
Seventh FRAMEWORK PROGRAMME
FP7-ICT-2009-5 - ICT-2009-1.6

Future Internet experimentally-driven research

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D3.3

“Graph analysis / mining”

Project description

Project acronym: EULER
Project full title: Experimental UpdateLess Evolutive Routing
Grant Agreement no.: 258307

Document properties

Number: FP7-ICT-2009-5-1.6-258307-D3.1
Title: Graph Analysis and Mining
Responsible: Institut National de Recherche en Informatique et Au-

tomatique (INRIA)

Contributor(s): All partners

Dissemination level: Public (PU)
Date of preparation: September 2012
Version: 1.0

Affiliation Authors

CTI Ioannis Caragiannis, Panagiotis Kanellopoulos
INRIA David Coudert, Christian Glacet, Nicolas Hanusse, Aurélien

Lancin, Nicolas Nisse
UPMC Fabien Tarissan
ALB Dimitri Papadimitriou

List of authors

2

Contents

1 Context and document summary 5

2 Notations 9

3 New algorithms for property testing 11
3.1 Hyperbolicity . 11

3.1.1 Objectives and Motivation . 11
3.1.2 Exact algorithm for computing the hyperbolicity:

Design and theoretical analysis . 13
3.1.3 Experimental performances . 15

3.2 Chordality and treewidth . 19
3.2.1 Objectives and Motivation . 19
3.2.2 Structured Tree-decomposition . 20

4 Towards a Bipartite Graph Modeling of the Internet Topology 25
4.1 Objectives and Motivation . 25
4.2 Related Work . 25
4.3 Methodology . 26
4.4 Bipartite Graphs and our Model . 28

4.4.1 Bipartite Graphs . 28
4.4.2 Model . 30

4.5 Model evaluation . 32
4.5.1 Projection Evaluation . 33
4.5.2 Bipartite Evaluation . 35

4.6 Discussion . 38
4.6.1 Correlation Analysis . 38
4.6.2 Redundant Networking Patterns . 40
4.6.3 Next Steps . 41

5 Evolution of structural properties of Internet-like networks 43
5.1 Evolution of structural properties . 43

5.1.1 Objectives and Motivation . 43
5.1.2 Experimental Protocol . 44
5.1.3 Numerical results and Analysis . 46

5.1.3.1 Long term evolution of CAIDA maps 46
5.1.3.2 Long term evolution of GLP and comparison with CAIDA

measures . 50

3

5.1.3.3 Short-term evolution . 55
5.2 Evolution of the hyperbolicity . 58

5.2.1 Objectives and Motivation . 58
5.2.2 Theoretical worst case behavior . 58
5.2.3 Long term evolution of the hyperbolicity of Internet-like networks . . 59
5.2.4 Short term evolution of the hyperbolicity 61

6 Impact of edge deletions on Routing/Forwarding paths 65
6.1 Impact of Edge Deletions on shortest path Routing Tables 66

6.1.1 Objectives and Motivation . 66
6.1.2 Related works . 67
6.1.3 Contributions and Methodology . 68
6.1.4 General Results . 70

6.1.4.1 Relationships between the number of liars and the number of
distance changes . 70

6.1.4.2 Upper bounds for ` = 1 deleted edge 71
6.1.4.3 Lower bound . 74

6.1.5 Number of liars after ` deletions . 75
6.1.6 Specific Topologies . 76
6.1.7 Conclusion . 77

6.2 Greedy routing and embeddings . 78
6.2.1 Objectives and Motivation . 78
6.2.2 Theoretical investigations . 79
6.2.3 Experimental results . 80

7 Conclusion 85

4

Chapter 1

Context and document summary

As pointed out in the deliverable D3.1, the holly grail of Task 3.1 in EULER is the devel-
opment of a new graph model for the Internet that will encompass the advantages of the
different models that have been proposed so far. Clearly, such an understanding of the Inter-
net structure will have important benefits for routing.

