution,
the power law behavior is usually not observed for very smafirees, but emerges smoothly for the
higher degrees (see Figure 3.1).

Deciding where the power law behavior starts and how to panane the first part of the distribution
without over-parametrizing it are challenging issues fbial there is no universally agreed upon answer.
The number of parameters needed to describe the first panedistribution is in particular often not
clear, and may depend on where the actual power law behawids.sAs a result, the class of models
considered does not have a fixed number of parameters.

Most standard techniques for parameter estimation andthgpes testing are designed for classes of
models with fixed number parameters, and can therefore nditbetly applied here.

3.2 Hypothesis: Power law distribution

In this section, we consider the power law distribution asadidate hypothetical distribution for the
measured Internet. The power law distribution is defined by

P =Ck @ (3.1)

wherea > 1 is the scaling exponeng is the normalizing constant aridis the discrete variable rep-
resenting individual degrees. The exponantan be observed as the slope in the log-log scale of the
distribution. As represented in Fig. 3.1, the slope of thevewoes often not follover = 2.5 for the few
initial degreesK < 8), however, for the higher degreds* 8) the linear slope becomes quite evident.
In such a case, we say that the distribution follows powenriath a slopea starting from a minimum
degreek > xmin. Hence we redefine the discrete power law distribution EQ.) @r X > Xnin With proper
normalization as follows o

Z(aaxmin) (32)

Pk =
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Figure 3.1: A power law distribution withyi, = 8

wherea is the scaling parameter arglin is the minimum degree at which power-law behavior holds and
(A, %min) = S meo (M-+Xmin)~%. Our first task lies in correctly fitting this power law digtution with

the experimental distribution. In order to do that, we fistireate the parameter $&t= {Xmin, 0 } using
various statistical estimation techniques. Then we testdniresponding power law hypotheBig using
different hypothesis testing methodologies.

3.2.1 Parameter estimation

In this section, we use different standard statisticahgeion methodologies to compute the parameters
of the power law distribution. Precisely, we focus on two plaply used methods such as the maximum
likelihood estimator [90] and least square estimator [208] in the following, we explain them one after
another.

Maximum likelihood based estimation In statistics, maximum-likelihood estimation (MLE) is ajpo
ular method of estimating the parameters of a statisticalehdWVhen applied to a data set and given a
statistical model, maximume-likelihood estimation prosgdestimates for the model’s parameters [90].

For the particular case of the power law, let us first assuratetkie lower boundyn is known, and
estimate the slope. We use maximum likelihood estimation to compute the egtinta of the exponent
from a discrete dataset containiNgobservations. Suppose that the@bserved degrees, xo, ..., Xy are
assumed to be independent and identically distributedrdoapto px. Then, the likelihood function can
be expressed as

L(G|X]_,X2,X3,. .- 7XN) = le X sz X pX3' o X pr (33)
N Xi_a

. 3.4

i':l ¢ (0, Xmin) (34

Taking the logarithm, we obtain
N
InL=—NInZ(a,Xmin) — a Zlnx;
i=

Taking as estimatodr the valuea that maximizes the log-likelihood function by settiﬁ%b:a =0,
we obtain

@ Xmin) 1o

(0, Xmin) N £ I
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The solution of this equation admits the following closedvi@pproximation (see Appendix B.3 in [35])

~1
S T
l; Xmm _0.5

wherex;,i = 1...N are the observed values w&uch thatx; > xmin. We can also transform the above
equation in terms of the measured frequenplg&s

a=1+N

A 1
zkmax pMeas(|n k )
k=Xmin Mk Xmin—0.5

We now turn to the problem of estimating the lower lixifi, from the data, for which we follow the
approach of Clauset et al. [35]. The basic assumption is ithat choose too low a value fogin we
try to fit a region which does not fall under the power law bebagin Fig. 3.1, the region ik < 8). On
the other hand, if we choose too high a valuexXg,, we are effectively throwing away legitimate data
points in the regiork < Xnin, Which increases both the statistical error on the scalar@gmpeter and the
bias from finite size effects. Our goal is to find a good compserbetween these cases. The fundamental
idea behind the method is very simple: we choose the vgliehat makes the probability distributions
of the measured data and the best-fit power-law model asssiaslpossible abowg,r. In general, if we
choosexmin higher than the true valugi,, then we are effectively reducing the size of our data seiglwh
will make the probability distributions a poorer match besmof statistical fluctuation. Conversely, if we
choosexmin smaller than the trugyn, the distributions will differ because of the fundamentéfiedence
between the data and model by which we are describing it. thwd®n lies our ideal value.

We use Kolmogorov-Smirnov (KS) statistic for quantifyingetdistance between the data and the
fitted model. LetP(k) be the cumulative density function of the hypothetical poelagr distribution for
K > Xmin. We compute the CDF as

(3.5)

¢(a.k)

PX) = 57%2——~

) Z(a, Xmin)
which has the nice normalization propertyR() = 1 atx = xmin. On the other hand, we suitably re-
normalize the experimental distribution to obtain cumudensity functior§(k) for k > xmin. Here also
we observes(k) = 1 atk = xmin. Finally the KS-statistic can be computed as

d= ma k) —P(k
kZXm?ﬁIS( ) —P(K)|

Our estimatednin is then the value oknin that minimizesd. A brief outline of the methodology is
provided as Algorithm 1.

Algorithm 1: Parameter estimation using MLE

Input: Degree distributionpy

Output: Estimated parametexg,in, &

Two temporary vectord [Kmin - - - Kmax], d[Kmin - - - kmax] @re used in this algorithm
foreach Xmin such that kin < Xmin < Kmax do

Estimated = 1+

kmax ( Kk )
2Sin PN 7m0

foreachk such that ¥in < k < kmax do
_ {ak
P(K) = Z{amm)
S(k) < Re-normalized in Xmin t0 Kmax
] = M@k, 1S(K) = P(K)|

Rmin = i, for the minimum value in the vectaliknin <1 < kmax
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Least square fit method The method of least square assumes that the best-fit curvgioéa dataset
is the curve that has the minimal sum of the deviations sgu@east square error) from a given set of
data [103]. In our case, the measured degree distributitmemet of sizen can be described as, (@),
(2,p2), ..., O, pn), wherepy is here the measured proportion of nodes with defrégsing least square
method, we aim to propose a mathematical mggél= f (k,®) = Ck~ (parameter seb = (C, a)) that
fits with this experimental distribution. This is importdatnote that the normalizing constabiand the
exponentr are mutually dependent parameters. However using leaatesquethod, we primarily focus
to estimate the exponentonly, giving less attention t€. Instead of working directly on the original
function, we prefer to linearize it to reduce the weight gitve the high degree nodes. The function can
be linearized by taking logarithms

Inpf"=InC—alnk

The fitting functionf (k, @) has the deviation (error) from each data point, i.etj = Inp — f(k, P).
According to the method of least squares, the best fittingechias the property that the si8of squared

deviations .
S= erz
i=

is minimum. To find the values of the paramet€randa which minimizesS, we set the partial deriva-
tivesa‘f% =0 andg—§’ = 0. Solving the equations, we find the parameters

G (SLaInpJ (31 (INk2) — (574 Ink)(57; Inkin py)
) N5y (k)7 (5, nk)?

(N3 Inkinpy) — (37 INK) (T4 In p)
Nyl (Ink)?—(3L;Ink)?

The quality of the least square fit is measured with the hefefficient of determinatioR? which
quantifies how well the proposed model is able to fit the expenital data pointsR? is computed as
the square of the sample correlation coefficient betweerraxgntal and predicted values [104]. This
coefficient can be expressed as

G=—

R
Sot

where

Sotzg(pk—<pk>)25 Sarrzg(pk—(:k_a)z

In the above(py) is the mean of the observed data

<m=%im

3.2.2 Hypothesis testing

The tools described in the previous sections allow us to fibwegr-law distribution to the measured
Internet dataset and provide good estimates of the paresndttowever, they hardly tell us anything
about whether the data are well fitted by the power law. Ini@aer, data that are actually generated
from a different distribution can always be fit to a power-lmwdel, but the fit may be very poor. In
practice, therefore when considering the measured degs&édtion of Internet, our challenge is to
decide not only what the best parameter choices are but dlsther the power-law distribution is even
a reasonable hypothesis to model Internet. In this seatienyse different classical hypothesis testing
methodologies such as Monte Car)d test etc to test the validity of the power law models. We first
describe a hypothesis testing methodology based on Momte teahnique proposed in [35] by Clauset
et al., and then a more standgtitest.
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Monte Carlo method Given an experimental degree distributiDgeasureg@nd the corresponding fit-
ted hypothetical power-law distributions, we want to know whether “that hypothetical distribution
is a likely model given the experimental data”. We answes thiestion by computing p-value. By
definition [107], ap-value quantifies the probability that our data were dravamfithe hypothesized
distribution, based on the observed goodness of fit.

If the p-value is close to 0, then it is unlikely that the data are drénom a power law. If it is closer
to 1 then the data is more consistent with the hypothesis ahdam generation using a power law, but
the latter hypothesis is of course not guaranteed. Noterthah the data are indeed generated according
to the hypothesis, the expectpdralue is 0.5.

We numerically compute a-value following the Monte Carlo based based methodologypsed
by Clauset et al. in [35]. We generate a large number of syicttata setSynp drawn from the power-
law distributionD¢ that best fits the observed dddaecasured fit €ach data set individually to its own
power-law distribution, calculate the KS statistic for kane relative to its own best-fit model, and then
simply count what fraction of the time the resulting KS sttidiis larger than the valuobserved for the
experimental data. This fraction is opvalue. This is important to note that we create synthetiaskzts
Syny, that have a distribution similar to the experimental datgasureq€lOW Xmin but that follow the
power law distributiorDe abovexmi,. The steps to compuigvalues are as follows:

1. Determine the best fit of the power lalg,, to the experimental Internet degree distribution
Dmeasured EStimate the parameter sbfy = {Xmin,a }.

2. Calculate the KS statistic of the best-fit power By, to the dateDyeasured

3. Generate a large number of synthetic data Sgtg (of same size as experimental dataset) from
the parameter®y, estimate the parametebs = {xmin, 0 } to fit each of them with a hypothetical
power law distributiorDeg, and then calculate the KS statistic for each fit. Note cilycihat for
each synthetic distributio8yny, we compute the KS statistic relative to its own best-fit polae/
distributionDgg, Not relative to the original distributioBs,,. In this way we ensure that we are
performing for each synthetic data set the same calcul#tatiwe performed for the experimental
data set.

4. Calculate the p-value as the fraction of the KS statidticdhe synthetic data sets whose value
exceeds the KS statistics for the real data.

5. If the p-value is sufficiently small, the power-law dibtrtion can be ruled out.

X2 test In addition to the Monte Carlo method, we also ygetest [102] to examine whether “The
hypothetical power law distribution is a likely model the asared Internet degree distribution”. If
p[ﬁ"eas“redfor 1 < k < nis the measured degree distribution of the Internet (assymy;, fixed) and

pEt = f(k,®) = Z(é‘;‘;m is the hypothetical distribution with parametee= {Xnin, 0 }, then we compute

the x? statistic as

X2 B n (ndgleasured_ ng'(I'h)Z
- Th
K=Xmin NP

This is crucial to note that, since the hypothetical distfiiin p{h is defined within the intervatmn <
k < n, we need to re-normalize the empirical degree distribuﬁﬁ?ﬁsuredwithin the same interval.

Like Monte Carlo method, here also we assess the confidertbe ¢fypothesis using-value. The
p-value is calculated by comparing the value of jfestatistic to ax? distribution keeping in mind the
number of “degrees of freedom” which is again calculatedhigyrtumben of values of degree for which
we have an estimated probability , minus the reduction irrekgjof freedonm. The reduction in the
degrees of freedom is calculated followingm = s+ 1 wheres is the number of parameters for the
hypothetical distribution.

Note that the number of values of degrees for which we have an estimated probakslunclear:
Since there is a priori no maximal degree in a power-law, itésuld be infinite, or very large. The?
test is however only valid asymptotically, for numideof samples that are sufficiently large with respect
to n and the distributions considered. It does thus not provigtful results if we chose a too large
and we must therefore arbitrary fix a sufficiently small maxiisegree.

(3.6)
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Figure 3.2: Example of artificially generated dataset foifay a power-law, witiN = 10*, Xmin = 8 and
ap=2.5.

These ambiguities are one of the reasons for which we use tiéeMCarlo based approach of Section
3.2.2.

3.2.3 Validation

Before applying the estimation and testing the relativelyelt methodologies described in Section 3.2.1
and in 3.2.2 on the experimental data, we first validate therthe artificially generated datasets. Next
we illustrate the generation of the synthetic datasets hoa $iow accurately we can recompute the a
priori parameters and calculapevalue.

Artificial datasets We fix values ofxmino and ap, and generate a discrete synthetic dat&seky
containingN individual degrees; in the following way.N — Ni4ji) are taken randomly uniformly between
1 andxmino— 1), and Ny’ of them are selected according to a strict a power law dhistion with slope
0p starting atxmin. This is done using the following expression

X = | (Xmino — 0.5)(1—r)~Y(@-1) L 05],
wherer is a random number uniformly selected between 0 and 1.

Remark:For practical implementation reasons, it can be convemientpose a maximal degrégax
in the synthetical datasets and to discard all the genedaigebes larger than thiatax. When this option
is selected, one should be very cautious to specify a sufflgitargekmnax, especially for small values
of a, for otherwise one could discard a significant number of gatats, resulting in erroneous esti-
mations and validations. Hence, while generating synttdgtasets for the computation pfvalue, we
dynamically set th&max based on the estimated exponerguch that the fraction of discarded data points

. ' . . . _p\ V/(d-a)
remains less than a predefined fraction (say*]@ollowing the expressioRmax = Xm—cl) .

observe that for lovar, thekmax gets a quite high value so that only a few data points are idisda

An example of resulting distribution fod = 10%, Xmino = 8 andag = 2.5 is presented in Fig. 3.2.

Validation results  Applying the MLE-based approach on the synthetic dat8gaiy as represented in
(Fig. 3.2), we calculaté = 2.51 andxni, = 8. More generally, we have generated datasets for various
values ofag between 2 and 4 and re-estimated the parameters using thedslééetl approach. The results,
presented in Fig. 3.3, show that the estimated sldpestch the actual values very closely (usually with

a difference smaller than@2).
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Figure 3.3: Comparison between the estimated sfopad the actual slope that was used to generate the
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Figure 3.4: Cumulative distribution funcitn of the compiif@value for 120 different artificial datasets
with parametersig = 2.8, Xmino = 10 andN = 10°.

Let us now analyze the Monte-Carlo bagestalue evaluation method. By definition of tipevalue,
when the artificial datasets are indeed generated by takingd. realizations of a random variable
following a power law, thep-value should behave as a uniform random variable. Seveaiabns related
to the heuristic nature of the method applied, approxinmatio the estimation methods, and the possible
distortion of KS-distances for different valuesafcould however have prevented this from happening.

To validate the method used, we have generated 120 diffaréfitial datasets for same parameters
0o = 2.8, Xmino = 10 andN = 10°. For each of them, we have estimated the parametgsgnin o, and
computed thep-value. The results, presented in Fig. 3.4, show that tipegalue do indeed behave
approximately as a uniform random variable.

3.2.4 Measured degree distribution

The detailed measurement methodology and tools used touneetiee distribution of degrees on the
Internet have been explained in Chapter 2. Three expergsnesre performed at different times, yielding
5453, 5482 and 5478 valid measurements respectively. lii@udwe will consider a larger dataset
(14 2+ 3) resulting from the union of all these valid measuremeNtste that this combinations of the
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Experiment| B | %min | p-value (%)

m
1 3.245| 5 2.0
2 3.331| 5 8.8
3 3.276| 5 1.8
1+2+3 3.230| 5 4.6

Table 3.1: Values of the power-law parameters obtainedyubie MLE-based estimator, and correspond-
ing p-values obtained the Monte-Carlo approach.

Experiment|| [§ | Kmin | p-value (%)

m
1 3.386| 5 12
2 3.386| 5 16
3 3.385| 5 10
1+2+3 3.392| 5 7

Table 3.2: Values of the power-law parameters obtainedyubim MLE-based estimator, and correspond-
ing p-values obtained the Monte-Carlo approach.

three experiments should be considered with appropriats aa these there were conducted at different
times, possibly in slightly different conditions.

As already explained in Section 3.1.1 we need to work on thsdd initial measurements, because our
methodology assumes that we have access to a certain nufribhdependent measurements randomly
drawn from the same distribution, and this does not holddnee the distribution has been corrected for
bias.

We use the accurately measured biased degree distribatioditectly estimate parameters of In-
ternet. Lets assume that the hypothetical degree disoibatf the Internet follows power law degree

distribution p] "-unbiased— 7T ('fxzﬂn). Subsequently, the biased hypothetical degree distobiecomes

k-@ kA

¢ (a,Xmin) B ¢ (B, Xmin)

p'l[ h.biased _ K x

whereB = a — 1. Since the empirical distributiopf, "™*?**’is essentially a biased distribution, we need
to estimate the paramet@rof the hypothesi@{h-b'asedfrom these experimentally measured distribution
and then compute the power law exponerf the unbiased hypothetical degree distributgftnbiased

MLE and Monte-Carlo based tests Applying the Maximum likelihood-based estimator of Sentio
3.2.1 and computing the-values for the results obtained using the Monte-Carlodbasethod described
in Section 3.2.2 yields the results presented in Table 3nkt ¢an see that while the power-law hypothesis
is not strongly supported, it can certainly not be rejectelight. Besides, all results predickgi, = 4,
and a value of3 around 325 corresponding to a slope of the degree distribution close to256. A
comparison between the experimental data and the estimatedr-law distributions are presented in
Fig. 3.5 for the three experiments.

Since we have very few nodes with high degrees, we have tiyiagmur methodology to truncated
distributions, in which we remove every node with degredbighan 20. As presented in Table 3.2, the
values of the slope obtained are higher and much more unifarnigher slope is naturally explained by
the need to account for the absence of nodes at a degree &ho®a 2he other hand, the uniformity of
the result suggests that the difference between the vBlobsained in Table 3.1 for different experiments
could be caused by discrepancies at high degrees. Thishsgistshould however be considered with
necessary caution, as the need to account for the absenamle$ with degree higher than 20 may
"compress” the differences between the different expenisie

Maximization of p-values It is interesting to compute thevalues using the approach of Section 3.2.2
for different values of the parameters. As can be seen irBlgthere are values of leading to much
higher p-values than those obtained by the MLE. It is therefore témgpto take as estimators of the
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Figure 3.5: Comparison between measured data and thebdisin estimated using the MLE-based
method.

Experiment|| [§ | Kmin | p-value (%)

m
1 3.29| 5 10
2 3.36| 5 20
3 331 5 13
1+2+3 3.26| 5 17

Table 3.3: Values of the power-law parameters obtained byirmaing the p-values, as computed by the
Monte-Carlo approach of Section 3.2.2; and correspondirgglues”.

power-law parameters the,n and 8 that maximize thes@-values. The results of this approach are
presented in Table 3.3. One can see that the estimated slope®se to but slightly higher (typically
by 0.05) than those estimated in Table 3.1. Thealues are however significantly higher, lying between
10% and 20%. One should however note that these percentagestde formally interpreted gs
values, as the methodology used to compute them relies @stuwenption thatr andxm, were obtained
by the MLE-based approach.

We have also tried to identify the best parameters for thegpdéaw using a direcp-value approach
that does not assume that we use the MLE to identify parametéore precisely, for given parameters
®y = (Xmin, B), Wwe compute the KS statistic for the difference between teasured degree distribu-
tion Dyeasured@nd the power-law distributioDq,,. We then compute the KS statistic for the difference
between the power laWg,, and 100 synthetically generated datasets (on the same naiibedes as
Dwmeasured @nd take ap—value the percentage of those synthetic datasets for whelK$-distance is
larger than that of the Measured data. We repeat this oparfdr all relevant values ofy,i, and. Fig-
ure 3.9 shows the values obtained %@y, = 5, and Table 3.4 shows the valyggfor Xnin = 5) for which
the p—values obtained are the largest. One can see that the optitnek of3 are very similar to those
obtained in Table 3.3 where the MLE approach was re-usedeircdimputation of theg—values. But,
the p—values themselves are much larger, being as high as 50%.Reen¢hough that these values can
again not be strictly interpreted @svalues once one select the parameters by optimizing treges:
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Figure 3.6: Evolution ofp-values as computed by the Monte-Carlo based method dedadrilkSection
3.2.2 witha, for Xmin = 5.

Experiment|| [§ | Kmin | p-value (%)

1 3.29| 5 44
2 3.36| 5 46
3 331 5 40
1+2+3 3.26| 5 51

Table 3.4: Values of the power-law parameters obtained byimiaing the p-values computed by a
Monte-Carlo based method using the KS-statistic; and spmeding h-values”.

Concerning the methodology, it is interesting to note thathighest p-values” are obtained when
no maximum likelihood estimator is used at around 40%9%. Selecting the parameters by optimiz-
ing "p-values” computed using the maximum likelihood estima®egplained in Section 3.2.2 leads
to smaller values, of the order of 10%20%, and computing the value for the parameters directly
obtained using the maximum likelihood estimator leads #nesmaller values. This could indicate that
the maximum likelihood is efficient to recover parametemsegponding to a small KS-statistic when the
data are artificially generated, but not on the measuredefata

X2 test In addition to the Monte Carlo method, we also apgR/test (explained in Section 3.2.2) to
examine the goodness of fit of the hypothetical model. Fasduladistribution with estimatedi, = 5
andf = 3.21, we evaluate thg? statistic as 176@2 (using the Eq. (3.6)). The total number of data
pointsn = 31— 5= 26 and reduction in the degrees of freedors: 2+ 1 = 3. Hence the number of the
degrees of freedors 26— 3 = 23. Using thex? statistic, x? distribution and number of the degrees of
freedom, we compute a very loprvalue= 0.001. As explained in Section 3.2.2), it is however not so
clear that the hypotheses under which }feest is valid are satisfied here.
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Figure 3.7: Comparison between the measured and hypathégéigree distributions using Least square
method considering all the data points
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Figure 3.8: Comparison between measured and hypothetgmbd distributions using Least square
method considering only initial 10 data points.

Least Square Estimator In addition to the maximum likelihood estimator, we alsarreate the pa-
rameters from the empirical distributiops ™™ and pEMPUnPased sing the least square method ex-
plained in section 3.2.1. We observe that the value of thmastd parameter following the least square
method heavily depends on the number of datapoint (i.el notaber of degrees) taken into considera-
tion. For instance, in the combined{R2 + 3) dataset, if we consider all 31 different degrees, we cdampu
the power law exponent gs= 2.92 with coefficient of determinatioR? = 0.96. When working directly
on the corrected unbiased distribution becormes 3.92 with R> = 0.97. In Fig. 3.7 we show a com-
parison between the model and measured data for both biaskedndiased distributions. However, if
we consider only the initial 10 degrees, the least squar@edetomputes the exponefitas 343 with

R? = 0.97 for the biased distribution, aral = 4.43 with R? = 0.98 for the corrected unbiased one (see
Fig. 3.8). .

Obtaining much higher values &f or 8 when considering only the first degrees should not be very
surprising. Indeed, we know that the power-law behavior m@svery pronounced for degrees smaller
than 5, and smaller slopes are needed to account for this fkasirt of the curve. So, to avoid this artifact,
and the effect of noisy data at high degrees, we have alséedpple least square estimator to versions
of our data truncated on both sides. More specifically, weshramoved all nodes with degree smaller
than 5 or higher than 20. For the three experiments and théioeah datasets, we obtained estimated of
B between 2802 and 2805 (corresponding ta ~ 3.805), with values oR? around 089. This suggests
again that the difference between the coefficients estinaseng the different experiments are mostly
caused by the noisy data for high degrees.
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a, for Xmin = 5.

3.3 Hypothesis: Exponential distribution

In this section, we consider the exponential distributisthe candidate hypothetical distribution to model
Internet. We chose to work with an expression of probaegisimilar to the exponential probability
density function for continuous variable:

pk = A exp(—AK)

whereA is the parameter. In the previous section, we have alreadstritted the fact that the actually
measured degree distribution of Internet is essentiallgseal distribution. Hence the hypothetical biased
exponential distribution can be expressed as

Ok = Kp« = kA exp(AK),

with appropriate normalization.

Similar to what was done for power laws, our first task is torectly fit this biased exponential
distribution with the measured degree distribution (Weknware only with a combination of the results of
the three experiments). In order to do that, we use MLE tonegé the exponerit from the experimental
distribution.

3.3.1 Parameter estimation

We approximate the discrete exponential distribution fit continuous function by suitable normal-
ization as follows Ok

i i Qi
So we assume that thé measured degreeg, 1 <i < N are independent and identically distributed
observations, coming from a discrete exponential distidioup, with scaling parametek. Similar to

hy
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Figure 3.10: Comparison between the measured degreddisin and the hypothetical models

Eq. (3.3), the likelihood function becomes

N

L(/\|X1,X2,...,XN) = hxi
I
N

I:!(Xi)\ exp()\xi))zi

iqj
Taking the logarithm of the likelihood, we obtain

-N
InL=1In <qu> +In (Iﬂl(xi),\'\‘exq—)\ zm).
] i= ]

Taking as estimatok the valueA that maximizes the log-likelihood function by settiﬁg\—Lh:;\ =0,
we obtain . .
N N NS iexp—Aj)(1—Aj
T_Z)q_ Y .Fj( J)(A. )
A E YjlAexp—Aj)

We numerically solve the above expression to estimate tperten'r}\ for the experimental dataset.

=0 (3.7)

3.3.2 \Validation and parameter estimation

In order to validate the correctness of the estimatedve generate a synthetic network of sidawith
exponential distribution with paramet@g. Precisely, we numerically generate the degree sequences
X, 1 <i < nfollowing the exponential distribution withg = 0.5,1.0, 1.5 respectively. From these degree
sequences, we compute the synthetic degree distriprE?hsWe apply Eq. (3.7) om)Ex to estimate the
parameterd as 0498 1.008 and 1487 respectively which proves that MLE is correctly ablevaleate
the true parameters.

Having validated the method, we apply Eq.A(3.7) to the (lWxseeasured degree distribution from
Chapter 2p; PP and estimate the exponentas- 1.08. Hence, we propose the null hypothesis that
the best fit exponential distribution for the Internet carekpressed as

px = 1.08 exd—1.08k)

Fig. 3.10(a) shows the comparison between the biased expetal distributiorp; "™***¢and the cor-

responding hypothetical distribution.

3.3.3 Hypothesis test

Similar to power law distribution, we use the Monte Carlsé@d method to test the exponential hypoth-
esis of the Internet degree distribution. The procedur@tty same as described in section 3.2.2,
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nevertheless for the moment we ignore the impact,@f and only put our attention td. One word of
caution regarding the computation of the KS distance beatwleebest fit exponential distribution and the
experimental distribution, which requires the normalmaf the cumulative biased exponential distri-
bution. The re-normalized cumulative distribution of thaded discrete exponential distribution can be
expressed as

exp(—Ak(k+ 1))

X — A Xein (Xmin + )

contrary to the normalized cumulative distribution of thassical exponential distributioR(k) = (1 —
exp(—Ak)). Similar to power law distribution, first we generate a sytith dataset following discrete
exponential distribution and compute theralue using the Monte Carlo-based method. As expected, the
p-value follows random distribution. After this validatigtep, we compute the p-value for the (biased)
measured degree distribution and obtain 0. This clearctejour null hypothesis of modeling Internet
with exponential distribution.

P(k) = 1

3.4 Hypothesis: Lognormal distribution

In this section, we consider the lognormal distributiontees ¢andidate hypothetical distribution for the
Internet. Lognormal distributions are normally used fontimuous variables. To treat discrete distri-
bution, we chose to assign to each dedeeeprobability proportional to the value of the (continuous)
probability density function at tha&, with a proper renormalization. This gives us probab#itt# the

form 5
1 (Ink—p) >
T p( 202
wherey is the mean and is the standard deviation. Earlier, we have already ilaistt the fact that the

actually measured degree distribution of Internet is esslfna biased distribution. Hence the hypothet-
ical biased lognormal distribution can be expressed as

o 2
Ok =Kp = (nk=p)” “))

o/ (2m) p( 202

We first try to correctly fit this biased lognormal distrikatiwith the experimental distribution. In order to
do that, we use MLE to estimate the mgaand standard deviatiam from the experimental distribution.

3.4.1 Parameter estimation

We approximate the discrete lognormal distribution from ¢lontinuous function by suitable normaliza-
tion as follows
he — Ok
K= ——

3L
We assume again that the measured degreels< i < N are independent and identically distributed

observations, coming from a discrete lognormal distridouf), with meanu and standard deviatioo.
We aim to estimat@ ando. Similar to Eq. (3.3), the likelihood function becomes

=z
=
x

(3.8)

1 _(Ink—u)2> 1
NP exp( 502 szIj’ (3.9)

L(u70|xlax27"'7XN) =

[
Dz I

a2

whose logarithm is

-N
I i 1 1 Ko /(Ink—p)\?
e <2q> o (ﬁm ‘explzk%m (") D



Again, we take as estimator the maximizers of log-likelid@anction. We first havégL“'- ly=p,0=6 =
0, which becomes

N Inx —[:l N
|Zi< G2 )_ gk exp( |nk7p1>2) xP1=0 (3.10)
k= kmln a\/ (2m) 262
where
@ 1 (ink— )2\ (nk—f)
P:kz%na (2m) eXp<_ 262 )X( 62 (3.11)

Similarly settingZ2t|,_; 5—5 = 0 yields

N 7 nx — )2
_i;<(nﬁa3u)>+ o I:xp( e “))XQ =0

k=Kmin 0'1/

> 2

where

Q= K%ax exp( ln;gzﬁ)z) ol 1(271) . [(Inkﬁ_zmz _1}

We numerically solve the simultaneous equations Eq. (3ah@)Eq. (3.12) to estimate the mean
and standard deviatiom from the experimental dataset. Similar to exponentiatidbigtion, we validate
the correctness of our estimation by numerically genehetsynthetic dataset. Precisely, we numerically
generate the degree sequergcé < i < N following the lognormal distribution witH Lo = 1, gp = .5},

{Ho = 15,00 =2} and{pp = 0.5, gp = 0.8} respectively. From these degree sequences, we compute the
synthetic degree distributiong®®. We apply Eq. (3.10) and Eq. (3.12) pj*® to estimate the parameters
{t=1.01,6 =0.49}, {1 =15,6 =197} and{f1 = 0.51,6 = 0.81} respectively which proves that
MLE is correctly able to evaluate the true parameters.

After this validation step, we apply Eq. (3.10) and Eq. (3.@8 the (biased) measurements from
Chapter 2pt P29 and estimate the parameters for Internef as- 0.12, & = 0.74} (We work again
on a combination of the three experiments described thetence, we propose the null hypothesis that
the best fit lognormal distribution for the Internet can bpressed as

B 1 ox <_(Ink—0.12)2)
= o7a/2m TP\ 109

Fig. 3.10(b) shows the comparison between the biased ewpetal distributiorp,
responding hypothetical distribution.

Empbiased o the cor-

3.4.2 Hypothesis test

We use Monte Carlo method to compute halue of the lognormal hypothesis of the experimental
degree distribution. The procedure is exactly same as idescin section 3.2.2, nevertheless for the
moment we ignore the impact &f,in and only put our attention to estimgteandg. Similar to expo-
nential distribution, here also we raise the issue reggrttie computation of the KS distance between
the best fit lognormal distribution and the experimentatridiation, which requires a properly normal-
ized cumulative biased lognormal distribution. Howeveiljke power law and exponential distribution,
the re-normalization of the biased cumulative distributias to be performed numerically, due to the
absence of analytical expression.

Computing thep-values on the (biased) degree distribution measured ipi€ha, we obtain again
0, which rejects our null hypothesis of a lognormal disttibu.
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3.5 Results summary

To the best of our knowledge, this work represents the figgiraus statistical analysis of hypothesis
about the degree distribution of the Internet relying orl eezurate measurements. Our analysis has
shown that one can definitively reject the hypotheses of eeptial and lognormal distributions. Similar
results not presented here apply for Poisson distributions

The case of power-law distribution is much more nuanced. ¥ Iseen indeed that, while tipe
values computed are not very high<(8% with the standard Monte-Carlo based methodology), they a
way to high to justify an outright rejection of the power-laaypothesis, especially since much higher
values are obtained when the less formal maximization ofthralue approach is used (3020% and
even up to 50%). Besides, we have seen that our results ssiise=to small variations of the data or
methodology (identification via regression, modified maximlikelihood, maximization of thg@-value,
etc.). Nevertheless, our results confirm the qualitativerémsion that the Internet degree distribution is
"close” to a power law for degrees higher than 4, and iderti§jope close to 4.25.

More precise results would need further experiments, ordéelopment and application of new
approaches in parameter identification, allowing taking gpecificities of power-law distribution into
account.

Taking a step back and considering the complexity of the phma at stakes, one can however sus-
pect that sufficiently long further experiment would eveitiyreject the power-law hypothesis, and that
a modification of paradigm would be needed to make more @etiements. Indeed, our approach here
has relied on the assumption that all discrepancies betthegheoretical and experimental distributions
are due to finite-size effects. It is however unlikely that tlegree distribution was generated exactly by
any nice law, that would eventually be matched by the expamial data if the size of the Internet and the
number of measurements were sufficiently large. A refinerofatir approach should take into account
the possible presence of second order unmodeled phenomearder to test hypotheses such as "The
degree distribution could have been generated by a law iffetsfrom a power law by less than a certain
measure.” In the meantime, the safest practical option t®tsider that the internet degree distribution
is well approximated by a power-law with slope 4.1 for degrakove 4.
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Chapter 4

Analysing the routing topology
dynamic

4.1 Study of the IP-level routing dynamics over Radar data

The Internet is a living system that evolves over time. Edagy many nodes and links are added or
removed, during planned maintenance or because of un@dieetwork failures. It is important to map
the Internet topology, in particular when designing futnedwork protocols which can be hard to test
on the real Internet. It is equally or even more importantridarstand its dynamics. This can be very
helpful for future protocols or new types of applicationsriake use of its evolving nature.

Study of the dynamics of the Internet topology has been ¢ackbth by analyzing the dynamics
of individual routes [100, 108, 74, 73] and from a more glopatspective, mainly at thas- or Ip-
level [57, 32, 92, 98, 94]. In addition, routing changes thappen at ther-level topology does not
necessarily imply changes at the physical level @ind-versa This work focuses on the-level routing
topology and asks the question of how it evolves over timstelad of individual routes, we studytrae
of I1p-level routes from one monitor to a fixed set of destinationthe Internet.

In our previous work reported in Deliverable D3.2, we alyeadalyzed the dynamic of the-level
routing topology discovered around a single node [85]. Ysirtraceroute-like measurement tool, we
periodically probed the route to several destinations feosingle monitor in the Internet. This results in
a series of routing trees which represent differsyu-centerediews of the routing topology around the
monitor. Analyzing these trees, two dynamic behaviors vegnearent. In particular, we observed that
we never stop discovering new addresses over time. Understanding the observed dynaritfosuy
knowing the properties of the real Internet topology is cterpTherefore, we relied on simulations to
identify the factors behind these behaviors and to study thifuence. We proposed a model whose
main goal was explanatory. This model represents the leteprAevel routing topology as an Erdos-
Rényi random grapls = (V, E) where vertices correspond e addresses and edges correspond to the
IP-level connectivity or links between twe addresses. Then, it incorporates@mell known apparent
dynamic factors: load-balancing and route evolution. i simulates Internet measurements@®rto
create a routing tree. This process is repeated many timagabe several routing trees that we use to
analyze the dynamics. From this work, we learn that it is idess$o reproduce on Erdds-Rényi graphs
the dynamic behaviors observed on the Internet.

This work goes further and studies the dynamic behaviorsdaygupower-law random graphs to
model the routing topology. With Erdds-Rényi random d¢rsywve made no assumption on the underlying
topology. Here, we use a graph with a power-law degree higtan. Indeed, Faloutsos and al. [54] have
shown that power-law graphs may be close to the Internetaggan term of their degree sequence, so
they may well approximate its structure. We first ask the sguestions as in the analysis with Erdos-
Rényi graphs: (1) can we reproduce the dynamics behaviomwer-law graphs ? and (2) how does
the dynamic behavior depend on various simulation paras@t&hen, we investigate the differences of
results that appear for Erdds-Rényi and power-law graphs

The rest of the section is organized as follows. In Secti@rl4we describe two characteristics of the
dynamics of thap-level routing topology around a single monitor. Sectioh.2 presents the simulation
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Figure 4.1: Properties of the observed dynamics.

model. In Section 4.1.3, we analyze the results of our erpents. Finally, Section 4.1.5 discusses some
related works, and Section 4.1.6 presents our conclusions.

4.1.1 IP-level routing topology dynamics

In our previous work [85], we presented two main charadies®f the dynamics of thee-level routing
topology around a given monitor. To perform this study, wedwesl several snapshots of tirerouting
topology between the monitor and a given set of destinatidfesuse tracetree [78] which is a traceroute-
like measurement tool that aims at discovering a tree ofexoat routing paths with the monitor as the
root and the destinations as the leaves. The intermediatgsof the tree are the addresses found on
the routing path for each pair (monitor, destination). Tize sf a tree is then the number of all its nodes
(intermediary nodes plus the monitor and destination nNodEse link between two nodes represents a
hop at thelP level. One routing tree represents a subset ofithlevel routing topology between the
monitor and the destinations. It is called ego-centerediew of this topology. Repeating many trace-
tree measurements periodically gives a set of routing tiiegisone can use to analyze the dynamics.
Each measurement round lasts aboutid and the frequency between a pair of rounds is abouhitb
Different datasets were collected from many monitors addhe world (almost 150 monitors, mostly on
PlanetLab) and are publicly available [1].

Analyzing these datasets, two main dynamic charactesisime out: (1) newp addresses are per-
sistently discovered around the monitor, (2) the patterocourrence ofp addresses (hnumber of occur-
rence/observation, and numbers of blocks of consecutigerohtion) follows a parabolic shape. Here,
we present these characteristics for two of our monitorswhrewoolthorpe andovh [85]. All other
monitors exhibit similar results. The collection @aolthorpe started in December, 2010 and ended in
June, 2011 and,B00 destinations were used. The moniieh only used 500 destinations with a higher
measurement frequency. It was collected from October, 20 8&ptember 2011.

New IP addresses are persistently discovered around the monitor Given a set of routing tre€g, T,

..., Tr, we computed the cumulative uni@= UT,1 < k <i. Fig.4.1(a) plots the size of all sefsas a
function of time forwoolthorpe andovh. We observe that new addresses are discovered at a fast rate.
In other terms, we never stop discovering nevaddresses between the monitor and the destinations over
time.

This plot presents the number of distimetaddresses observed, and not the number of distinct routers,
as in general severa addresses, or interfaces, correspond to a same routectiDgterhich interfaces
correspond to which routers is a difficult task. Though salverethods exist, none is 100% accurate.
We used theviDAR tool developed bycAIDA [27], and studied the number of discovemedtersob-
served since measurement beginning. The results werestemisivith the plot presented in Figure 4.1(a).
Moreover, previous work has studied the number of distsets discovered by such measurements, and
showed that it also increases significantly [86]. All in dliere is a good evidence that new routers are
actually discovered at a significant rate, even if part oiobgerved growth may be caused by discovering
new interfaces for already observed routers. As there is ethod that allows to know with certainty

38



300000

500000 160000

250000 140000
400000

120000
200000

300000 100000

150000 80000

Nb distinct nodes
Nb distinct nodes

e

Nb distinct nodes

200000 60000
100000 o
& 40000
50000 100000

20000

T
o L 3 4 . L 2 0
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Nb rounds Nb rounds Nb rounds

(a) Impact of swapsa = 2.3,d = 3,000) (b) Impact of destinationsa(= 2.3, s = (c) Impact of links = 3,000,s= 1,000)
1,000)

0

X’/
o
E:'

0

Figure 4.2: Analyzing the impact of simulation parametar®t graphs = 500,000).

which interfaces correspond to a same router, we limit dueseo the study of interfaces in the rest of
the paper.