In this deliverable, we consider two different levels of Internet topology referring to the
network of the interconnections of routers and/or to the network of Autonomous Systems
(AS). Such topologies are modeled as undirected graphs. The interconnection network be-
tween the routers represents the Internet at the physical level. At this low level of description,
nodes of the graph represent physical entities (such as routers and points of interconnection)
and the edges of the graph correspond to the physical links (or bundles of physical links) in-
terconnecting them. Usually, the physical entities (the routers) are classified as access, edge,
aggregation entities, and interconnection points (the so-called IXP’s) that mainly differ in
their number or in- and out- physical interfaces and by their switching or forwarding capa-
bilities. The AS network corresponds to a higher level of description of the Internet. At this
level of abstraction, ASes are logical nodes that correspond to a collection of connected Inter-
net Protocol (IP) prefixes. Interconnections between ASes define the relationships between
them. These interconnections can be classified as “customer-provider”, “peering” (peering
can either be public/shared or private), and “mutual-transit”. The corresponding network is
considered as the topology on which the routing function is being applied when performing
inter-AS routing. In this deliverable, we rely on the maps of the advised ASes collected by
CAIDA [CAI].

The driving idea of the EULER project is to make use of the structural and statistical
properties of the Internet topology in order to specialize the design of efficient distributed
routing schemes under dynamic network and policy conditions. For this purpose, Tasks T3.1
and T3.2 of Work Package 3 of the EULER project are dedicated to the study of the actual
structural properties of the Internet and of their evolution under dynamic scenarii. Note that
we mainly focus on properties related to distances and paths. The considered paths follow
two levels of description. First, we consider topological paths, i.e., sequence of nodes such that
two consecutive nodes are interconnected by a (logical) link. For instance, we observe the
distribution of the length of the shortest paths both in the router-level network and in the
AS network. Second, we consider the forwarding (or routing) paths that are actually followed
by packets toward destination, i.e., the paths that are computed by a routing function using
the information stored in the routing tables.

5

These objectives are very ambitious since they require to overcome several challenging
difficulties. First, determining the actual properties of the Internet require accurate measure-
ment of its topology. Second, because of the huge size of the considered networks, efficient
algorithms are needed to compute the desired properties. Indeed, since we are interested by
the short term and long term evolutions of various structural parameters, this requires to be
able to repeat many times their computation. Last but not least, the treatment of such a
bunch of data is itself a challenging issue.

During the first year of EULER, WP3 has started to tackle the above issue. We first
have focused on a careful investigation of the related models proposed in the literature and
an as extensive as possible selection of graph properties that are more likely to affect routing
performance. These first results have been reported in D3.1. While several well known
properties of the Internet are well documented in the literature (diameter, degree-distribution,
clustering coefficient), it appears that other properties that are well known to be useful for
routing have not received such an attention (hyperbolicity, chordality, centrality betweenness,
etc.). Moreover, very few studies of the evolution of structural properties of the Internet or
of the corresponding models have been done. This is mainly due to the complexity of their
computation and the lack of algorithms that can actually be executed for networks with an
order of 104 nodes. It is also worth to note that, while many models have been proposed
to represent the Internet topology (such as GLP), no model allows to overlap all known
properties of the Internet. An important working effort of WP3 has been done to implement
several graph models and algorithms for property testing. Preliminary results from this
implementation and experiments in testbed environments have been performed on topologies
with at most 1 000 nodes and were also reported in D3.1.

During the second year of EULER, our activities has been heavily based on the results and
implementations obtained during the first period. We have first continue the understanding
of the Internet topological structure using graph-theoretical notions, models, and techniques.
This led us to the design of new efficient algorithms for computing non trivial properties of
graphs. In particular, the proposed algorithms have allowed to provide new statistical results
regarding huge networks such as the CAIDA maps and classical or new models (Erdös-Rényi,
GLP, bipartite, etc.).

The main focus of the second part of T3.1 concerns the evolution of the structural
properties of the Internet or of models under dynamicity conditions. Some graphs prob-
lems have been widely studied in dynamic graphs. However, these studies only deal with
classical problems such as the maintenance of a spanning tree (or forest) in a dynamic
graph [DKK07, Ita08b, Ita08a]. Similarly, in the large scale network context, only the evo-
lution of “simple” properties such as diameter, degree or distance distribution have been
considered. However, when aiming at efficient routing schemes, such studies are not suffi-
cient. Indeed, the fact that the diameter or even the distance distribution of an evolving
network does not increase does not mean that the distance between two given nodes remains
the same. The main issue of T3.1 is not only the evolution of the structural properties of
the Internet but the impact of these evolution to routing. In particular, the evolution of
some properties may allow us to discover some other hidden properties: the fact that the
distribution of the hyperbolicity remains unchanged when removing until 10% of the edges
of a GLP instance or of a CAIDA map reveals the redundancy of the shortest paths between
nodes.