The pattern of occurrence of 1P addresses follows a parabolic shapeWe defined two values that
quantify the occurrence of addresses around a monitor. First, tservation numbesf anip address
represents the total of distinct rounds in which it occurscdhdly, theblock numbef anip address is
the number of groups of consecutive rounds in which it is plese As an example, an IP address which
was observed on rounds2.3,5,6,8,9 and 11 has an observation number of 8 and a block number of 4.
Fig. 4.1(b) presents the correlation between these twotijigsrfor the monitofvoolthorpe. The plot
exhibits a clear parabolic shape with a large number of pailuse to the-axis and to the ling = x/2.

This can be explained in the following way. The presencegelaumber ofp addresses close to the
parabola can be explained by load-balancing routers. lad-lmalancing router randomly spreads traffic
amongk pathst, each router belonging to any of these paths has a prolyabiit1/k of being observed
at each round, leading to an observation number equal &pproximately.

A given round is then the first of a consecutive block of obagons for one of these routers with the
probability p that this router was observed in this round, multiplied by pnobability 1— p that it was
not observed in the previous round. Multiplying this prottigbby r gives the expected block number,
which is then equal top(1 — p) and is the equation of the parabola. This is a simplificatibthe real
case in which a router may belong to paths used by severablladcers, themselves belonging to paths
used by other load balancers.

In practice, anp address belonging to load-balanced paths can have anyhjlitha, 0 < p < 1, of
being observed. The set of addresses closed to tleaxis are often observed on consecutive rounds.
Finally, points on the ling/ = x/2 correspond top addresses that are observed only during a finite part
of the measurement and have a probabilitypef 1/2 of being observed during that time, due to load
balancing.

4.1.2 Model

Our purpose here is to propose relevant and simple mechanighreproduce the observations made
in Section 4.1.1. For that, we use the same simulation moéehave already proposed in [85] and
presented in Deliverable D3.2. Note that we do not aim at @sopg a realistic model, but rather at
providing a first and significant step towards understandi@gimpact of simple mechanisms on the
observed dynamics. This model incorporates four ingredietihe routing topology, the routes from
the monitor to the destinations in this topology, load beilag, and routing changes. For modeling
each ingredient, we try to make the simplest choice possiblegoal being to obtain a baseline model
which makes it possible to investigate the role of each carapg and to which future and more realistic
models should be compared. In that sens, this work follotep @ownapproach, starting from properties
observed on real data and proposing a model able to reproldeic&he philosophy behind stands in the
fact that if the model succeed in reproducing them, thentitinadly captures the processes that play a
fondamental role in the observed properties. As we will sieis,approach enables to have significant
insights on the relation between the different parametedsiaus to extrapolate with the measured data.

11t has been shown [14] that per-packet or per-flow load-lwit@nrouters spread —r—pobes equally among all paths to the
destination, which is roughly equivalent to randomly chings path.
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This work would of course benefit from the oppoditgtom upapproach that would focuse more precisely
on the technical mechanisms ruling the situation.

We represent thep-level routing topology of the Internet by an undirectedpir& = (V,E). Each
vertex inV corresponds to arp address and each edgekncorresponds to the connectivity between
two 1P addresse$. Then, we simulate tracetree measuremen@ iAs a preliminary step, we randomly
choose one node as the monitor @bdes as the destinations. Then fr@ywe inferred a routing tre€
with the monitor as the root, and the destinations as ledmgsactice, we simply performlareadth-first
search(BFS starting from the monitor, and then discard all branchasdio not lead to the destinations.

At this point, we have a routing tree shortest pathérom the monitor to the destinations. The next
step is to repeat this proceduréimes to simulate measurement rounds. We simulate load-balancing
by arandom BFSWe model route evolution using link rewiring, ewap This consists in choosing
uniformly at random two linkgu,v) and(x,y) 3 and swap their extremitiegg. replace them byu,y)
and(x,v).

Our previous work [85] used the Erdds-Rényi random grapideh [51] to produces. Here, we
use a random graph with a power-law degree distribution. [E8] power-law graph generation, we use
the following procedure: (1) given an exponentrandomly generate a list of degrees that respects the
following power-law [9] @ is a degree valudf,(d) the frequency ofl):

f(d)=d%a >0, (4.1)

(2) for each node, create as many half links as the value deigsee, (3) randomly sort the previous
list and, (4) connect consecutive half links to form links.

4.1.3 Simulation results

This section investigates whether it is possible to repcedan power-lawRL) graphs the dynamic be-
haviors observed on the Internet or not. We perform sevérallations with different values of the
parameters of the model which are: the numief nodes, the exponeiat, the numbersl of destina-
tions, s of swaps per round aneh of links for Erdds-Rényi ER) random graphs. We further look for
relations between the simulation parameters that may eawariants of the dynamic behaviors, and
explore the differences in the simulation results vidthandER graphs.

4.1.3.1 Reproducing the evolution ofp addresses discovery

Let us first focus on the evolution of the discovery of nevaddresses over time (meaning in the context
of this study, new vertex of the graph). As a preliminary step vary the numbes of edge swaps.
Fig. 4.2(a) presents the simulation results dtLayraph withn = 500,000 anda = 2.3, for varying values

of s. For this first step, we adopt the same number of destinagisisour measurements £ 3,000).

2Note that we do not address here the problem of aliases andewtfy a vertex to the set of alb addresse of a given router.
For sake of readability, we will omit this formal precisiamthe following.
3We choose them such that the four nodes are distinct.
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Three main observations appear from Fig. 4.2(a). Firss, jitassible to reproduce d&?i graphs the
fast discovery ofp addresses observed on our tracetree data, in particular=fdr, 000 ors = 10,000
swaps. Second, the larger the number of swaps, the fasteros®s are discovered. In fact, routing paths
change more quickly with a larger number of swapg ( for s= 100,000), than with a lower number of
swaps €.g, for s= 10). Recall that we use edge swaps to simulate link changesodwute evolution.
Therefore, increasing the number of swaps also naturadhgases the probability for routes between the
source and the destinations to change, which leads to théifz®very of new nodes. Third, the first
point of all curves are very close. This means that the nurobswaps have no influence on the size of
routing trees, which was expected.

Fors= 0 swaps, the curve has a fast initial growth, and then it regiiat until the last round. In the
absence of swaps, the only dynamic observed comeslfrachbalancingand not from route evolution.
All nodes that belong to load-balancing routing paths aiieldydiscovered at the beginning.

We never succeed in discovering all nodesPargraphs, even when we swap almost all their links
at each round. For instance, usig 1,000 000 swaps leads to the quick revealing of only 60% of the
nodes in the graph in less thar0D0 rounds. In the next section, we explore in depth the reaisehind
this.

We also test the impact of the number of destinations on timamhjc behaviors. Fig. 4.2(b) shows
the results on a graph with= 500 000,a = 2.3 ands = 1,000 swaps. We observe that the number of
destinations clearly has an influence on the height of thedomt of the curves, which represents the
size of the first routing tree. The larger the number of dasitims, the higher the first point of the curves,
i.e. the larger routing tree. Also, for different numbers of desions, the slope of all curves are very
similar, but not exactly identical. For instance, one mauase that doubling the number of destinations
(e.g, from 1% to 2%), we also double the size of the resulting raptiees. However, for this to be true,
two conditions need to be verified: (1) all destinations $thdwe on strictly different routing paths from
the monitor, (2) and all destinations should be chosen atdahee distance from the monitor. This is not
the case in our experiments.

Finally, we vary the exponemt of PL random graphs. Fig. 4.2(c) presents the simulation results
a graph withn = 500,000,s = 1,000 andd = 3,000, for various values of the parameter Note that,
the value of the exponent determines the numbar of links for PL graphs. From Fig. 4.2(c), it appears
that the lower the value af (or the higher the numben of links), the slower the rate of discovering new
nodes over time. Indeed, the proportion of links affectedwsps are negligible on graphs with a high
number of links. In addition, distances between pairs ofasaate highly reduced on graphs with a high
number of links. Indeed, the closer the destinations arbd®sburce, the shortest are the paths between
the source and the destinations. Therefore, less new naliéewiscovered over time.
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4.1.3.2 Finding relations between simulation parameters

To analyze the interaction between the simulation paraisietes vary several of them at the same time.
The goal here is to find invariants which can be very helpfulriderstand our model in depth.

The first relation we explore is between the size of the grattlae number of swaps. We set= 2.3
andd = 155- The value ofx are chosen so that the ratlo= 2 is verified. Fig. 4.3 presents the simulation
results on two graphs of different sizes= 50,000 and 500000, for different values of swaps= 500
and 50. Ther-axis on Fig. 4.3 represents the fraction of discovered soder the total of nodes, and the
x-axis, the number of rounds. We observe that the two middieesuare very close and almost follow
the same slope. It appears that these curves corresporajiosgwith a similar rati¢ of the number of
swaps over the number of links.

The second relation concerns the number of links and the aupftswaps. Here, we fir, and set
the proportion of destinations to 1%. We varyands. Fig. 4.4 presents the results of the simulation
on graphs oh = 500,000 nodes, witlor = 2.1 and 23, for s= 500 and 250 swaps. It seems that when
the number of links doubles, the number of swaps also neebls tibubled as well in order to obtain
curves with similar slopes. This result also tends to confium previous observation that simulations
with the same ratigz may follow a similar slope for node discovery. Sometimesas@brupt increases
may deviate a curve from its initial growth rate.g, the casex = 2.1 ands = 500 ford = 1%). We find
that these events are caused by swaps that happen closenotiter and therefore may affect a high
number of paths to destinations. However, these eventdlyisigenot change the slope of curves.

These results are interesting because they imply that kgpthie trend of the evolution curve for
a given graph and for a given value of swaps, it can be poskillefer the slope for a range of other
graphs. During our experiments, we have tested the pretweauselations for other sizes of graphs and
obtained the same conclusions. These analyses are at aredirgipary stage. We visually observe
the similarities between different curves for various paeters ofPL graphs. Later, we may need some
statistical analysis to confirm our conclusions.

4.1.3.3 Reproducing the parabolic shape on the occurrencé @ addresses

We now turn to the correlation between the observation nusnded the block numbers. Fig. 4.5 illus-
trates our results onRL graph withn = 500,000,a = 2.3 andd = 3,000, for various values &f We are
clearly able to reproduce the parabola observed on outttegcdata (for instance, fer= 50 and 100). In
that particular case, we also observe that a large numbeimtsare close to theaxis. Fors= 0 swaps,

all points strictly appear on the parabola. We already kit without swaps, the only dynamic factor
in our model is load balancing. This means that nodes araledéy load-balancing related dynamics.
Increasing the number of swaps, the parabola tends to vaR@hinstance, fos = 1,000 the parabola
has already started to vanish. For higher values tifcompletely loses its shape. This can be explained
by the fact that with a higher number of swaps, the effectsatilbalancing becomes negligible. In
practice, we find that if we increase the exponent BL.agraph, which also increases its number of links,
we maintain the parabola if we increase the number of swap&khs
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4.1.4 Exploring the differences betweerPL and ERgraphs

The evolution of node discovery dPL and ER graphs are very different. Fig. 4.6(a) shows that the
majority of nodes of arER graph, withn = 500,000, m = 1,000,000 andd = 3,000, are discovered
within r = 5,000 rounds with onlys = 1,000 swaps. Using the same amount of swaps &b graph
with approximately the same size and the same number ohdésins, we end up discovering only 12%
of all its nodes. Clearly, nodes are discovered more slowy time onPL graphs than oERgraphs. In
this last set of experiments, we investigate the reasongxmpain this difference.

Our first intuition concerns nodes of degree one. They reptebe largest fraction of nodes &t
graphs and, unless they are chosen as destinations, it issitge for them to be discovered during sim-
ulations since they are not router nodes. From Fig. 4.2(@have seen that even when we swap almost
all links on aPL graph withn = 500,000 anda = 2.3 at each round, we never succeed in discovering all
its nodes. Indeed, with= 1,000 000 swaps the curve tends to flatten out close to the yati295,877.
Examining the remaining nodes, we find that®% of them represent the degree-1 nodes. At the end,
we almost discover no nodes of degree JPargraphs.

We now ask the question whether a reduéddgraph in which we have removed every nodes of
degree 1 will follow the same evolution of node discovery m&®& graph with the same dimensions; if
this is true, then degree-1 nodes may be the only reason diffeeence of results observed fBL and
ERgraphs. Fig. 4.6(a) shows that this is not the case. The eetRlcgraph has only = 293 328 nodes
andm = 841326 links. Therefore, we plot its curves with= 1,760 to maintain the same ratio of the
number of destinations over the total of nodes as in themmaldtL graph. Withs= 1,000 swaps, the
curve of the reduceBL graph grows more slowly than the curve of thRgraph, but similarly as the one
of the originalPL graph. This means that nodes of degree 1 are not the readund bee slow evolution.
Increasing the number of swaps until we reach the deprecatwhere a maximum is reached for the
original PL graph in Fig. 4.6(b), we end up discovering the majority ofi@® of the reduceBL graph.
This confirms the fact that the flat phaseRIngraphs are due to the non-discovery of degree-1 nodes.

Our second intuition concerns the difference in the avetagfance that exists betwe@t andER
graphs. It has been proven that the average distance is ardiee oflog log non PL graphs [33], while
it is of log non ER graphs [26]. We explore this result in Fig. 4.6(c) which pltiie average distance
as a function of the number of links for boBL and ER graphs withn = 500 000 nodes. We use the
approximation proposed in [77] to compute the average mista lt appears that average distances are
effectively much smaller ifPL than inER graphs. This implies that the destination node$argraphs
are closer to the monitor; therefore, the resulting routiegs onPL graphs will have fewer nodes. To
confirm this result, we examine the size of the trees prodocdelR andPL graphs withn = 500,000
and the same number of links. We usles 3,000 destinations argl= 0 swaps. We find that the average
size onr = 5,000 trees is 363 and 12868 forPL andER, respectively. We then study in Fig. 4.7 the
evolution of node discovery odAL andE Rgraphs with the same average distance. We find that they still
do not follow the same slope. Finally, this shows that apaninfthe degree-1 nodes and the average
distance, there are still other factors behind the diffeedvetweerPL andERgraphs.

43



415 Related work

Study of the dynamics of the Internet topology has been ¢ackloth by analyzing the dynamics of
individual routes [100, 108, 74, 73, 118] and from a more glgierspective, mainly at thes- or I1p-
level [57, 32, 83, 92, 98, 94, 63, 110, 47, 46]. Load balantiag also been acknowledged for playing
an important role in the dynamics of routes as measured vetietoute-like tools [14]. Cunhaat [43]
used a method for measuring load-balanced routes, i.eesa@antaining one or more load-balancing
routers, and study their dynamics.

Some works [64, 98] argue that the topology dynamics shoaldaken into account in order to
produce realistic models for the Internet topology. Worknoadeling this topology and its dynamics can
be roughly divided between approaches aiming at realistiogmicking the evolution mechanisms of
the topology, e.g. reproducing the criteria taken into aotdy ASes for creating peering or customer-
provider links, see forinstance [52, 31, 117, 99, 84], amtegches aiming at reproducing global network
characteristics through simple mechanisms, thus exhgxiimple causes for more complex observations.
This paper belongs to this second approach. Tangmunarein&it[114] showed that this approach is
relevant by establishing that network generators basedaah properties, such as the degree distributions
of nodes, can capture global properties of the topologyh suscits hierarchical structure. Most related
to our characterization and modeling of the evolution of liternet topology is the work by Oliveira
etal. [92], which analyzes thas topology and shows that real topology dynamics can be mddede
constant-rate births and deaths of links and nodes. In dasispirit, Valleret al. model BGP routing
churn by a process similar to an epidemic spreading on a metfdd5]. Parket al.[99] studied several
growing models for the Internet topology, i.e. models inethinodes and links are progressively added
over time. They compared the evolution of these induced or&swvith the evolution of the real topology,
and use this to distinguish between the quality of the difitmodels.

Whereas most existing works focus on the long-term evaluyiog. from the Internet birth to current
times) of thephysicalAS topology, we are concerned here with the short- to medinm-evolution of
theroutingtopology at thapr-level. The routing and physical topology are closely lidket not identical
objects. In particular, routing changes can occur in theads of physical changes. They are closely
linked to BGP dynamics which have been studied for instand@4, 83, 115, 118]. Finally, our model
does not take into account node appearance and disappeandrich would be necessary for modeling
the long-term topology evolution.

4.1.6 Results summary and Next steps

This work focuses of the dynamics behaviors observed attieerietiP-level routing topology. We use
an existing model that incorporates a routing topologydytsamics and traceroute-like measurements to
explain the observed dynamics. Our former work detailed é@livierable D3.2 represented the routing
topology by an Erdds-Rényi random graph. Here, we use @&ptaw random graph and investigate the
effect of its degree distribution on the dynamics. As ind@dRényi graphs, we are able on power-law
graphs to reproduce the dynamic behaviors observed on theét. However, we find that the results
between the two types of graphs are quantitatively differen

Two main reasons for this difference appear: (1) it is diffitudiscovered the degree-1 nodes, which
represent the largest fraction of nodes on power-law grd@hthe average distance on power-law graphs
are much smaller than for Erdds-Rényi graphs. Theretoseeroute-like measurements on power-law
graphs produce smaller routing trees, which leads to a sldiseovery of new nodes over time.

Future work lies in two main directions. First, we strongblibve that this model can be used to
estimate some properties of the actual IP-level routingltagy that are not directly available through
measurements. For instance, performing more extensidgéestof the relations between the model's
parameters and the observed behavior, would allow to ihfeparameters from the observed behavior.
Applying this knowledge to real-world data would allow tdiesate the real-world values corresponding
to these parameters, such as for instance the frequenayko€hianges in the whole topology. More-
over, since our model is based on random graphs and simpleamies for load balancing and routing
dynamics, it lends itself well to formal analysis. This wadallow to obtain formal proofs for such results.

Second, the field of Internet topology modeling is very astiand models far more realistic than
random graphs are available. One should explore the comidninaf our routing mechanisms principles
with these topology models, to investigate the role playgdhe topology structure on the observed
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dynamics. In particular, our model does not take into acttiumlong term topology evolution, since
it does not model node birth or death. Coupling the ingradief our routing dynamics with, e.g., a
growing model for the Internet topology which would refldstlong term dynamics would surely lead to
insightful results.

4.2 Routing stability analysis

4.2.1 Introduction

In Deliverable D3.2, we investigated the problem of pathteerouting stability by means of:

1. the development of a method to process and interpret ttaepdat of Border Gateway Protocol
(BGP) routing information bases in order to identify andreltéerize occurrences of BGP routing
system instability; such characterization can be used asmparison point for the stability of the
newly developed schemes (candidate to replace BGP) andathdre instability phenomena any
routing system would have to cope with;

2. the definition of a set of stability metrics and developmoels for using them in order to provide a
better understanding of the BGP routing system’s stability

3. the investigation how path-vector routing behavior aetiverk dynamics mutually influence each
other.

The experimental results show that the proposed methode=n@étecting instability events affecting
routing tables, and deriving the local impact on the stgbdf the routing system (local stability). We
have also determined a differential stability-based dewcisriterion that can be taken into account as part
of the BGP route selection process. A significant fractiothefroutes (90%) of the routes selected by
means of this process is not stretch increasing. Moreovened would admit an increase of one AS-
hop, only a minor fraction of the routes (about 2%) would begliezed by a higher stretch increase (two
AS-hops and above).

The complete this stability analysis, we investigate theeatation between forwarding path and BGP
routing path instability. The objective is to relate the m@&ments carried in subtask 2 on ego-centered
visions of the topology (along its forwarding paths) andtask 3 dedicated to the stability of routing
paths (as locally determined by individual routers).

The measurements carried in subtask 3 are based on prac8$sh update messages collected by
the RouteViews project (www.routeviews.org), and proesthem by applying the algorithm described
in [40] [96]. The proposed approach to relate such measurenvéth the ones obtained in Subtask 2
relies on the observation that RouteViews monitors a rdtirge set of Internet eXchange (IX) poirfts
The data obtained from these routers part comprise thagutifiRouting Information Base (RIB) entries
(updated each two hours) and the received updates from é1e\$s separated in files every 15 minutes.
The format used of this files is MRT [25].

The measurements carried by RADAR are traceroute-likeggaobnning from a set of monitoring
nodes. Such probes target a large set of prefixes and ensléhisisibuted in the Internet. Based on these
measures, radar builds ego-centered views of the forwgitdjpology. A subset of the forwarding paths
followed by the radar probes will, expectedly, use one ofl¥i@oints monitored by RouteViews and
consequently, a subset of the AS-path monitored by the tea¢ldped in subtask 3 are also monitored
by radar. Based on that both tools can complement each other.

It is worth noticing that the tool developed by subtask 3 cammocess the BGP data collected by all
the RouteViews monitoring points because of the very highme of information (remember that the
tool developed in the context of subtask 3 associates pimgesf BGP routes to a single BGP speaker).
The selected router to be monitored by subtask 3 is routgsweide.routeviews.org.

“4a complete list can be found in http://www.routeviews.pegrs/
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Destination prefix Forwarding path Routing path
71.240.192.0/19 2500 701 19262 2500 701 19262
71.126.64.0/18 2500701 19262 2500 701 19262

193.138.220.0/22 2500 2914 174 16243 174 34305 2500 174 34305
75.89.192.0/21 2500 2914 3356 7029 2500 7018 7029

211.60.0.0/16 2500 2516 3786 2500 2516 3786
124.139.60.0/22 2500 2516 3786 38409 2500 10026 18302 384009

Table 4.1: Example of different paths following by RADAR arditeviews.

4.2.2 Alignment of the data

The first step to perform the correlation between forwargiath and routing path stability is to align the
data obtained in subtask 2 and subtask 3. For this purpasfltbwing points have been addressed.

On the one hand, the sampling intervals of the measurembtd®ed through Radar and the MRAI
time interval as used by the tool to process the BGP routeslifiezent (the latter is shorter than the
former). In Radar, each round of measurement takes appabsiyd minutes and 10 minutes elapses
between the end of a given round and the beginning of the mext\We thus run two different tests with
the routes obtained from the routeviews data. The first ras tise real BGP update time interval and
the routing path stability is computed according to realqetbetween updates as dictated by the MRAI
(without having the forwarding path stability at this gréarity but assuming this value remains constant
over that period). The second run only tests the stabilitg obuting path at each RADAR iteration
(around each 10 minutes).

On the other hand, the data provided by RADAR are IP addreshde the stability analysis is
performed in terms of AS path. Finding association (or maghbetween IP forwarding paths to AS
routing paths is thus required. This matching can been ddagxecuting the Whois tool. Whois is a
query and response protocol that is widely used for quergatgbases that store the registered users or
assignees of an Internet resource, such as a domain nanieaddriess prefix, or an autonomous system.
In particular, we used the Whois-based web tool made availapthe Team Cymru (http://www.team-
cymru.org/). This tool takes as input a file containing qiatge numbers of IP addresses and translates
them into AS numbers as output.

4.2.3 Matching IP address to AS Number

The matching between IP and AS Number (ASN) presents sesieoaicomings for the analysis of the
forwarding path stability. These are described in the foilhg paragraphs.

4.2.3.1 IP address prefix owner vs. IP address allocation

The mapping provided by Whois is not able to discriminateveen the current owner of an IP prefix
and the actual user of an IP subnet part of this prefix (thupamticular, the IP prefix itself). Indeed, a
customer AS may use IP addresses that actually belong ttréimsif) provider AS to which the customer
AS is attached to. In the mapping, these addresses appeeloaging to the transit provider AS instead
of designating network attachments located at the custé&®dpr eventually to the customer AS router
connected to the transit provider AS). This explains mucthefdifferences observed in AS sequences
between the routing path and the forwarding path. An examsgbown in Table 4.1.

4.2.3.2 Concatenation of non-routable IP addresses and #ited IP addresses

In some cases, the forwarding path trace as provided by RAD¥R consist of a sequence of non-
routable IP addresses such as 10/8 (commonly used to nunteeral interfaces of edge routers) like in
the following example:

e Source interface: 203.178.141.138
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* Intermediate interfaces: 203.178.135.1,203.178.438&1.213.145.93,61.213.162.87,61.213.162.97,
129.250.2.141,129.250.4.118,129.250.4.231,62.186193,62.154.5.5,193.159.224.118,232.3.66,
192.168.196.17,10.233.16.4,10.232.1.2, 10.232.0.93B066.130, 10.233.66.135

» Destination interface: 84.241.194.22
 Destination prefix: 84.241.192.0/18

According to the IP to ASN mapping, the IP address 193.1501B belongs to the AS 3320 while
84.241.194.22 to AS 31615. The Whois tool provides the méttion that the AS 3320 is peering AS
31615, thus we can derive that the sequence of non-routdladdresses belongs to a single AS (either
the AS 3320 or the AS 31615). In order thus to map the AS pattingsequence to the forwarding path
requires thus to capture such sequence.

In other cases, the filtering procedure applied by some reuatay hide some IP addresses along the
forwarding path. The resulting information is incomplete.

These two cases are the most common. For example, in one RARARIon, the paths to reach
around 1400 of the overall 3000 destinations contain eitberroutable IP addresses or the IP addresses
are filtered and thus unknown.

4.2.3.3 Paths with AS loop

It may happen that the resulting AS path presents a loop. Ameje is shown below. The forwarding
path provided by RADAR consists of the following IP addresgugence:

» Source interface: 203.178.141.138

* Intermediate interfaces: 203.178.135.1,203.178.433&1.213.145.93,61.120.144.87,61.213.162.229,
129.250.2.34, 129.250.8.182, 4.68.111.249, 4.69.132.58.134.22, 4.69.132.38, 4.69.132.42,
24.164.96.140, 64.156.66.50, 65.25.128.254, 24.2918@424.29.161.118

» Destination interface: 71.67.90.93

 Destination prefix: 71.67.0.0/17

Applying the IP address to ASN map shown in 4.2, we obtain tBepath2500 2914 3356 11060
3356 10796vhich contains the loof356 11060 3356

The observation of AS loop (from the IP address to the AS numisEpping) could be due to the
following :

» Misconfiguration of a transit router, policy-induced distion or the use of redundant protocol like
VRRP (the traceroute message passing twice by the AS imeexting the two routers giving both
access to the destination prefix);

» The user of the IP address is not the actual AS owning thesponding IP address prefix itself as
already discussed in Section 4.2.3.1.

4.2.3.4 Paths to the same destination prefix but with diffenet AS sequence

Another problem that makes such analysis difficult is thairdpthe same time interval, forwarding paths
directed to IP destination address part of the same destinatefix can be associated to different routing
paths directed to that destination prefix. As such it is thatspossible to consider that all forwarding
paths directed collectively to a given destination prefiiofe the same AS path.

For example, the previous AS sequence is obtained at thetsamef the following one

» Source interface: 203.178.141.138

* Intermediate interfaces: 203.178.141.138,203.17811393.178.138.243,61.213.145.93,61.120.144.87,
61.213.162.229,129.250.2.34,129.250.8.182, 4.6821914.69.132.78,4.69.134.22,4.69.132.38,
4.69.132.42,4.69.132.205,4.78.216.14, 65.25.128715687.121.69
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Mapping IP Prefix AS
203.178.141.138 203.178.128.0/17 2500
203.178.135.1 | 203.178.128.0/17 2500
203.178.138.243 203.178.128.0/17 2500
61.213.145.93 | 61.213.144.0/20| 2914
61.120.144.87 | 61.120.144.0/20| 2914
61.213.162.229| 61.213.160.0/19| 2914

129.250.2.34 | 129.250.0.0/16 | 2914
129.250.8.182 | 129.250.0.0/16 | 2914
4.68.111.249 4.0.0.0/9 3356

4.69.132.78 4.0.0.0/9 3356

4.69.134.22 4.0.0.0/9 3356

4.69.132.38 4.0.0.0/9 3356

4.69.132.42 4.0.0.0/9 3356
24.164.96.140 | 24.164.96.0/19 | 11060

64.156.66.50 64.152.0.0/13 | 3356
65.25.128.254 | 65.25.128.0/19 | 10796
24.29.164.132 | 24.29.160.0/20 | 10796
24.29.161.118 | 24.29.160.0/20 | 10796

71.67.90.93 71.67.0.0/17 | 10796

Table 4.2: Example of an AS loop in the forwarding path

» Destination interface: 71.67.121.69
* Destination prefix: 71.67.0.0/17

Applying the IP to ASN map shown in 4.3, we obtain the AS segeaf the routing pat@500 2914
3356 10796@which is different than the AS sequence obtained in Sectiar84.

One possible explanation is the application of load balemtzchniques that may split the announce-
ment of a given prefix into two (or more) routes (prefix de-aggttion), each one advertising a sub-prefix
towards a different interface whereas closer to the sountie ére aggregated (prefix aggregation along
the common segment).

4.2.4 Data Processing

In order to process the data, we use the following procedure:

» Association between forwarding and routing paths (on @stidation basis) does not require full
identification before association but only that a given farding path can be associated unambigu-
ously with a given routing path

» Based on this pair of data sequence, characterizationstdbility can be limited to a first level
analysis that would consist in determining whether an bibtathe forwarding and/or the routing
path is detected or not.

» These pairs can be then grouped/classified into 4 clasbsefs:

RP Stable - FP Stable: does not require any further analysis

RP Unstable - FP Stable: translate routing instability withforwarding instability (or for-
warding path stability)

RP Stable - FP Unstable: translate routing stability witHfouwarding stability (or forward-
ing path instability)

RP Unstable - FP Unstable: requires identification if a comsegment is at the origin of the
instability (thus AS-IP address mapping is required to igheiiee whether there is a common
origin to instability)
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Mapping IP Prefix AS
203.178.141.138 203.178.128.0/17 2500
203.178.135.1 | 203.178.128.0/17 2500
203.178.138.243 203.178.128.0/17 2500
61.213.145.93 | 61.213.144.0/20| 2914
61.120.144.87 | 61.120.144.0/20| 2914
61.213.162.229| 61.213.160.0/19| 2914
129.250.2.34 | 129.250.0.0/16 | 2914
129.250.8.182 | 129.250.0.0/16 | 2914
4.68.111.249 4.0.0.0/9 3356

4.69.132.78 4.0.0.0/9 3356

4.69.134.22 4.0.0.0/9 3356

4.69.132.38 4.0.0.0/9 3356

4.69.132.42 4.0.0.0/9 3356
4.69.132.205 4.0.0.0/9 3356

4.78.216.14 4.0.0.0/9 3356
65.25.128.158 | 65.25.128.0/19 | 10796

71.67.121.69 71.67.0.0/17 | 10796

Table 4.3: Example of a forwarding path crossing differe®eA to reach the same prefix as the case
above

 For each of the four classes, we record the min, the maxligyatietric value in addition to the
computation of the average and variance of the stabilityrimébver all pairs associated to each
class)

Cases 2) and 3) are the interesting cases because thewpteanositing instability without forwarding
instability and vice-versa, characterizing (in particuidentifying) the origin for these subsets provides a
location analysis which can be performed in a second stepafsis. Hence, the identification problem
is to be considered as part of the analysis/step and is tinitea specific subsets (at least for a first
level analysis). Moreover, this approach (by associatismpuch simpler compared to the approach
that requires full mapping of data sequences (IP addre&s®gafding) and AS (routing paths)) before
analysis.

Over the whole duration of the measurement and processimgdpé has become clear that it was
not possible to classify all routing-forwarding path by meaf a single discriminant (as some of these
pairs can exhibit multiple patterns during the measurerpenibd). Instead, we count the number of
matches labeled as (1 for RP Stable - FP Stable, 2 for RP Uaest&l® stable, 3 for RP Stable - FP
Unstable, and 4 for RP Unstable - FP Unstable) for each rgdtinvarding path pair. We then derive
a dominant behavior/main trend (corresponding to the lalithl the maximum number of counts) and
sub-trend would be more appropriate.

4.2.5 Results and Analysis

The table 4.4 presents a summary of the classification ofaheng - forwarding paths pairs using the
following classes (unstable,unstable), (unstable gjafdtable,unstable). The second column indicates
the number and the percentage of paths per class for whiehsttdne instability event has been observed.
The third colum provides the maximum number of measurenme@iials over which the corresponding
behaviour has been observed together with the median value.

Label Number and Percent of PairsMax.Count - Median
FP unstable - RP unstable 517 - 54% 40-2
FP unstable - RP stable 915 - 96% 223-47
FP stable - RP unstable 182 -19% 117-2

Table 4.4: Pair classification
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The table 4.5 accounts for the dominant behaviour/trendtla@dub-trend. In case of a tie during
classification, we counted only 1/2 (two conditions tie) 3 (all conditions tie). The majority of the
pairs falls in the (FP unstable,RP stable) class. The ld&tgrmines the dominant behaviour, i.e., the
most representative behaviour: the instability obsereedlbout 95% of the pairs results from forwarding
path instability. The second trend indicates that for als®% of the pairs the observed instability result
from both forwarding and routing path instability.

Main trend Number of Pairs| Score
FP unstable - RP unstable 36 32
FP unstable - RP stable| 912 906
FP stable - RP unstable 15 12
Second trend Number of Pairs| Score
FP unstable - RP unstable 474 444
FP unstable - RP stable 3 3
FP stable - RP unstable 58 12

Table 4.5: Trend analysis

Figure 4.8 plots the percentage of the pairs labeled (s&thl#e) over the entire measurement period
in the form of a cumulative distribution function (CDF). Tfalowing observations can be drawn from
this figure:

» Few pairs (less than 4%) are constantly unstable, mean&t@hly a small fraction of the observed
routing path instability correspond to a forwarding patstability.

» The majority of the pairs (around 60%) are labeled as (statalble) more than 90% of time, around
75% show the same behavior more than 80% of the time.

These observations combined with the fact that main causestatbility results from the forwarding
plane corroborates the assumption that the dynamic piep@tthe forwarding and the routing system
are different. Henceforth, it is impossible to derive the=drom the other. Moreover, it can also be
observed that a second order effect correlates forwardidg@uting path instability for about 50% of
the observed instability.

Figure 4.8: Cumulative Distribution Function (CDF)
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Chapter 5

Detecting events in samples and time
series

Faced with complex networks that evolve over time, a fretjnered is to monitor their evolution and
automatically raise alerts on abnormal behaviors of theegys.e., events which are statistically different
from most others. This challenging task is generally catiatier detection In spite of many works
addressing this question for decades in various fields, itrergity of cases leading to different outlier
definitions makes it hard to create a single universal metittete we consider the case of a property
measured on an evolving network (Figure 5.1). How can weraatizally and reliably identify outliers
in it? Itis challenging because these data contain botmmeghanges (i.e. sudden changes of the mean
of the time series) due to the evolution of the normal betragiod outlying values that deviate globally
or locally from the main trend. Moreover, we have no prior kiedge on the data; events may occur
at different time scales; we want an on-line method for teaé analysis. These settings are known to
pose a difficult problem. This work introduces a new methodutomatically detect outliers in sets of
numbers and in time series. We also show its relevance fectie)y abnormal events in computer and
social networks. The source code is available[2].

5.1 Introduction
Related Work

Given a data set, outlier detection aims at finding data pairiich are very different from the remain-
der. This field has received a large attention in the lastdiex@ecause outliers often represent critical
information about an abnormal behavior of the system desdrby the data. It covers a broad spectrum
of applications such as the identification of mechanicalt$achanges in system behavior, human and
instrument errors, natural deviations in a population,aiaatleaning prior to modeling. Outliers are also
called: event, novelty, anomaly, noise, deviation or eXoe66].

However there is no formal definition of an outlier becausg itituitive notion varies with the con-
text and the desired characteristics of outliers. In asttasil perspective, Grubbs [59] defined that “an
outlying observation, or outlier, is one that deviates redii from other members of the sample in which

11159
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0 1000 2 3000 4000 5000
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Figure 5.1: Evolution of a property measured on a networkndutime. Some outliers are circled.
Regime changes are pointed by arrows.
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it occurs”. Hawkins [65] defines an outlier as “an observatichich deviates so much from other ob-
servations as to arouse suspicions that it was generatediffeent mechanism”, while Barnett and

Lewis [19] call an outlier “an observation (or subset of alvations) which appears to be inconsistent
with the remainder of that set of data”. The diversity of aggtions has led to the introduction of various
techniques for outlier detection [30]. Areas of researahsas statistics, data mining, information theory
and process control theory have produced various metheodpéiting outliers in stochastic processes.
Specific researches also address the question of detentingedies in the Internet traffic [56].

Existing methods may be divided betweanivariate method¢i.e. considering one variable), pro-
posed in earlier works in statistics, amiltivariate methodé.e. considering multiple variables) which
form the main part of the current body of research. Althougivariate methods have been studied during
along time, and despite recent focus on multivariate metidoe to the increase of computational power,
univariate methods remain important to study.

We also distinguish parametric and non-parametric (mfréel} procedures [22]. Parametric proce-
dures assume the values to be identically and independdisthjbuted following a known probability
distribution (generally a normal distribution), or at leasstatistical estimate of the distribution param-
eters to fit the data. They flag as outliers the values thatte@iom the model hypotheses. They are
often unsuitable for data sets without prior knowledge @f timderlying distribution [97] because the
hypotheses (e.g. the independence of values) are notedtiafid because the statistical models are not
reliable for real data and are hard to validate since marg/ skets do not fit one particular model.

Non-parametric procedures do not assume knowledge of tteedistribution, and learn to detect
outliers. In some casesypervised learninglabeled data sets are available, from which the program
builds a model of normal behavior (and sometimes also a nafdritlying behavior). Otherwiseuisu-
pervised learniny the procedure builds a probabilistic model of the dataaed updates this model as
new points appear. These procedures classify as outliedsatia points that deviate significantly from the
model. These approaches are based on histogram analysisl, ¢ensity, distance measures or clustering
analysis.

The output of an outlier detector is a score of “outlierneassigned to each data point, which rep-
resents its probability to be an outlier, or the distancenfreormal points. Data points are ultimately
classified as outliers when their score is above a giventibiésvhich is a parameter of the method.

The detection of outliers in temporal data relies mainly wo aipproaches. In the first one, points
which deviate from a temporal model like the autoregresaiegrated moving average (ARMA) model [3]
or afinite-state automaton model [71] are marked as outliethe second one, points very different from
other points within a sliding window are marked as outligéegime changes (i.e. change points in time
series that are observed by sudden changes of the mean) maydigered as anomalies as well [29, 113].

Finally, recent papers address the issue of outlier detedti networks and graph streams [7] by
finding surprising motifs [10][72].

Our Contribution

We propose here a new unsupervised non-parametric urtvamiathod that reliably detects multiple
outliers on either static or temporal data sets given thieviahg setting, which is known to be hard:
values may not be independent and identically distributedhave no prior knowledge of the underlying
process which generated the data, or of the probabilityibigion; in time series, regime changes may
exist due to the evolution of the normal behavior (non-sterity), and also outlying values which deviate
globally or locally from the main trend. We finally want an bne method for real-time monitoring. In
this context, our method has the following advantages:t(a3és a novel approach based on the study
of the skewness of distributions, and is easy to interpbtit (ooks for outliers only when the notion of
outlier is relevant in the considered data set; (c) it is ¢asyse, as the only parameter is the size of the
time window for time series, and (d) it may be used on-line.

We describe our method in Section 5.2, validate it in Seci&) and apply it on real-world data in
Section 5.4; we conclude in Section 5.5.
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5.2 The Outskewer Method

Our method relies on the notions skewnessf distributions and its evolution when extremal values are
removed, which we callkewness signatureve use this to detect outliers in multisets of numbers and in
time series.