The rest of this document is structured as follows. First two chapters are a direct continu-
ation of previous work of task T3.1 of WP3. In Chapter 3, we provide new efficient algorithms

6

to compute interesting structural properties that have been pointed out in deliverable D3.1.
These algorithms are proved to be very useful for the results described in the second part of
this deliverable. Then, in Chapter 4, we propose a new model of the Internet topology as
a bipartite graph characterizing the connections between AS routers and Ethernet switches.
This model takes advantage of new measurements approaches provided in deliverable D3.2.
Chapter 5 is devoted to a deep statistical analysis of the evolution of the properties of the
CAIDA maps during the last decade. This is done in parallel with the study of the evolution
(under the same kind of dynamic) of the properties of various models. In Chapter 6, we focus
on the evolution of the properties under dynamic conditions. Due to the time-complexity of
measuring the properties, we focus on simple scenarii consisting on random removal or addi-
tion of some edges/nodes. First, we provide first theoretical investigations on the evolution
of the distances in such case and its impact on several routing schemes. In Section 6.1, we
provide a theoretical analysis of the number of out-dated routing tables after the removal
of some edges. In Section 6.2, we study the evolution of the performance of greedy routing,
based on some tree-embedding of a graph, when fails make some edges fall.

7

8

Chapter 2

Notations

In this section, we define the standard notations from graph theory used in this deliverable.

Table 2.1: Standard notations used in this deliverable.

Notation Definition

V Vertex set

E Edge set

G = (V,E) Undirected graph with vertex set V and edge set E

n Order or number of vertices of the graph, n = |V |
m Size or number of edges of the graph, m = |E|
ρ Density of the graph: ρ = 2m

n(n−1)

dist(u, v) Shortest path distance between vertices u and v

D Diameter

Γ(u) Set of neighbors of vertex u in the graph.

Γ(X) Set of neighbors of the vertices u ∈ X. Γ(X) = ∪u∈X Γ(u).

deg(u) Degree of vertex u, deg(u) = |Γ(u)|
∆ Maximum degree

Γ[u] Strict neighborhood of u, that is Γ[u] = Γ(u) \ {u}
Γ[X] Strict neighborhood of the vertices u ∈ X, that is Γ[X] = Γ(X) \X
δ Hyperbolicity of the graph [Gro87]. For convenience, we note δ∗ = 2δ.

tw Treewidth of G

tl Tree-length of G

9

10

Chapter 3

New algorithms for property testing

In Section 2 of D3.1, we have reviewed several structural properties of the Internet which are
proven effective either for the design of compact routing schemes, or for distance decreasing
routing schemes (greedy routing). While several well known properties of the Internet are
well documented in the literature (diameter, degree-distribution, clustering coefficient), it
appears that other properties that are well known to be useful for routing have not received
such an attention (hyperbolicity, chordality, centrality betweenness, etc.). Indeed, the latter
properties or parameters reflect the closeness of the structure or the metric of the Internet with
the ones of a tree. This is clearly a good news for routing since efficient (labelled) compact
routing schemes exist in tree topologies. The fact that few studies deal with properties such
as hyperbolicity or chordality is mainly due to their computational complexity.

In this chapter, we continue this study of some structural properties. In particular, we
present efficient algorithms for computing the hyperbolicity of graphs and some nice tree-
decomposition of graphs with small chordality. The difficulties met to compute these prop-
erties are distinct. The hyperbolicity is known to be computable in time O(n4) in n-node
graphs which is prohibitive for large graphs. On the other hand, chordality is known to be
NP-complete even in planar graphs. In this chapter, we propose the first exact algorithm for
computing hyperbolicity that is scalable for Internet-like graphs. We also design a greedy
algorithm providing good bounds on chordality and treewidth.

In Chapter 5 of these deliverable, we describe experimentations using these algorithms
that we have performed to study the evolution of these parameters on the Internet topology.