5.2.1 Skewness

We consider a multiset (i.e. a set in which members may appeae than onceX of n values. The
distribution of these values is the fracti®k, for eachx, of values inX which are equal tx. Such
distribution samples are basically described by their meany,-x (x/n) and standard deviatioor =

V/1/(n—1) - S,ex (x—x)2. Going further, the sample skewness is a measure of digofbasymmetry,

and can be estimated by:
3
n X—X
) (n—l)(n—Z)XEZ< o

Intuitively a negative skewness indicates a tail on thedéthe distribution more pronounced than
the one on the right, while a positive skewness means theecsaysee Figure 5.2. If no tail exists, i.e. all
values are equay(X) is undefined becauge= 0. If both tails exist on each side and are equ@K) =

For normal distributionsi = re 25" ) ), Y(X) =0, while for Pareto distribution$% = xa+1 where

0< b<a), y(X) > 0. Examples of unimodal skewed distributions are shown gnrei5.2.

The skewness has the interesting feature to be influencedlbgs/which are far from other values,
because it is based on the cubed distance from values to the. rhience its value changes a lot if they
are removed. We show now how to use this feature for outligzatien.

5.2.2 Skewness Signature

We consider the evolution of the skewness of a distributforalues in a multiseX while extremal values
are removed one by one froKy which we call theskewness signatu X. The extremal value oX,
denoted bye(X), is

e(X) — { maxX)  if y(X) > 0,and
min(X) otherwise.

In practice, the skewness is almost never equal to zeroghsn@ays choosing miX) in the case where
y(X) = 0 induces a negligible bias.

We define a series of multisets as followg:= X, X; = X_1\{e(X_1)}, foralli > 0. In other words,
X; is the multiset obtained by removing one occurrence of thgelkt (resp. smallest) value ¥f_; if
the distribution of values iX;_; has a positive (resp. negative or zero) skewness. Finatl\define the
skewness signature as the functgp, X) = y(X|p. ), wheren s the size oiX andX ., is the multiset
obtained fromX by removing| p- n| extremal values, i.e. a fractignof extremal values.

For example, iX = {-3,-2,-1,-1,0, 1, 2, 3, % values 7, 3, 2, -3, 1, -2, 0 are removed in this otder
and the values of the skewness signature are 1.09, 0.22,0.0.40, 0, 1.73.

The skewness signature may be used to find outliers in unihdigteibutions because outliers lie at
their extremities, and because skewness is sensitive tetheval of outliers.

lvalues are removed untji(X) is not computable: our skewness estimator is only relevarddta sets with at least 3 values.
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Figure 5.3: Example of 50 values with 7 outliers and 5 posdmtittliers (from left to right): cumulative
distribution (top); absolute values of the skewness sigeaimiddle); zoom on it (bottom left); absolute
values of skewness for which outliers and potential owgtleme detected (bottom right). We obtaia
0.14,T =0.48,T' =0.16,t' = 0.24.
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5.2.3 Outliers Detection

Our method relies on the following hypotheses: outlierseatteemal values which cause the skewness to
be far from zero; the skewness signature converges to zerah(e distribution becomes more symmetric)
when outliers are removed one by one. Therefore, the distahthe skewness to zero can be used to
identify outliers. Extremal values which cause this dis&to be too large should be classified as outliers.
But how is it possible to determine that the distance is togdavithout making any hypothesis on the
data set?

We propose to consider the distance relatively to the pitagoof extremal values removed: the more
extremal values removed, the closer to zero the skewnespésted to be. For any € [0;0.5] we say
thatsis p-stableif and only if [s(p/,X)| < 0.5— p, for all p’ € [p,0.5]. We do not consider values pf
larger than 0.5 because this corresponds to a removal of thanehalf of all values; in such situations,
the skewness has little to do with the original data, and it weay much if too many values are removed.

Lett be the smallest value such ttsais t-stable, andl be the largest value such thais T-stable.
Whens is neverp-stable for anyp, t andT do not exist. This case indicates that it is irrelevant tdkloo
for outliers in the given data set, according to our notioowiier; in this case our method classifies alll
values in the data set asknown. Otherwise we find outliers as follows.

We denote the smallest and largest numberX;iby mini = min(X;) andmax = max(%). Then,
min|p.n| (resp. max ) is the smallest (resp. largest) remaining value when difnag of all values
has been removed. L&t (resp. T') be the smallest value g such that|y(Xy., )| < 0.5t (resp.
[V(X|77.n))| <0.5—T). Our method concludes as follows: belomin,., and abovemax.,, values
areoutliers; betweermin.,) andmin 1., included (resp.maxy.nj andmaxr.|), values argoten-
tial outliers; values arenot outliers otherwise. Notice that whetl = T, MiNjy.n) = MinT.n) (resp.
maxy.n| = Maxy.,)). In this case, values equal iny., (resp.maxy.,) are potential outliers. Fig-
ure 5.3 illustrates our method on an example.

5.2.4 Dynamic Extension

Our method may be used on time series representing the rodita system’s property. Léko, X1, ..., Xn }
be a time series. We consider the multisets which comtaialues:X' = {X_.1, ..., % }. Any valuex; of
the series belongs t¢', XI*1, ..., X*W-1 We use our method on all thesemultisets, and consider the
final class ofx; to be the one which occurs most often among thvestassifications. In case of equality,
we give priority ofoutlier uponpotential outlieruponnot outlier, because we prefer to detect too much
outliers than too few.
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Figure 5.5: Quartiles, min and max sf0.5,X) as a function oh for normal (left) and Pareto (right)
distributions.

5.3 Experimental Validation

The validation of outlier detection methods is difficult base of the various outlier definitions, hypothe-
ses and use cases [22]. Labeled data sets raise also theofsgtier criteria to label the data. We
consider that our method should detect outliers, if anyhéf motion of outlier is relevant for the given
data set. In particular, we consider for our experimenthdiation the following cases: (a) distributions
like Power laws (e.g. Pareto and Zipf’s law) commonly cam&xtremal values far from the mean (i.e.
heterogeneoysso it is erroneous to consider them as outliers, moreowereP law distributions are
asymmetrical so our method should conclude that lookingptdliers in them is irrelevant; (b) normal
distributions are symmetrical and extremal values far ftbenmean are uncommon (i.leomogeneoys
so no outlier should be detected but these extremal values ttey occur; (c) half-normal distributions
B = 2—;e*xza/ T wherea > 0), which are basically the absolute of normal distribusiarith mean equal
to 0, are asymmetrical but homogeneous, so this case is amiE@nd should be unclear for our method
as well; (d) symmetric Pareto distributiord, & %a|x|‘1‘al‘x‘>b, where 0< a < 2 andb > 0), which
are basically the mirror symmetric of Pareto distributiaf®ut the vertical axis, are symmetrical but
heterogeneous, so we study the behavior of our method icaisis.

We first study the relevance of our method on these four Higidgns, and we study the effect of the
sample size (Ill.A). Then we study the performance of ourhoétto detect outliers, and evaluate the
rate of true outliers and false outliers detected (I11.Be fivially study the behavior of our method when
regime changes occur in temporal data (111.C).

5.3.1 Relevance

Our method is applicable if and only if the given data sgt-stable for at least one value pfbetween

0 and 0.5. A necessary condition for this is thg{0.5, X)| < 0.5. We show in this section that this is
true for normal distributions (even with a few outliers) aatse for Pareto distributions, which is the
expected behavior: normal distributions are symmetrindl lomogeneous and Pareto distributions are
asymmetrical and heterogeneous.

We study the behavior afon normal47(0,1) and Pareto (shape=6, location=2) probability distribu-
tions’. For each one, we randomly generate 1,000 samples of 100eratatobtain skewness signatures;
we compute and plot the skewness signature of each samppurefeffig:skewness-signatures. We ob-
serve that the values of normal signatures oscillate araanal whereas the values of Pareto signatures
globally decrease and are above zero upti 0.5. The cumulative frequency distributions s, X)
on Figure 5.4 confirm these observations. We also computegkbwness signatures of normal and
Pareto distributions with various parameters, and alsimwarsymmetrical distributioisvhich we do
not present here due to space constraints. All of them expaltierns similar to normal signatures.

It is clear that the probability for Pareto skewness to béniwif—0.5;0.5] increases withp. We
estimateP(|s(0.5, X)| < 0.5) on 1,000 Pareto and 1,000 normal samples. We obtain thatribtisbility

20ther parameters lead to similar results.
3Cauchy, Laplace, some Gamma and Weibull distributions.
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is equal to zero for Pareto samples, and is greater than 6r9tofmal samples. We conclude that our
method is able to characterize symmetrical and homogeneamsas asymmetrical and heterogeneous
distributions at a confidence level of 0.95. Moreover, théitiaah of some outliers in these distributions
produces almost the same signatures than without outhiecguse extremal values are firstly removed.
Therefore existing outliers do not notably change the dtariation.

Let us study the evolution &f0.5, X) when the sample sizevaries. We generate 1,000 normal and
Pareto samples for each valuerdfetween 3 and 1,000, then comps(@.5, X) for each sample, and we
finally obtain the quartiles, min and max of the values@5, X) at eachn. We observe in Figure 5.5
that the results converge to zero for the normal distrilbytamd to~ 0.3 for the Pareto distribution. Thus,
increasingn should lead to a better characterization.

We verify this hypothesis by evaluating the rate of sampllesrasis neverp-stable, for 1,000 normal
and Pareto samples for each sizé/e observe in Figure 5.6 that it seems to follow a fast deseréar
normal samples. Far > 37, less than 5% of normal samples are incorrectly chaiaetgrand less than
5%o forn > 55. We also observe that it increases witfor n > 50 on Pareto samples. The minimum is
79% atn = 52, is around 85% at = 100, around 95% at = 240, and above 99.5% for> 500.

We also evaluate this rate for half-normal and symmetrie®asamples. We observe in Figure 5.6
that it seems to follow a fast decrease for symmetric Pagatptes, but a slow decrease for half-normal
samples. This result is not surprising because the theatetkewness of half-normal distributidhis
~ 1, and the skewness decreases slowly when extremal vakiesnaoved one by one. As expected, our
method has unclear results in this case.

We conclude that our methods characterizes samples wihl€i@d very well, and is excellent on
samples of size 1,000. Our method also considers that theeymic Pareto distribution should contain
no outlier.

In addition, we study the skewness range where our methosidenss to be p-stable at least once.
We vary the shape parameter of a Gamma distribution (thskéisness) to incrementally generate 1,000
samples of 100 numbers for each skewness value, from Péeteamples to normal-like samples, and
compute the rate afthat arep-stable at least once for each skewness. We remindthatstable if and
only if |s(p/,X)| <0.5—p, forall p’ € [p;0.5]. The result in Figure 5.7 shows thais alwaysp-stable
at least once for samples of skewness below 1.5, and mpestble for samples of skewness above.

5.3.2 Performance

We study the effect of the sample size on outlier detectiarormal, Pareto, half-normal and symmetric
Pareto distributions. We generate 1,000 samples for eattibdition and size, then we detect outliers
on each sample. Normal and Pareto samples contain no doglidefinition, so no outlier should be
detected; they are callddise outliers

We observe in Figure 5.8 that the rate of false outliers is Waith at most 3% for the normal distribu-
tion and at most 5% for Pareto. This rate decreases wliecreases to be less than 1%. abowve 100
for the normal distribution, and abowvex 500 for the Pareto distribution. We also evaluate the rate of
outliers detected for the symmetric Pareto distributi@aching 5% at most, it seems to follow a fast de-
crease when increases, to reach 1%. @ats 1000. For the half-normal distribution, this rate is betwee
8% and 12% fon > 100, and is consistent with the fraction of samples for wisichneverp-stable. We
conclude that our method detects few false outliers on seemgdlsize 100, and almost none on samples
of size 1,000, which is an excellent performance; it raratedts outliers on symmetric Pareto samples,
which is the expected behavior regarding the charactésizat

Now we estimate the ability to detect true outliers by getiegea sample of size 1,000 composed of
a normal sample of variance equal to 1 and a uniform samplleddhenoise of size varying from 0.2%
to 50% of the total number of values. We then count the numbgoise points which are classified as
outliers and potential outliers. It is the worst case beedlus initial skewness is close to zero and outliers
are uniformly distributed around the mean with no gap betwkem and the rest of the distribution. This
is also a way to evaluate the robustness of our method aggimsblem known as thmaskingeffect [24],
occurring when some outliers are not detected because pféisence of other outliers close to them.

We generate uniform samples of various ranges (i.e. largesis smallest value). The range of
normal samples of size 1,000 is roughly 6 and the range of esmopsize 16 is roughly 10, so we select

fy=(V2-(4-m)/(n-2)¥?
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noise ranges larger than this: 10, 50 and 100. We observgimd-5.9 that noise points very close to the
signal points (range 10) are classified as potential outli@rger ranges increase the number of detected
outliers. We also see that the less noise, the higher thergoveetect true outliers. However almost no
outlier can be detected with more than 10% of uniform noise.

5.3.3 Regime Changes

Regime changes are change points in time series that aresedd®y sudden changes of the mean. When
they occur we are faced with non-trivial distributions. Wedy now how our method deals with them.
We simulate a stream of values by generating two normal sssmfl size 110 with mean equal to O
and 3 respectivelyt indicates the order of appearance of the values. Figure $ha@s our method
applied dynamically with a sliding window of siag = 100. The outlier status of values is unknown
at the beginning. At the end, none of them are outliers butpmiential outlier. Our method is hence
robust against regime changes. Notice that 72 values assifital as potential outliers when our method
is applied on the whole data set at once.

5.4 Real-World Applications

5.4.1 Dynamics of Internet Topology

We applied our method to data collected with the radar foritibernet [81], which makes possible to
observe the dynamics of the Internet’s topology at the sohke few minutes. It consists in focusing
on the part of the Internet’s topology viewed from a singlenpater called thenonitor. Periodical
measurements of this map, callego-centered viewwere performed every 15 minutes during several
months, leading to a series of graphs.

59



->¢ outlier % potential outlier -=- not outlier

1 4 —
Q
a
0.5 =
5
(7))
0_
@ 1
505 Q
®
D al
“= 0 A ©
o
ol 5
©
=05 - e
[EEY
S
O_I T I
0.002  0.01 0.1 0.5

noise ratio

Figure 5.9: Ratio of noise points detected as outliers,rg@tkoutliers and not outliers as a function of
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The most natural idea to detect events in the dynamics aphyr a radar measurement from a given
monitor certainly is to study the numbby of nodes observed at each round/\e plot it for a typical
case in Figure 5.1. Clear outliers appear under the formarfstiecreases o for some values af, but
this brings little information because they may be due tgsdgof connectivity by the monitor. Except
from these statistical outliers, which are detected by oethmd, the numbeé¥; of nodes observed at each
roundi in Figure 5.11 is very stable.

We thus compute the number of distinct nodes seen in five catige rounds to avoid the outliers
which only reveal losses of connectivity in one round of nueament. We observe events in the dynamics
shown in Figure 5.12, where many decreases existing in &igurl have disappeared. Figure 5.12 is well
centered around a typical value, but still exhibits shagréases and decreases. This means that these
outliers, which were also detected by our method, may reeadkvents in the dynamics of this network.
Outliers above the typical values indicate a sudden appeara many new nodes in the network, while
outliers below the typical values may indicate longer Igssfeconnectivity or a sudden disappearance of
many nodes.

Our approach is hence relevant for studying the evolutiegofcentered views of the Internet topol-
ogy, and for raising automatic alerts in real-time when gigant changes of connectivity occur.

5.4.2 Search Engine Queries

We applied our method on the data set of search queries eadtom a eDonkey server [80]. It consists
in textual queries made by users for lists of files matchirtpoe keywords. The measurement lasted for
28 weeks. The data set contains 205,228,820 queries efftene@4,413,195 IP addresses. Samples and
procedure descriptions are publicly available [80].

In order to study the number of queries related to the filerry Potter and the half blood pringe
we filtered the queries to get only those which contain thededhalf blood prince”. Then for every
10 minutes we counted the number of queries made during $hédar of measurement. Outliers were
finally detected using a sliding window of size= 1,008 (7 days) to capture meaningful events at the
scale of one week. We plot in Figure 5.13 the number of ostherd potential outliers observed each day
and each week. The scale of a day seems better for obsersgirigdeeases of user queries.

We identify three main events: we observe many values makegubtential outliers during the week

60



_| © nqt outlier

> 74 not outlier
g |4 potential outli
2 —
x 17
0 —
_1 —
_2 -
5 - © notoutlier X 5 g X Ab
4 44 potential outliewﬁ 4 44 potential outlie?%ééso@o
3 4% outlier o ’ ; 3 4 x outlier o o 4
2 =, tnkfloyn & o 2 & bd?&
(9 » [Sel Q ©o 4
x 1 b (gb G2 <> 4 1
-1 A C@«@OS -1
_2 - [e) @0) o I} _2
T T T T T T T T T T
0 50 ]fOO 150 200 0 50 ]tOO 150 200
5 4© not ou.tlie ® 59@ ‘ 5 _ 55’@
4 44 potential utlleggg { 4 - o notoutlier  _Po o@)%o
3 - x outlier o &2 3 -|{~ potential outlie X @@
2 - <. nkfown & boc(?@ 24 9 % & elers) X
O O ® ©o p o e
=< 1 1% 3 o A < 1 4 Bee P o A o
0 - 8% 0 & 0
-1 - ;‘ -1
-2 1 o ®°° -2
T T T T T T T T T T
0 50 ]fOO 150 200 0 50 ]tOO 150 200

Figure 5.10: From top-left to bottom-right, evolution o&thutlier status of values in a time series of size
n = 220, and having one regime change (mean value changing frien8)) Vertical lines indicate the
time window boundaries between what outliers are detected.

after July 15, 2009, when the film was out in theaters. Thenrdmown event appears from August
23 to 25, when almost all values are outliers. The last autically detected event, from October 10 to
12, coincides with the release of a pirated version of the dimOctober 10 on BitTorrent, another P2P
network, as discovered by searchingtartps: //thepiratebay.se. We suppose that this release was
made from a promotional DVD, because the commercial DVD vedsased on December 7 only; we
observe no noticeable event on this day.

Our approach is hence relevant for studying logs of searehieg) and for detecting bursts of queries
related to a same topic.

5.5 Results summary and Next steps

The propose®utskewemethod to detect statistically significant outliers in sés@nd time series relies
on the study of the distribution skewness. This method ig Eamterpret because values are classified as
outliers potential outliersor not outliers The class of all values is unknown when the notion of outlier
is not relevant in the considered data set. Our method isedsy to use because it requires no prior
knowledge on the data, and the only parameter is the sizesdirtie window for time series. Moreover,

it may be used on-line.
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We applied this method on two data sets representative of nrsgtcases: evolution of ego-centered
views of the Internet topology, and logs of queries entenéala search engine. We clearly identify events
in the evolution of ego-centered views of the Internet togglas shown in Figure 5.11 and Figure 5.12.
We also automatically detect the release of a pirated verdia film in a P2P system, through the queries
entered by users in the search engine, as show in Figure 5.13.

This work opens the way to further investigation of the usthefskewness to detect multiple outliers
in samples, and to detect events at different time scaldmim deries. Further studies may also extend
our method to detect regime changes.
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Chapter 6

Anaysis of P2P data

Peer-to-peer (p2p) file sharing applications have evolntma major traffic source in the Internet [16, 4,
15, 69, 109]. This development has crucial implicationgifaffic engineering and information diffusion
at the same time, since p2p networks constitute a remarkakke of interaction betweentechnolog-
ical layer (network of computers) where the traffic occurs upoiciviive have asociallayer (overlay
network of peers, structured by related interests), whegdile spreading occurs. Indeed, understanding
p2p activity and its dynamics is critical to assure a goodityuef service, enhance network architecture,
forecast long-term provisioning and design better prdwgpon it. Such tasks naturally rely on measure-
ments of real-world traffic and models that can generatehgyiattraffic. Consequently, identifying key
properties of p2p traffic and conceiving models capable pfa@ucing them is decisive for the domain.

In the chapter, we present the analyses performed on a 48&oend of the file sharing activity in
an eDonkey server (akin to [8], see Deliverable D3.2 fortfurtdelails), suitably anonymized for privacy
protection purposes. We show that our dataset presentsiniahproperties, both in terms of download
requests and file exchanges, that we study from the pointegf of traffic dynamics and diffusion. We
also propose different model in order to reproduce thoseroations. This work has to be seen in direct
relation with WP2 and WPA4 related to the elaboration of sialiscenario of traffic demand that can be
used to test routing algorithm and policies proposed in th& ER project.

6.1 Cascade properties

In this section, we explain how traces of peer-to-peer fiisig may be used to this goal. We also per-
form simulations to assess the relevance of the standardn®tiel to mimic key properties of spreading
cascade. We examine the impact of the network topology oareed properties and finally turn to the
evaluation of two heterogeneous versions of the SIR modelcdxiclude that all the models tested failed
to reproduce key properties of such cascades: typicall\spgaading cascades are relatively “elongated”
compared to simulated ones. We have also observed somesiier similarities common to all SIR
models tested.

6.1.1 Introduction

Diffusion phenomena in complex networks — such as the spygaitlus on contact networks, gossip on
social networks and files in peer-to-peer (P2P) networksse Bpawned an increasing interest in recent
years. The boost of computer networks and online socialor&tplatforms offers data and new insights
on these phenomena in large scale networks; the possitailitglidate and refine current models might
lead to breakthroughs in the field.

Although large scale diffusion phenomena have alwaysa#édaconsiderable interest, it has been
historically challenging to obtain open, extensive anailied real-world data at this level. Despite this
obstacle, diffusion models emerged, notably in epidengipld he early models, both discrete and con-
tinuous (see [13, 12] for a survey), focused primarilyroacroscopi@spects of diffusion — such as the
evolution of the number of infected individuals in a popidat— overlooking thenicroscopiadynamic of
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the epidemic —i.e., how (by whom) individuals become indelctThe advent of network analysis in vari-
ous contexts has pushed for a more detailed descriptiorafitfusion process. Indeed, models based on
the detailed interactions of agents on a network have bioedan sociology [58], computer science [49]
and economics [68], among others. New epidemic modelsredjby the classical approaches featuring
a detailed dynamic description in the context of network® a@ppeared (see [20, 48] for a survey). In
particular the network version of the SIR family of models leatablished itself as reference model in the
study of information diffusion [38, 91, 39, 82, 93].

In this context, assessing the pertinence of such modetssitrithe real-world data is critical. In order
to validate this model a comprehensive empirical spreatianmge, consisting of (1) detailed chronologi-
cal data of who transmitted the information to whom and (2xdkescribing the underlying network on
which the diffusion process takes place. Indeed, the né&twension of the SIR model (henceforth called
simply SIR model) is based on local rules of transmissiorciitdke into account the network topology.
In large epidemic bursts the available data often providestolution of large aggregate quantity, such
as the number of touched individuals, but rarely uncoveldbal trail of the epidemic. Conversely, other
empirical studies feature transmission events, but lackpiete information of the underlying network
structure on which the diffusion takes place [6, 67]. Thigkwanalyses the relevance of the SIR model
for real-world diffusions, using data obtained measurimg activity on a peer-to-peer file sharing net-
work. This rich dataset allows one to reconstruct both theedging network and the detailed diffusion
trail at a remarkable scale.

We begin with a description of our dataset and framework aige 6.1.2. In section 6.1.3 we define
the spreading cascade. Next, in section 6.1.4, we simiilatepreading of files as a standard SIR process
and confront it with the observed spreading; we also ingasti the interplay between this process and
structural properties of the underlying network where thieading takes place. In section 6.1.5 we ex-
amine the spreading pattern when we modify the SIR modeldowat for heterogeneity in the behavior
of the peers and in the popularity of files. We conclude witluffer work perspectives.

6.1.2 Dataset and framework

The data used in this study comes from file sharing in an eDosé&erer, obtained from a measurement
of six hours of activity (akin to [8]). In this setting, peaysery the eDonkey server indexing files and for
each file they get a list of available peers in the network @ssiag the requested file. Next, peers contact
potential providers directly and transmission betweemtbasues. This dataset is a collection of answers
to these queries, encoded as 4-tuples of integers in thewfioly format:(t,P,C,F), where capital letters
represent unique ids (e.g. in Figure 6.2). Each tuple adsdona query made at tinteof the fileF by

the peelC, satisfied by the pedt —that is,P has providedr to the pee€ at timet. LetD be the set of all
recorded tuples?’ the set of all peers in these tuples afidhe set of all files exchanged. In our dataset
we have|#?| = 1 908 500 peers,# | = 801 280 files an¢D| = 22 944 800 file transfers.

6.1.2.1 Underlying network

The traceD naturally induces a relationship between files and peers (etuest or provide them), which
we encode in a bipartite grapi = (£,.%,.</) on the disjoint sets of peer® and.# files respectively.
Let (t,P,X,F) € D be a recorded transmission of the fleby the peeP to some peeK at some time,
which we denote simply by, P,-,F). Likewise, let(-,-,P,F) € D be a recorded transmission of the file
F to the peeP, provided by some peer at some time instant. Hence:

o ={(PF)e #xZF:(P-F)eDV(,-,PF)eD}

To study the diffusion, it is necessary to define the undegyietwork on which spreading takes
place. Focusing on information content diffusion amongpgeis natural to consider thaterest graph
in which each node represents a peer and each edge joininge®rs stand for common interest. In-
terests connecting peers may include broad subjects sughesssource software, folk rock or French
literature or narrow ones such as movies by Quentin Taranéirparticular computer game or pictures
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Figure 6.1: Interest graph as a projection of the bipartiggl of peers and files contructed from the trace
D.

Trace log Spreading
example cascade

t0 1 2 F

tl1 2 3 F

t2 4 5 F

t3 2 6 F

t4 6 7 F

t4 5 7 F

t5 7 3 F

Figure 6.2: Trace log example with corresponding spreadiisgade in black and underlying network in
light gray.

of Beijing. It is reasonable to suppose that peers store hackescontent related to their interests and,
likewise, peers will search for content matching theiriiagts. Hence the diffusion of files among peers
takes place on the interest graph and occurs from neighlm@ighbor. Indeed, if a pe@ provides a file

F (corresponding to a music album for example) to another Betiien there is link between them in the
interest graph, since both are interested in the same dontmnelyF.

It is beyond doubt extremely difficult in a large scale intgi@n network to know precisely whether
any two individuals have a common interest. Nonetheless pibssible to approximate this graph using
the data irD: the inferred interest graph is given by the projectvrs- (£2,£) of % on &2, connecting
the peers who belong to the neighborhood of a common file ibiheartite graph, for each file:

E={PPYeZ?x P .IFcF,(PF)ecd A (P,F)c}
See example in Figure 6.1. For the sake of readability thexiiadl interest graph will be henceforth called
simplyinterest graph
6.1.2.2 Observed network structure

We begin examining properties of the bipartite gragltonstructed from the P2P diffusion trace. In or-
der to estimate the typical number of interested peers panvélhave calculated the median degree of the
files in the bipartite graph, 5, and the average degree, 14i#tBstandard deviation of 34.74. Likewise,
we have calculated the same statistics for the peers, toastithe number of files commonly shared by
peers: its median degree in the bipartite graph is 3 and theage degree is 6.19, with corresponding
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Figure 6.3: Properties of the underlying network and obsgtspreading cascades

standard deviation of 12.66. The degree distribution ohlp®ers and files is however heterogeneous
(Figure 6.3(b)) and mostly concentrated on small valuésiesgree values for peers and files remain be-
low 10%.

The interest graph obtained from the observed bipartitplg(as explained above and in Figure 6.1)
has a single giant component containing almost all n¢g8699%) and density 52 x 10~%. In Fig-
ure 6.3(a) we have plotted the degree distribution for thergpeconsidering the set of all peers, the
median degree is 118 and the mean value is 500.11, with pomding standard deviation of 1271.42.
We proceed to a finer analysis of the degree distributionygjry peers in categories (Figure 6.3(a)).
Let us consider first the set afients Ce & such that-,-,C,-) € D: i.e., peers having requested files
during our measurements. Their degree distribution suysepthe degree distribution of all nodes. This
is due to the fact that 983% of peers in our observations have requested at leastlensdithe clients
degree distribution is essentially the global degree ibigtion. A much more restrictive category is the
set ofproviders Psuch that-,P,-,-) € D, i.e., peers having supplied files during our measurem&hisy
account for 433% of the peers i”?. Their degree distribution has a similar shape, but it iceotrated
on larger values, indicated by a median of 1821 and an avelegree of 2906.54 — with corresponding
standard deviation of 3471.80. The last curve, superpasi@gurve corresponding to the providers,
represents the degree distribution of a particular sulfsetaviders callednitial providers which will
be detailed in the next section.

We close this section with a brief summary of our datasetgiie framework introduced, we were
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able to reconstruct the interest graph of the peers, whersgheading of files takes place. This graph
connects essentially all peers, which can be grouped in ategories: providers and clients. Most peers
in our observations are clients, but only a small fractioppdy files: this revels a high proportion of
free-riders(peers obtain files and do not share back) in the P2P-netviasdreed. Furthermore, there is
a sharp distinction between clients and providers in teritiser degree distribution.

6.1.3 Spreading in our data

In this work we analyze thepreading cascadepresenting the diffusion of each file in the P2P network.
For afileF, the spreading cascade is a directed graph featuring th#sef peers who have participated
in the spread oF (as clients and/or providers) and linRs— C, connecting each cliel@ with the first
peer(s) who provide® to it. More formally, let7e (C) = inf{t : (t,-,C,F) € D} be the first instan€
obtainedr and let the directed grapir = (¢, %) be the spreading cascaderafwith

Pr={PcZ:(PF)ec}

F = chy,:{(P,C) € Pg X P (TF(C),P,C,F) S D}

A client requesting a file may receive a response from patyseveral providers simultaneously,
which implies that nodes in the cascade graph not only havgmteuoutgoing links, but also multiple
incoming links in general. The causality induced by the faat we only consider the links correspond-
ing to the first time a node receivédprevents the appearance of cycles. Hence the cascade & & fa
directed acyclic graph (DAG).

The first key property encoded in the spreading cascade oka fjle F is the number of nodes who
possess it at the end of the observed period, which is givethdgizeof the cascadéZr|. We also
explore two other key topological properties of the cascadenely itsdepthandnumber of links The
former is defined as the length of the longest path on the dasaad captures the maximum number of
hops from peer to peer that the file has undergo before it waga® from a provider to a client. The
number of links, given by.%x|, combined with the size of the cascade gives informatiorhersharing
pattern of the network. An example of observed trace andtnaried spreading cascade is given in Fig-
ure 6.2: the spreading cascade has size 7, depth 3 and 6 links.

Another relevant spreading data concerngrtiiteal providersfor each fileF, namely the set of peers
that possessed it prior to any transfer activity on the olesbtrace. These nodes are the origin of the
spreading cascade, triggering the diffusion of theFileThis information can also be inferred from the
request log and be determined in the following way. €ett) = {Cc &7 : (t',-,C,F) € D,t' <t} be the
set of peers who requestBdprior tot. We define the set of initial providers Bfas the set of peeBwho
have providedr at some time, without having obtained it befotefrom another peer in the network:

Ig={PeZ:(t,P-,F)eD,P¢%r(t)}

Plotting the complementary cumulative distribution of thenber of initial providers for the spread-
ing cascades (Figure 6.3(c)) we obtain an interesting ¢uevealing a scale-free distribution. This means
that although most spreading cascades in our observati@féa initial providers, there is a non negli-
gible fraction of cascades with a large number of initialpders.

6.1.4 Simple SIR model

As mentioned in the introduction, we have decided to ingest the file spreading in the light of the
simple SIR model. In our setting, each file spreading coordp to an independent epidemic in the in-
terest graph, in which each node is in one of the followintestausceptibleinfectedor non-interacting
(sometimes denote@moved hence the acronym SIR). Susceptible nodes do not possesiettand
may receive it from an infected node, thus becoming infeckefitcted nodes, in turn, spread the file to
each of its neighbors, independently, with probabifitgsnd become promptly non-interacting thereafter.
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Figure 6.4: Simulation of file spreading on different ungligry networks: complementary cumulative
distribution of cascade properties

Although non-interacting nodes remain in this state, itddmodes may unsuccessfully try to infect them
sending the file.

Supposing the observed diffusion trace was the result d¢f aimple SIR epidemic we may estimate
the spreading paramet@r Each neighbor-to-neighbor transmission trial can be ssea Bernoulli
random variable, whose value is 1 in case of success and Onigleeand whose expected valueps
Assuming each trial is independent and the paramgtisrhomogeneous for eadh and F, we may
estimate it by the empirical proportion of successes ovdrials. Since each tuple i® accounts for
a successful neighbor-to-neighbor transmissijdn,is the number of successful trials for all diffusion
cascades. The total number of trials, in turn, is given bysilm of the degrees of all nodes involved
in the spreading of each file. Hence, we obtain the followistineate, with a 95% confidence interval
p+107C:

p=ID|/ Y Z d(P) =1.063x 1073

FeZ Pe ¢

Since the simple SIR model depends upon a single paramateely the spreading probabiliy we
have fully characterized it with the preceding estimation.
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6.1.4.1 The underlying network influence

The goal of simulating the standard SIR model and compahiegimulated cascades with the observed
ones is primarily to assess how realistic this model wouldfiguen on the interest graph, in terms of size,
depth and number of links of the spreading cascades. Secamellwish to compare the results with
simulations on random networks to understand the role ofiéiteork topological structure on the shape
of the spreading cascades generated with the SIR model.thifthim, we have considered the spreading
of files in a sequence of random networks derived from theéstegraph, with increasing topological
complexity. More precisely we begin considering an ErdsiRER) random graph with the same density
of our interest graph, the simplest random graph in our sezpieThen we have chosen a random graph
with the same density and degree distribution using the Gordtion Model (CM) approach [91]. Next
we have generated a Random Bipartite (RB) graph, with thesiansity and degree distribution as our
original bipartite graph of peers and files [60]. Compared to the interest graph, thgtion of this
random bipartite graph has similar density, degree digiob and clustering coefficient. In sum, for
each new element of this sequence of (uniformly chosen)ammgiaphs we introduce a new constraint
to make it more realistic — in the sense that its topologicapprties will be closer to the interest graph.

6.1.4.2 File spreading simulation

Combining the network topology, the initial condition imfvation (the list of initial providers# cal-
culated for each filé-) and the calibrated spreading parameteve can proceed to the simulations for
each underlying network: for ea&h we begin with the initial providers in an infected state émelother
nodes in a susceptible state. At each step, infected nodléafect each of its neighbors with probabil-
ity p, becoming non-interacting afterwards. The epidemic cwis as long as there are active infected
nodes.

The first observation concerning the model simulation istti@observed time (measured in seconds)
has no direct relation with the simulation time (humber efps)). Furthermore, our dataset corresponds
to an observation in a bounded window of time of six hours hsd e have no reason to suppose that
the file spreading cascades we observe correspond to the whiading cascade of a file. In other
words, if we had measured a longer time window we would liladgerve bigger cascades (in terms of
size and depth) for the same files — due to, among other reasamsisers who could eventually request
the same files. This is also true for our SIR model: we obsam@eeasingly bigger cascades as time
increases. In fact performing unconstrained simulatioeasave obtained a distribution of significantly
bigger cascades than the ones we have observed in the @l frhus, in order to perform a suitable
comparison with the observed cascades, we have decideddmhe property fixed and compare the
other properties. More precisely for each file we generatmalated cascade with the same size (resp.
depth) as the corresponding observed cascade and comealegth (resp. size) and number of links. In
practice, for each file we simulate the SIR epidemic as desdrearlier and halt it when it reaches the
size (resp. depth) of the corresponding observed cascade.

We have generated populations of simulated cascades foueaerlying network and constraint (on
depth and size). We have performed 801 280 file spreadindadions (one for each file it#) for each
network and have selected every simulated file spreadir@adasvhich attained the depth (resp. size) of
the real spreading cascade for the same file — and have kjketethers for purpose of comparison. With
this procedure, each underlying network yields a diffepatulation of file spreading cascades, since the
rejected cascades may be different in each case. Howeu&d%®3f the files have generated simulated
cascades with the same depth as the corresponding reatleastar all networks. Similarly, 864% of
the files have generated simulated cascades with the saenassilae corresponding real cascades, for all
networks — except the ER network. Indeed, only7&2 of the files have generated the contemplated
size in the ER graph. Furthermore the properties of theselatad cascades on the ER graph deviated
significantly from the properties of the cascades on therajtaphs. Hence, in the following analysis we
do not include the simulations for the ER graph. Rather, veeismn the properties of the of files with
comparable spreading cascade depth (resp. size) on abristhut ER.

In Figure 6.4(a) we plotted the complementary cumulatiwtriiution of the size of cascades with

72



comparable depth. We observe a divergence of the cascagfaiz the observed cascades: simulated
cascades are typically much bigger in size for a given deptpared to real cascades. The range of val-
ues in both categories is also striking: the biggest realatdesis at least two orders of magnitude smaller
than the biggest simulated ones. Among the simulated casgc#tkre is a remarkable matching in size
values for the simulation on the CM and the interest graphvgsiare superposed). In Figure 6.4(c) we
plot the complementary cumulative distribution of the diept cascades with fixed size. Real cascades
feature a much higher depth compared to simulations, hglciiscade size constant. In particular there
is a cutoff on the cascade depth for the simulations: we dobs¢rve any cascade depth bigger than 11
in the simulations. As for the number of links, we have twaresting situations. If we fix the depth
(Figure 6.4(b)) the number of links distribution resembtéssely the size distribution (Figure 6.4(a)).
This is not completely surprising, since the two quantities related. In this case we observe a larger
number of links for all simulations compared to the numbédirds in the real cascades since the simu-
lated cascades itselves are higger. If, in constrast, whdixascade size to fit the observed cascades size
(Figure 6.4(d)), we observe a typically smaller number ok$i. Combining these observations on both
plots we conclude that real spreading cascades are deasesithulated ones, a clear qualitative feature
not captured by the simple SIR model. Finally we note thattmascades are simple, featuring depth
equal to one and correspondingly small size.

To sum up, we have compared simple topological propertiesadspreading cascades and simulated
cascades from a calibrated SIR model, with comparable agettsize. We have observed that simulated
cascades are relatively “wider” whereas real cascadesetatively “elongated”, that is, real cascades
have a smaller size per depth ratio. Moreover, real cascadetypically denser than simulated ones.
In terms of interplay between underlying network structamel the simple SIR spreading cascades, we
have observed that respecting the interest graph degriebulion was the only property that caused a
striking change in simulations behavior on the consideasdiom networks. Indeed we have observed
sharp qualitative dissimilarities between the simulation the ER graph (different degree distribution)
and no sensible dissimilarities between the simulationtherCM, RB and the interest graphs.