3.1 Hyperbolicity

This section extends the study on hyperbolicity initiated during the first year of EULER and
reported in Section 2.15 of deliverable D3.1. Some preliminary experimental results were also
presented in Section 3.2 of D3.1 (e.g., Table 3.8). The main contribution of this section is the
design of a new algorithm that allowed us to conduct an extensive study of the hyperbolicity
of large-scale graphs such as CAIDA maps.

3.1.1 Objectives and Motivation

The (Gromov) hyperbolicity of a graph reflects how the metric (distances) of the graph is
close to the metric of a tree (see Section 2.15 of Deliverable D3.1). Gromov [Gro87] defines

11

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Main/Deliverables?action=file&upname=Deliverables/D31.pdf

the notion of δ-hyperbolic metric spaces using the notion of δ-thin triangles. Given any three
points x, y, and z of a hyperbolic metric space, the triangle (x, y, z) is δ-thin if any point of
the geodesic joining x and y is at distance at most δ of one of the geodesics joining x to z
or y to z. A δ-hyperbolic space is a geodesic metric space in which every geodesic triangle is
δ-thin. In other words, a graph has hyperbolicity ≤ δ if, for any u, v, w ∈ V (G) and for any
shortest paths Puv, Pvw, Puw between these three vertices, any vertex in Puv is at distance
at most δ from Pvw ∪ Puw [Gro87]. Intuitively, in a graph with small hyperbolicity, any two
shortest paths between the same pair of vertices are close to each other. For instance, a graph
has hyperbolicity 0 if and only if it is acyclic.

An alternative definition given by Gromov [Gro87], and called the 4-points condition, is
the following. A metric space is δ-hyperbolic if for any four points u, v, w, x the two larger
of the distance sums dist(u, v) + dist(w, x), dist(u,w) + dist(v, x), dist(u, x) + dist(v, w) differ
by at most δ∗ = 2δ. These notions extend to connected graphs, and we say that a connected
graph G = (V,E) equipped with its standard graph metric distG (shortest path distance) is
δ-hyperbolic if the metric space (V,distG) is δ-hyperbolic. In other words, a connected graph
G = (V,E) is δ-hyperbolic if it satisfies the 4-points condition. The hyperbolicity of a graph
measures its tree-likeness. The less the value of δ is, the more the graph looks like a tree.

Determining the hyperbolicity δ of a graph of order n can therefore be done in time
O(n4). In fact, since all 4-tuples have to be checked, the time complexity is in O(

(
n
4

)
).

An implementation of the naive algorithm for determining the hyperbolicity of a graph as
been included into the distory (Distance Between Phylogenetic Histories) package [dis] of the
CRAN (The Comprehensive R Archive Network) project [CRA]. This package is devoted
to the study of geodesic distance between phylogenetic trees and associated functions. The
implementation uses the “revolving doors Gray code” principle [Knu05] for visiting all 4-
tuples of the input graph. Unfortunately, the proposed implementation is impracticle for
large and dense graphs (size of the largest biconnected component). For instance, for a graph
with a biconnected component of order 10 000, the number of 4-tuples to consider is higher
than 4 · 1014, which requires approximately 100 hours of computation assuming that 109 4-
tuples are evaluated per second. A heuristic algorithm for determining the hyperbolicity of
CAIDA AS maps has been used in [dMSV11]. Other heuristics based on sampling were used
in [Sha11, NST12] for random Erdös-Renyi GNP graphs generated using probability p = c/n,
where c is a small constant (1.5 or 2), and so the resulting graphs are almost trees having
very small biconnected components. In addition, a 2-approximation algorithm, with running
time in O(

(
n
3

)
), is obtained fixing one vertex and evaluating all possible 4-tuples containing

that vertex [CDE+08].

The need for more efficient algorithms has been expressed by many authors, for instance
it has recently been mentionned in the conclusion of [CFHM12] that “exact computation of δ
by its definition takes O(n4) time, which is not scalable to large graphs, and thus the design
of more efficient exact or approximation algorithms would be of interest”.

The algorithm proposed below is the first exact algorithm scalable for large graphs.

Outline of the section. We present a new exact algorithm for computing the hyperbolicity
of a graph. This algorithm has worst case time complexity in O(n4), but in practice the
optimal value is returned much faster. In particular, this algorithm has been used to compute
the hyperbolicity of the last-years CAIDA maps which allowed us to understand the evolution
of the hyperbolicity of the Internet. These results are presented in Section 5.2.3 page 59.