6.1.5 Heterogeneous SIR models

In the previous section we have examined the adequacy oinifesSIR model to generate verisimi-
lar file spreading cascades. We have also inspected th@lmgdvetween the underlying network and
the model simulating file spreading in different networks.this section we perform a complementary
analysis, focusing on a single underlying network and eramgidifferent extensions of the SIR model
considered previously. In particular we consider two tegeneous versions of the SIR model, char-
acterized by a distribution of spreading probabilitiestéad of a single homogeneous parameter. The
natural choice in this case for the underlying network isittierest graph, which is the most complete
and realistic graph among the ones tested in the previotissec

6.1.5.1 File popularity

A first refinement of the simple SIR model consists in intradgdifferent spreading probabilities ac-
cording to the file being spread. The rationale in this case &count for different levels of popularity
depending on the file. Exogenous reasons — such as a moviseade the death of an an artist — can
change the supply and demand of a given file and consequdtalyita spreading probability. The
knowledge of the actual reasons that explain the heterdtyeéndile popularity are irrelevant to the char-
acterization of this model, if we know the spreading probigds for each file, i.e.{p(F): F € #}. An
estimate of these probabilities, in turn, can be obtainedhfthe traceD if we suppose it was generated
by a process following this extended SIR model. Indeedeseach file spreading is independent of the
others, it is possible to estimaf¥F) for eachF separately, with the same method used to derive the
homogeneous parameter. Restricting the calculationstsfgheading cascade Bf p(F) will be given

by the empirical proportion of successful transmissions oker all possible transmissions Bf

P(F)=[(,F) €D}/ > d(P)

PeZE
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Figure 6.5: Heterogeneous spreading parameter distitmiti

In Figure 6.5(a) we plot the distribution of the heterogarespreading parameters depending on the
files. The values op are concentrated on the range @0 102, indicating that there is a considerable

fraction of cascades with a significantly different spreadiegime (bigger than one order of magnitude).
This distribution characterizes the extended SIR model secini the following simulations.

6.1.5.2 Peer behavior

A second possible refinement is motivated by the fact thatspaéght have intrinsically distinct levels of
“generosity” regarding file sharing. Under this hypothegisextend the standard SIR model assigning an
heterogeneous spreading probability to each peer, regsardf which file it is sharing. Thus, we do not
need any other information but the spreading probabiliggrdiution to characterize the model. In this
context altruistic peers, who typically spread files to gdgproportion of their neighbors, would feature
a bigger spreading probability compared to the homogengmesding probability corresponding to the
diffusion aggregates of all peers. By the same token, thee case of free-riders would have their
spreading probability assigned to zero. Again we can sttahsmissions as outcomes of Bernoulli trials
to estimate the spreading probabilities. 1Bt = {F € .% : (P,F) € </} be the files carried by the peer
P; for each such file the number of transmission trRisould perform corresponds to its degree in the
interest graph, namely(P). Hence, to obtaimp(P) for each peeP we divide the number of successful
transmissions dP to other peers (of any file carried IB) over the total number of potential trials:

N |{(7R7)€D}|
PP) = <P
We have plotted the distribution of the positive spreadingppbilities estimates in this case (Fig-
ure 6.5(b)). They account for small fraction of all the peeaiace the only peers who have a positive
spreading probability are those who provided a file at leasee- 433% cf. observations made in sec-
tion 6.1.2. Conversely, a large fraction of the peers do hatesthe file in this model. We observe a
marked range of values, which is significantly greater tt@one calculated for the homogeneous SIR.

6.1.5.3 File spreading simulation

Our aim is to generate simulated cascades following botnsibns of the SIR model presented — with
heterogeneous spreading probability depending on thedfildon the peers —and compare their proper-
ties with the simulated cascade of the simple SIR model amdethl observed cascades. In this sense, we
apply the same methodology of the previous simulations: wthé depth (resp. size) for the simulated
cascades and examine the other two properties — the ideac@tpare similar spreading cascades in
terms of the chosen property. As discussed previously, tth&t gnajority of the cascades is simple, with
depth equal to one and a small size. Hence the simulateddzsscarresponding to the simple observed
cascades will likely correspond in terms of depth, size amahlver of links. For this reason, we have
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Figure 6.6: Simulation of file spreading on the interest grayith different SIR processes: complemen-
tary cumulative distribution of cascade properties

decided in this section to focus on the spreading cascadesiepth greater than one.

The simulation results are plotted in Figure 6.6: we havétgdibthe complementary cumulative dis-
tributions of the spreading cascade depth, size and nunfih@ks. Imposing a constrain on the depth
for the simulated cascades and comparing their size (Fig6(a)) we observe the contrast between the
simulated and the real observed cascades with the same dieptformer have a typically bigger size
compared to latter. What is remarkable, however, is theesgemt among all the simulated cascade dis-
tributions — curves superposed in Figure 6.6(a). Next, ifftwehe size for the simulated cascades and
examine their depth, we are faced with the same qualitaiindasity among simulated curves. Indeed,
the curves corresponding to the heterogeneous SIR modeleaiture a cutoff in depth, failing to repro-
duce the scale-free curve representing the depth of thenaaseeal cascades. Finally, the cascade links
distribution plotted in Figure 6.6(b) and Figure 6.6(d)eals the pattern observed previously, namely
that the observed spreading cascades are typically déraecorresponding simulated cascades.

Inspite of the improvements in the SIR model, introducindhaterogeneous spreading parameter to
account for different profile of files (respectively peethg simulations indicate that this refinement does
not change qualitatively the basic properties of the sitedl@preading cascades. Indeed we observe a

surprising agreement between the three SIR models comparerdthstanding the particularities of each
model.
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6.1.6 Conclusion and perspectives

We have presented a large-scale dataset from a real-wogldt@geer network, featuring diffusion of
files among peers. We have proposed a framework to study dltéset which allows us to obtain, si-
multaneously, the interest graph of peers — where the diffusf content takes place — and the spreading
cascade. Guided by simulations we have examined spreadstgdes generated by the simple SIR
model and have analyzed the interplay between this modethenetwork topology. We concluded that
simulated file spreadings do not capture key qualitativep@rties of the observed spreading cascades.
Furthermore, in terms of the studied properties, the sirBpiemodel generates similar cascades on ran-
dom networks having the same degree distribution as theesttgraph. Next we have focused on the
spreading of files on the interest graph and studied extevelsibns of the SIR model featuring an het-
erogeneous spreading parameter. Surprisingly enoughlatead cascades using both extensions of the
SIR model show similar properties as the simple homogen8tiisnodel — and thus, fail to reproduce
qualitative features of the observed cascades.

The SIR model is an attractive choice to model the infornmasipreading in complex networks: it
is based on classical epidemiological models, it is basexh digw assumptions and can be character-
ized with one parameter. However, the results suggest ltigatrtodel might not be suited to describe
file spreading in our data. Furthermore, extensions of thideanic model to make it more realistic,
featuring heterogeneous spreading probabilities do rfet afbetter alternative in terms of the proper-
ties we observed. At this point, we consider two main expionetracks. The first possibility consists
in constructing a weighted interest graph, which takes &noount the number of interactions (file ex-
changes) between peers. In this case the same analysis npeyfbemed and a comparison with the
results presented here would be pertinent. The secondojlitgss to contrast epidemiological models
to adoption/threshold models [38, 58].

6.2 Statistical properties of the file exchange times series

A key step to characterise information supply and demanchavarlay network such as the P2P network
considered here is the study of statistical propertieseféfuest times from peers.

As a preliminary illustration, Figure 6.7 shows the evalatof cumulated number of requests for a
few selected files. One can see regular progression, ifmticatconstant rate of requests, interspaced in
some cases with short or long plateaux, suggesting thatavidar (by provider, we mean a peer owning
the file and ready to share it) is online at that time intenthk; unsuccessful requests are unrecorded in
the data.

In a first part we notice that peers show a wide range of agtizg well as files show a wide range of
popularity. We then show the time evolution of the intensityequests, suggesting a marked circadian
rhythm. Then we study the burstiness of the data, showiniglatdlurstiness in the requests emitted by a
given typical peer, and no evident burstiness for the ragu#s given typical file. Therefore it suggests
that the requests of peers for files can be correctly apprabeichby Poisson processes with arrival rates
that follow a circadian rhythm. Finally, we estimate frormple assumptions the number of peers that
own a file and the number of peers that offer the file for sharinghis way we can estimate the number
of ‘good peers’, who transmit back the files they downloadopgosed to the ‘free riders’ who do not
contribute widely to the distribution of files in the system.

6.2.1 Activity and popularity distributions

By activity of a peer, we mean the total number of differemjuested files over the observation period.
In other words several requests by the peer for a same filecarged as one. By popularity of a file we
mean the total number of distinct peers that have requelstetilé. Here again multiple requests from
one peer are counted as one. Note that activity and popusetprecisely the degree of nodes in the
bipartite graph defined in Secti@?.

We show in Figure 6.8 the distribution of activity among $seand the distribution of popularity
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Figure 6.7: Cumulative request curves for several filesh @mecmalized by the total number of arrivals
in the 2-days time-window.

among files. It can be observed that those distributionsotifpmoperly scale-free, seem to be heavy-
tailed.
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Figure 6.8: The distribution of activity (left) and poputgr(right) in loglog scale.

It should be noted that the data for small values of popwlanitd activity can be corrected in the
following way. Suppose in first approximation that the atiof requests for a given file is a Poisson
process with an average dfarrivals in the observation period. Then the popularityatty observed for
this file may be more or less than and those fluctuations around the expected value will beageel
out if a sufficient number of files are present with the sameaipaterA (which is certainly the case for
not-too-popular files). However there is also a probab#ity that the file will not be observed at all,
thus will not be represented in the Figure, introducing & Itheat tends to underestimate the number of
unpopular files. Therefore, each point of this curve comesing to popularityA should have its number
of occurences multiplied bl —e~*)~1. A similar effect takes place for the activity distributiamong
users, of course. However it would lead to only a small cdiwva®f the curves, especially in the log-log
scale used here.

Note that alternative measure for activity (resp. poptarould be to normalize the above-defined
measure by the total online time (resp. availability timé}re considered client (resp. file). These
normalized measure would give a better indicator of howentlis active when connected or how a file
is popular when available. However they are less accesaittlee evaluation the online time (availability
time) cannot made reliably.
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6.2.2 Circadian rhythm

Counting the number of requests of all peers for all filesgather at every time instant (Figure 6.9)
shows the existence of a rhythm that probably correspondsctcadian rhythm of the peers using the
observed eDonkey server. This shows that the random prooeast to be a model of the time series
of requests must be non stationary, with a cyclic variatibthe parameter across the day. The data we
have, covering only 48 hours, does not allow us to extrapatas weekly cycle.
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Figure 6.9: The circadian rhythm averaged for differenttsnales (seconds, minutes and hours). Nights
and days are clearly visible.

6.2.3 Burstiness
6.2.3.1 Measure of burstiness

In general, burstiness is meant as a particular deviatimm fPoisson behaviour in a series of arrivals
or ‘events’ (note that the word ‘event’ is overloaded in pablity theory so we avoid to use it in the
following).

Suppose that an arrival occurred at time zero. For a Poissialgprocess, the probability of an
arrival in a short time intervdt,t + At] (conditionnally on the fact that no arrival has occurreddrt])
is AAt + o(At), not function of the time elapsed since the last arrival. This leads to an exponential
probability e *2A At of an unconditionnal first arrival occurring in the interyalk + At], an expected

time T = A1 for the first arrival, and a number of arrivals j,t] following a Poisson law (with a

e M At . . .
probability 47~e~*"* of k arrivals in that interval).

The assumption that the probability rate for arrivklis a constant function dfis not always verified
for various kinds of arrival processes associated to varsogial contact networks, see for instance phone
networks, e-mail networks or sexual contact networks [67176, 105]. Note that those contact networks
can be directed, in the sense that one node takes the irétiaftia contact (e.g. phone call) with another
node, which receives the contact. The directedness candsermped or ignored following the kind of
process that is studied on the network (e.g. the spreadimjarmation or of a disease).

6.2.3.2 Burstiness analysis on peer-to-peer networks

We want to test the existence of burstiness on the peerdogsda in order to shed some light on the
behaviour of users of the Internet, at least in the P2P agmic. One may think that the activity of
users will happen in bursts: a user who decides to requestia fikely to download another one shortly
afterwards. Similarly, a small number of requests for atigly unpopular file may unlock other requests
thus creating a burst of interest for that file.

For every node, or at least the most active/popular among,tive can study the inter-request time
through its average and its variance, and compute its besstias defined above. Since we cannot expect
to have an homogeneous Poisson process on the 2 days timaintee limit ourself to time windows
of limited length (e.g., 1 hour). This also has the advantageit smoothes the effect of the circadian
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rythm. For each time window, we compare the average intenieime with its standard deviation : if
both measures are close, then it means that the burstinessos that window.

On Figure 6.10 we represented the mean and variance of el aate of requests from a given peer,
on a moving window of one hour-length. We show a remarkabteespondance for all the files that we
have looked at.
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Figure 6.10: Left : we compare the average inter-requed tifra typical active client (blue) with its
standard deviation (red). Each point corresponds to a meastimation on a 1-hour time-window. The
chosen client appears 3077 times in the data. Right : the &aragypical popular file that was requested
3014 times inthe data. Clearly, blue and red curves seemdintilar (especially for files) which suggests
local non-burstiness.

The burstiness of the number of requests for a given peewnigver a little more pronouced (Figure
6.10). Nevertheless it seems fair to conclude that burssile not a dominant property for those time
series, which can therefore be represented by a Poissoagsrathose value is proportional to the activity
of the given peer/the popularity of the given file, modulalbgdthe time of the day according to the
circadian rhythm.

6.2.3.3 Burstiness of traffic demand

The models we draw on P2P modelling can be used as generatms-to-end traffic demand taking
place on a physical model of the Internet. The conclusiomvealshow that it is not unreasonable to
model those with Poisson processes whose parameters vanyeraccording to the time zone of the
user. Of course this requires an extrapolation from thdi¢raharacteristics of P2P application to any
kind of traffic, but again this extrapolation does not seemeasonable.

The modelling of activity of users by a Poissonian procestead of a bursty process calls for some
comments here. It has been showed, in the last two decadespadicularly, that many probability
distributions characterising human activities are somesi heavy tailed, e.g. described by a power law,
also called Pareto distribution. However later on it hasnbeeticed that some of those distributions
were only apparently heavy tailed, and that a proper stalshypothesis testing was not conclusive
[34, 101, 50].

This debate has found a particular resonance in the casevdrivgenerated stochastic processes. E-

mail activity data has been found and explained to have tiariant Pareto-like inter-arrival times [17].
It was later argued that the data was better fitted and monglgiexplained by a time-varying Poisson
process, with a parameter following weekly and daily patgB8]. Albeit illustrated by e-mail data,
the discussion of these two papers were of a general nattis.sfows the difficulty of distinguishing
between a time-invariant bursty model and a time-varying$@m process.

Peer-to-peer inter-packet time has been found to fit adyratéeavy tailed hybrid Weibul-Pareto
distribution e.g. in [21], while the statistics we measuaeglfully compatible with a time-varying Poisson
process for the inter-request time. This apparent corttiadi may be seen as a further instance of the
dichotomy above, but also of the fact that a Poissonian floneqtiests may lead to a non-Poissonian
flow of packets, due to the fact that files sizes may themsdlgespproximated by a Pareto distribution
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[42, 89]. A model of requests, together with a distributidrfile sizes and the assumption that every
request is followed by a file download, therefore induce aehoflinternet traffic.

6.2.4 Good peers and free riders

The presence of relatively long plateaux in Figure 6.7 indhmulated request curve even for not-so-
unpopular files suggests that only a fraction of requeststase into sources for the further propagation
of the file. This may be explained by the fact that not all rexgsior a file are followed by a successful
download, or that the peer having proceeded to the download dot offer the file for further sharing
on the network (thus called 'free riders’). It is hard to giguish between those two phenomena, but by
simplicity we call free riders all peers that for one reaspamother do not share their file.

To estimate the numbgx(0) of peers owning a file and ready to share it at time zero, whetheot
they are online, we count the number of peers appearing aglprs at least once in the time interval, that
never appear as requesters for this file. Then we incremismumber of potentially available providers
p(t) with timet, as requesters are subsequently observed as a provideefinst time before time.

We then estimate the total numfat) of peers owning the file (whether they are willing to share it o
not) at timet as the sum o$(0) and the number of peers having requested the file for theifirsttiefore
timet.

The comparison of the two curves for several files (Figurd)sshows very similar profiles for the
evolution ofp(t) andd(t), with a ratio of the slopes of approximately 8. This suggestsording to the
above assumptions, seventy-eight percent of free ridei@fly twelve percent of 'good peers’.
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Figure 6.11: The blue curve is an estimation of the evolutibthe number of providers while the red
curve is the evolution of the number of clients. By lookindte slopes, there seems to be 8 times more
new clients than new providers.

6.3 Traffic simulation on a P2P network

6.3.1 Introduction

In this section, we describe two different models which aingénerate synthetic traffic in the peer-to-
peer networks. These models take a set of pReasd a set of file§ as the input and generate traffic
for any desirable time window of lengih First we propose our model which is based on the Markovian
transitions and illustrate the outline of the implememtati Next, we describe an agent based model
which is adapted from an existing framework proposed in.[35hally we show the results of both of
these models and highlight the improvements of the proposstel over the agent based model.

6.3.2 Markovian transition based model

This model is based on the following statistics which canlained from the empirical dataset.
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1. Popularity distribution of files
2. Activity distribution of the peers
3. Login-logout frequency distribution of the peers

4. Proportion of free riders

Ideally, these statistics should be obtained from the engbidataset. However, first we synthetically
generate these statistics based on some realistic assmsiptiorder to simulate our model. The details
of this synthetic statistics generation methodology issiitated in the next section.

Our model relies on the following assumptions

1. We ignore the client preferences towards specific filessabdequent community effects
2. We assume that downloading a file is instantaneous

3. Each peer can request/download one file at a time. Howeuwkipie peers can download a given
file simultaneously.

Assumption 2 may be easily relaxed later by using the sizdesf fis an indicator of the download time.
In that case, it could be useful to assume that the file size tnodependent from the file popularity. Note
that assumption 1 can also be handled by tuning the preferarator of peers.

We split the rest of the section in two parts; in the first seginee describe the synthetic generation
of the statistics (such as login-logout frequency, peewigedistribution, file popularity distributions,
etc.) and the second segment illustrates the traffic modkitsaimmplementation.

6.3.3 Synthetic statistics generation

In this section, we aim at synthetically computing the faflog statistical parameters.

a. Login-logout frequency of peers:We assume that the online and off-line slots of a peer node
follow exponential distribution (see Fig. 6.12). Hences tlurations of the online slots Qof peeri can
be assigned based on the exponential distribution withnpet@rAon (Ao is @ random numbex 0.2).
Similarly, we generate offline slots @fiollowing another exponential distribution with paranretg,.

We continue to generate these slots (periodically onlimeadftine) until we reach the end of the timespan
T. From this statistics, we compute the average online (afil@ftime of a peef and subsequently
compute their login and logout transition probabilities.

b. Peer activity distribution: For each peer, we assign the total number of queries generated by that
peer following a power law distribution (with exponem} and suitably normalize it by the total online
time of that peer. This eventually provides us the ‘true’aptriori’ peer activity distribution.

c. File popularity distribution: For each filef, we assign the popularity of that file (i.e. total number
of queries for that file) following power law distribution {tiv exponen{3). We normalize this quantity
by the total number of queries made for all the files.

6.3.3.1 P2P Traffic model

We propose a Markovian transition based traffic model (sge@-13) where each peer node at any point
of time can be in one the three states (such as ‘Online’, li@&-and ‘File download’). At each timestep,
a peer node can switch from one state to another (or remdsatrirent state) based on the input statistics
(login-logout frequency, peer activity distribution, fipularity etc). All the peers are independent in
nature, hence they are allowed to act simultaneously. Ag tima peer nodé may be in ‘Offline’ state
Of fi orin ‘Online’ stateOn, and the transition probabilities to switch from one statariother (and also
to remain at its current state) in the next timestepl is directed by the login-logout frequency of peer
i. Moreover, while in the online stat@n;, a peeli may initiate a file download based on its peer activity
profile (obtained from peer activity distribution). Theeeion of the file is based on tt{e.) popularity

of that file and(b.) availability of the providers for that file. While downloanj, the peer node switches
from the ‘Online’ state to ‘File download’ state and it remsiin the download state for one time unit
(for simplicity, we assume that it takes one unit of time tavdtoad a file and this is fixed for all the
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Figure 6.12: Online-offline slots of peer
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Figure 6.13: The life cycle of a peer nodeAll the peers in the network follow similar state transitio
protocol.

files). After download, the peer again moves to the onlingestaéhis model also takes into account the
cooperative peers and the free riders. The model assunedhkéh@operative peers share their files after
logging in whereas free rides do not share them (except wignare downloading a file).

The information about the shared files and their providersraintained in anx n state matrix where
mis the number of peergN|) andn is the number of files|F|). At each timestep, we update the state
matrix A(t) such that it reflects the information of files shared by défgrpeers, current state of a peer
(online/offline), availability of providers for a file etc. &#\assume thah;; (t) = O if peeri doesn't possess
file j attimet. Ajj(t) = 1if peeri possesses fileand online at time. Ajj(t) = —1 if peeri possesses file
j and offline at time.

After each timestep, we update the state mairbased on the activities of the peers.

1. If a peeri launches a download for a fileat timet, A;j(t) = 1. Additionally, ifi is a bad peer,
assignAij(t) = |Aij(t — 1)| to ensure that its files are shared at time

2. If a bad peer finishes downloading filg at timet, Ajj (t) = —A;j(t — 1), Vj
* 3. Ifa good peer disconnectsAj (t) = —Ajj(t—1), V]

* 4. If a good peer connectsAjj (t) = |Aj(t —1)], V]

* 5. Ajj(t) = Ajj(t —1) for all other cases
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Figure 6.14: Cumulative number of downloads of a populaiilglarkovian transition based model.

The number of providerp(t) for a file j at timet can be computed from the state mawit). Lets
assumeyj (t) = max(Ajj (t),0). Therefore the number of providepg(t) for file j becomes

pi(t) = 3 & (1) (6.1)

6.3.3.2 Simulation results

We implement the traffic model with the help of a discrete ¢@@mulator. We simulate the model with
|F| =500 files andN| = 500 peers, of which 50% are free riders. We generate thestyn#tatistics such
as login-logout frequency of peer nodes, file popularityriiation and peer activity distribution using
the methodology described in section 6.3.3. Fig. 6.14 shbevsumulative number of queries generated
for a popular file file1g) afterT = 5000 timesteps. This is important to note that the slope®ttirve

is in general quite steep, which is an evidence of the pojylaf that file. However, few plateaus can
be observed possibly due to the unavailability of the onfineviders for that file. The similar kind of
behavior can be observed for the moderately popular anghtgsdar files also (Fig. 6.15(a), 6.15(b)). In
Fig. 6.16(a), we illustrate the popularity distributionfidés, both for the a priori power law distribution
and the distribution obtained from the simulation. Thisngortant to note that although there is an
agreement between the true and observed distributionbéanbderate to highly popular files, a strong
discrepancy can be observed for the unpopular files. Sireca finiori file popularity distribution follows
power law, we have a large fraction of unpopular files in thevoek. However, only a few of these
unpopular files gets downloaded by the peers and as a comsegjueost of these unpopular files hardly
find any provider for them. This essentially reduces theqares of unpopular files across the peer nodes
in the network. Hence the frequency of unpopular files, aitiobeing high in the a priori file popularity
distribution, becomes low across the peers in the networkth® other hand, the frequency of highly
popular files, being low in the a priori file popularity digtution, remains low across the peers also.
Nevertheless, Fig 6.16(b) shows that the observed peetitadistribution from the simulation has a
nice agreement with the true peer activity.

6.3.4 Agent based model

In this section, we propose an agent based traffic model whiabapted from the framework proposed
in [55]. This model is an alternative to the Markovian tradiosi based traffic model explained above,
and although the latter seems to outperform the former ashak see, we explain it as a means of
comparison.

The model is based on three basic components or blocks, éattiah can be modeled withl /M /o
queues (see Fig. 6.17). The most simple model consists dfflinéblock 2. Query generation block. 3.
File download block (see Fig. (6.17)).

At any point of time, peer nodes in the system remain in onde$é three blocks. Since this is a
closed network system, the total number of peers in the rm&tremnain constant. Peer nodes move from
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Figure 6.16: Comparative study between the observed aaddrpriori) distributions

one block to another based on the arrival and service rateeakspective queues. The basic assumption
is that, a peer node either remains offline, or in online stétkile online, a peer may be in idle state or
it generates query and downloads files. In the idle stategagsn work as a provider. The details of
different blocks and their functionalities are explainesttn

1. Offline block: At any point of time, this block stores all the peers whichiarte offline state. We
assign one dedicated queue-server for each individualmmets, which essentially captures the intrinsic
properties of that individual peer (for example, frequeoftpgin). The arrival rate at queués the rate at
which peeli goes offline. We assign a service rate to the peer’s serdeniiolg a power law distribution.
The service rate of a queue regulates the login rate of nod@s power law “service rate” emulates the
fact that most of the peers in the Offline block ‘slowly’ mowette online block whereas only a few peers
quickly switch their state from the offline to online.

2. Online-idle and query generation block: This block stores all the peers which are in online state;
either they generate queries or remain idle (i.e., not geimgy queries, but may work as a provider). A
dedicated queue-server is assigned for each individualmmske, which characterizes the query genera-
tion behavior of that peer (referred as peer activity). Hoale free) service rate assigned to the individual
server results in a heterogeneous peer activity distohutArrival rate at queues depends on the login
rate of peers (service rate of offline block). Service ratthefserver depends on the rate at which peer
node generates query. The peers waiting inside the quewsrrédie and may work as a provider.

3. File download block: In this block, we assign one queue-server for each file inystem (all of
them works in parallel). All the peers requesting a specificdirive at the corresponding queue. The
arrival rate atth queue depends on the popularity of filen the network. The service rate of a queue
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depends on the number of providers available for that spditéi(in edonkey, providers send file chunks
in parallel to the client peer).

Let us show some simulation model. We implement the ageieith@aaffic generation model with the
help of a discrete event simulator. We fix the service rateh@tervers in the offline and online blocks
following power law distribution with exponermt and 3 respectively. Fig. 6.18 shows the cumulative
number of downloads for the highly popular, moderately papand highly unpopular files. Fig. 6.19
shows the observed file popularity and peer activity distidn afterT = 5000 timesteps.
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Figure 6.18: Cumulative number of downloads for agent basedel

6.3.5 Advantages of the Markovian model over agent based metl

There are at least two advantages for which the Markovianefmodst be prefered.

A significant improvement of the Markovian model over themigbased model is that this model
allows all the peers to work (say file download) in parallehex than in sequential manner. If
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we carefully observe Fig. 6.14 (cumulative download framuyeof a popular filefile1g), we can
identify some special timesteps, when ttile;o is downloaded by a group of peers simultaneously.
This phenomenon cannot be observed in the agent based rsadelds in Fig. 6.18).

* In Markovian model, we can observe plateaus even for thelpofiles (such as Fig. 6.14) due to
the unavailability of the providers. This is interestinges we noticed similar behavior also in the
empirical dataset. However, in the agent based model, titequls can only be observed for the
moderately popular and unpopular files.
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Chapter 7

Conclusion

In this deliverable, we presented the results achievechdurask 3.2 as regard the analyses and the
mining made on the measurement data. Following DeliverB8l&, in which we presented both the
data obtained through intensive measurement campaignthandodels one could design in order to
capture the observed properties, we focused here on érggast much information as possible in order
to validate and provide good comprehension of the diffenegthanisms observed on Internet.

In particular, compared to the results presented in DelivierD3.2:

1. We investigated in depth the data obtained with UDP pingydter infer the degree distribution of
core routers in order to propose clean samples and validateéthod.

2. We performed a rigorous statistical analysis in ordeisgeas the nature of the degree distribution
as observed via UDP Ping.

3. We provided evidences of the impact of the underlying kogyp on the Internet dynamics as ob-
served by the Radar tool.

4. We captured that the dynamics of the Internet routing anddrding system (through the analysis
of routing and forwarding path instability) show differgmtoperties. Our analysis shows that
the main cause of instability results from the forwardingra; this corroborates the assumption
that the dynamic properties of the forwarding and the rauipstem are different. Hence, it is
impossible to simply derive the one from the other. Howeitegn also be observed that a second
order effect correlates forwarding and routing path inisitgh

5. We developed a new method (completing the one presentBelinerable D3.2) for detecting
events in time series and we applied it on different datasetder to validate the approach.

6. We perdomed a careful analyses of a dataset presentfiigjdeemands and diffusion phenomena at
a very large scale and we propose different models able todepe the main observed properties.

Although not completely unified, the different models of theernet and its dynamics along with the
different analyses we have performed have proven to bringpsespectives in the domain. They consti-
tute a real progress over the state-of-the-art. Indeedh&first time, an unbiased measured distribution
of degrees of the core Internet at the physical level has peggosed and this measurement campaign
has been strengthen by extensive analyses detailed ingkemqirdocument. The same statement is also
true as regard the model of the dynamics of the IP routinglogpo

These results will naturally be used in the other tasks of ERLThe new insights on the properties
of the Internet topology and its dynamics will be used asiifipugenerating synthetic graphs mimicking
the real network structure. This would allow to conductisti simulations as foreseen in WP4., Besides,
the work made on the dynamics will also feed both WP2 and WPk ase they will guide the choice
of relevant scenarios involving dynamic routing topologyl golicy and help the consortium as regard
the emulation perspective that is planned to be done bdierernd of the project. This last point will in
particular benefit from the work performed on p2p activithiSTwork will indeed help the definition of
realistic scenarios of traffic demand as an alternativedmttural one-to-any and any-to-any scenarios.
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Appendix A

Supplementary tests for degree
distribution of Internet

This is an addendum to Deliverable D34 of the Euler projetctiesponse to the recommandation R2.3
of the Technical Review Report for the second period of tluggpr we use the (non-parametric) Mann-
Whitney-Wilcoxon tests to perform further study on the dadkected by LIP6 (UPMC partner) regarding
the degree distribution of the Internet. They support thectisions that obtained from the Clauset-
Shalizi-Newman test and described in the main document éf Bi3d indicate that the data is compatible
with a power law of exponent around2s.

A.1 Context

In the main document of Deliverable D34 (Section 3.2), wekgedgest whether the data collected by
LIP6 supports the fact that the degree distribution of Imé¢@t the router level is power law, and if so,
what is the exponent of the power law.

Remember that if the degree distribution is a power law pridqaal tok~? for degreek and expo-
nent (or ‘slope’)a. The measurement according to LIP6 methodology will predarc observed degree
distribution proportional t&#, whereB = a — 1. This is due to a bias that high-degree nodes are more
easily observed (hence observed more frequently) than émre@ nodes. As in Section 3.2.4, we there-
fore test the hypothesis thabservediegree distribution is a power law, and we seek to estifia{&ee
Section 3.2.4 of the main document for more detalils.)

In the main document, we test this hypothesis following twetmods:

» Pearson’s Chi squared tests which tests whether an olosEagency differs from a theoretical
distribution (in our case, a power law whose exponent wastifiled using a least-square method).
It is designed for random variables taking their values imadiset, and the size of this set plays
an explicit role in the test. Applying it to the case of a degdéstribution following a power law
requires therefore truncating the distribution by introitdlg a maximal degree. The value of this
parameter is somewhat arbitrary, and affects the resuéisidBs, other technical difficulties imply
that the conditions of applicability of this test may notlhgae satisfied in our case.

e The Clauset-Shalizi-Newman test [35], that is specificdéisigned to test the power law assump-
tion on collected data, along with computation of the carexponent.

The Clauset-Shalizi-Newman is non parametric (in the e&a of the quality of fit ; it outputs a
p-value for the assumption that the data follows a power laailatand has become a standard in the
complex network literature to test power law assumptiorspde its relatively high comutational cost.
We have applied it to the measured degree distribution, antave concluded that, while thpevalues
are not extremely high, they are sufficiently high the forthid rejection of the power law hypothesis.
Besides, the exponeatof the power law would be between?dand 44. We had also used the validation
part of the Clauset-Shalizi-Newman method to obtain newnegors of the coefficient: we compute the
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p-value obtained by that method for a large number of diffevaefues of the coefficient, and select that
with the largesp-values. The results obtained were also in the rangei4t.

Nevertheless, since thevalues obtained were not entirely conclusive, it is wottie/to apply other
non-parametric tests from the statistical toolbox to suptha@t conclusion more thoroughly.

Therefore the reviewer’s suggestion is excellent, and westigate a method based on the non-
parametric Mann-Whitney-Wilcoxon test as suggested bydhiewer.

A.2 Methodology

The test that we use goes by the name of Mann-Whitney-Wilepg®ficoxon rank-sum test, or Wilcoxon-
Mann-Whitney test. See for instance [119]. It is a versioinfskal-Wallis test for two samples. It is
non-parametric.

Given two sampleX andY drawn from continuous distributions, the null hypothe®#ly tested is
the following: P(x > y) + @ = % If we reject the null hypothesis, we therefore reject thegitality
thatX andY come from the same distribution. However if we accept theoltypsis, we cannot deduce
that they come from the same distribution, unless we have imémrmation on the shapes of the distribu-
tions (for instance that the two distributions are the sauotddy a shift, which can be reasonable in some
circumstances, and is still much weaker that Gaussiam@®gr though it is an argument in that direction.

We use this test in two ways.

A.2.1 Hypothesis testing

We run the Mann-Whitney-Wilcoxon test on the empirical dftagainst a sampl¥ that follows a
power-law distribution with exponerft, wheref is taken from the estimations computed in the main
document of the deliverable (Tables 3.1 to 3.4 of Sectiom3}.2ZI'he test outputs p-value that, if high
enough, allows to conclude that we cannot reject the assomibiatX is indeed distributed according to
a 3-exponent power law. As said above, accepting the null aggamin Mann-Whitney-Wilcoxon does
not formally allow to accept the assumption tiaandY are drawn from the same distribution.

A.2.2 New estimator of the slope3

Our goal here is to find a new way of estimatiigFor this purpose, we run for evefyin a certain range
the Mann-Whitney-Wilcoxon test between the empirical dat@nd a sampl& hat follows a power-law
distribution with exponengf, and compute the correspondipgvalue. We then select as estimator the
valuef yielding the highesp-value.

We should immediately underline a formal limitation of timew estimator. Thep-value should be
understood with caution, as the conceppefalue is only valid if the two distributions are indepentien
from each other, while here the samjles chosen among a family of samples for its highest reserablan
with X, which destroys the independence assumption. phalues’ should thus here just be considered
as a metric of the distance between the sample and the tleabdistribution. This is already commented
upon in Section 3.2.4 (page 28) of the main document.

A.3 Validation

In view of the limitations of the methods, we have performgpeziments to test their efficiency on toy
examples. We choos¢as an artificial data set, drawn from a power law distributbaxponen{3,. We
then perform the test as described in this section, and weeethe right3y with good precision. The
results are better and better as we choose a larger and tzigeieY. Nevertheless we see that from a
size of 1d, the improvement is marginal. Indeed thealue obtained for size R@liffers by at most one
or two percent.

We also performed the same procedure with exponeXtiale. distributed aeyg, and test against
samples drawn fromy-exponential laws, for various valueswfThere again we recover the right value
of y, with good precision.
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We also test an exponential I&vagainst power laws for¥. In that case, we still find values gffor
which thep-value is quite high. This confirms the limitation above ttret p-value only have a relative
value: they can only say that one valuefis more suitable than another value, and is not very reliable
as a test of the power law assumption itself. In other wordspew estimator based on Mann-Whitney-
Wilcoxon test can be seen as essentially a parametric metiteete the power law assumption is not
reliably tested per se, but only the value of the exponenérdfore it comes only as complement to the
other non-parametric methods (Clauset-Shalizi-Newmadheémmain document and hypothesis testing in
Section A.2.1).

Finally, another limitation of these methods based on Mftritney-Wilcoxon test is that they apply
a method for continuous variables on discrete data (degrdesertheless the large range of the discrete
variable ensures that the approximation by a continuoualbiaris acceptable. Applying Mann-Whitney-
Wilcoxon tests on basic discrete distributions showed ttatesults are the one we expect, as soon as
the number of samples is reasonably high.

A.4 Results

A.4.1 Consistency of data sets

The data collected by LIP6 is composed of three saneX, andXs.

As a first run, we run the Mann-Whitney-Wilcoxon test of theaeples one against another, and we
find that we cannot reject the hypothesis that they come ftwrsame distribution. This is of course
good news as they indicate consistency between the thriee data sets:

« for X; vs Xo we obtain ap-value of 07181,
» for X; vs X3 we obtain ap-value of 04637,
« for X, vs X3 we obtain ap-value of 02723;

Remember that in the main document we only test power law ttngss for degrees higher than five.
Indeed it seems that the power law property is not accuratéhélow degree nodes. It is customary in
the literature to asses the power law property for an interf/@alues, as exreme values may often show
erratic behaviour.

If we repeat the test for the data sets restricted to degiigasihthan five, we obtain the following
results, which confirm the validity of the tresholding:

« for X; vs Xp we obtain ap-value of 07590;
« for X; vs X3 we obtain ap-value of 06713;

« for X, vs X3 we obtain ap-value of 09050;

A.4.2 Hypothesis testing

Let us now apply our method for testing hypothesis describeskection A.2.1, which uses the Mann-
Whitney-Wilcoxon test to assess the quality of the resulitaioed from the parametric Pearson Chi
squared method and the non-parametric Clauset-Shalizisid@ method in the main document. Re-
member that those methods were applied on nodes of deggfe ltihan five.

The test applied to results of Table 3.1 (Section 3.2.4 ofrthén document) gives:

Experiment]| 3 | p-value

1 3.245| 0.8937
2 3.331| 0.7832
3 3.276| 0.6178

1+2+3 | 3.230| 0.7968

Applied to the results of Table 3.2 (Section 3.2.4 of the ntioument) we see:
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Experiment]| B | p-value

1 3.386| 0.4095
2 3.386| 0.5221
3 3.385| 0.2219

1+2+3 3.392| 0.1214

Applied to Table 3.3 Section 3.2.4 of the main document) vee se

Experiment| B | p-value

1 3.29| 0.8583
2 3.36| 0.6386
3 3.31| 0.4686

1+2+3 3.26 | 0.9296

Therefore the these tests tend to support the conclusioBgdfon 3.5 of the main section of the
deliverable

A.4.3 Estimation of 8

Let us now apply the the estimator Mann-Whitney-Wilcoxaséd estimator as explained in Section
A.2.2, consisting in comparing eveky against power laws of various exponefitsWe test 1000 values
of B between 2B and 38.

Here are the results:

Experiment| B | ‘p-value’
1 3.265 | 0.9986
2 3.2906| 0.9982
3 3.202 0.9978

1+2+3 3.252 | 0.9977

As an illustration, thep-value obtained as a function @fis plotted on Fig. A.4.3 folX; U X, U X3.
It should be recalled here that the very higtvalues obtained here should not be intepreted as ysual
value, for the reason explained above (we selected the @gtie among many samples, which destroys
an independence assumption). But it is still interestingeiative value, as indicating quite sharply the
most reasonable exponent for a power-law, provided thatelieve that the data is indeed distributed
according to a power law. The fact that we recover valueg fibiat are very consistent with those obtained
with other methods in the main document is one more confionaf the validity of the conclusions.

A.5 Conclusions

The Mann-Whitney-Wilcoxon-based tests that we performedh® data collected by LIP6 allows to
strengthen the conclusions of Section 3.5 of the main doatiofeDeliverable 3.4.
In particular, we could show that

* we cannot reject the hypothesis that the three samplesafaiie same distribution (Consistency
Tests);

* we cannot reject the hypothesis that the the three samgpllesvfa power law with exponens
computed by the methods (Pearson’s Chi-squared testsset{&alizi-Newman) of the main doc-
ument (test of Section A.2.1)

« those values o are in the same range of tifievalues found by testing many power laws against
the samples (estimator of Section A.2.2).
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Figure A.1: Thep-valued obtained for ever@ on the union of the three sampl¥sU X, U X3 in the
Second Method.

We therefore feel justified to claim that the degree distidyuof the nodes appears to follow a power
law with exponentr = 3 4 1 between 4L and 44, with 4.25 being the most likely value.

The Mann-Whitney-Wilcoxon-based tests therefore offeuppsementary support to the previous
conclusions to Section of the main document of the Deliveralvhich were deduced from the non-
parametric (but computationnaly expensive) Clausetidhdewman method.
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