12

http://cran.r-project.org/web/packages/distory/index.html
http://cran.r-project.org/

3.1.2 Exact algorithm for computing the hyperbolicity:
Design and theoretical analysis

In this section, we formally describe a new exact algorithm for computing the hyperbolicity
of graphs. We then give some hints on its time-complexity. Last but not least, we explain
how to turn this algorithm into an approximation algorithm.

Our new algorithm is based on the following lemma, in which dist(x, y) denotes the graph
distance between nodes x and y, and δ∗(a, b, c, d) is the computed value of the hyperbolicity
of the 4-tuple (a, b, c, d). Recall that δ∗ = 2δ and so that δ∗(a, b, c, d) = 2δ(a, b, c, d).

Lemma 1. Let G = (V,E) be a connected graph, let a, b, c, d ∈ V , let S1 = dist(a, b) +
dist(c, d), S2 = dist(a, c) + dist(b, d), and S3 = dist(a, d) + dist(b, c), and assume w.l.o.g. that
S1 ≥ max {S2, S3}. We have δ∗(a, b, c, d) ≤ min {dist(a, b), dist(c, d)}.

Proof. We have S2+S3 = dist(a, c)+dist(b, d)+dist(a, d)+dist(b, c) = (dist(a, c) + dist(b, c))+
(dist(a, d) + dist(b, d)). Using the triangular inequality, we deduce S2+S3 ≤ 2·dist(a, b). Since
S1 is the largest sum, we have δ∗(a, b, c, d) = S1 −max {S2, S3} ≤ S1 −max {S2, S3} /2 =
S1 − dist(a, b) = dist(c, d).

We obtain similarly that δ∗(a, b, c, d) ≤ dist(a, b).

To make use of Lemma 1, we construct in Algorithm 1 the list SLL of 3-tuples (S1 =
`1 + `2, `1, `2), for 1 ≤ `2 ≤ `1 ≤ D, sorted in decreasing lexicographic order (lines 3-4). The
value of `i is a shortest path distance in the graph. For instance, if D = 4, the 3-tuples are
sorted in the following order:

(8, 4, 4), (7, 4, 3), (6, 4, 2), (6, 3, 3), (5, 4, 1), (5, 3, 2), (4, 3, 1), (4, 2, 2), (3, 2, 1), (2, 1, 1).

We then compute for each 3-tuple (S1 = `1 + `2, `1, `2) the values h(a, b, c, d) = S1 −
max{dist(a, c)+dist(b, d), dist(a, d)+dist(b, c)} for all 4-tuple (a, b, c, d) such that dist(a, b) =
`1 and dist(c, d) = `2. Thus, the algorithm considers the 4-tuples (a, b, c, d) in such a way
that either S1 is the largest sum, or, in case S2 (resp. S3) is larger than S1 we know that the
4-tuple has previously been considered with S2 (resp. S3) as maximum value, and so we have
h(a, b, c, d) ≤ 0. Then, thanks to Lemma 1 we know that at any step of the algorithm the
value of `2 is an upper bound on the value of h(a, b, c, d). Also, if the current lower bound
is h∗, none of the 4-tuples such that dist(c, d) ≤ h∗ can be used to improve the lower bound.
We can thus cut exploration (lines 6-8).

Since we have
(
n
2

)
pairs, and that Algorithm 1 considers pairs of pairs, the worst case

time complexity of the algorithm is in O
((
n
2

)
·
((
n
2

)
− 1
)
/2
)
. However, with a more carefull

analysis we observe that we can parameterized the time complexity with the optimal value of
the hyperbolicity and the distribution of the path lengths. That is,

Proposition 2. Given a δ-hyperbolic graph G of diameter D and the sets P [`] of pairs of
vertices at distance ` from each other, the time complexity of lines 6-9 of Algorithm 1 is in

O

 D∑
`1=2δ

|P [`1]|

 |P [`1]| − 1

2
+

`1−1∑
`2=max{1, 4δ−`1}

|P [`2]|


Proof. Let P [`] be the list of pairs (a, b) ∈ V × V with a < b such that dist(a, b) = `. For a
δ-hyperbolic graph, Algorithm 1 will consider in the worst case all the triples (`1 + `2, `1, `2)

13

Algorithm 1 Hyperbolicity

Require: G = (V,E) is a 2-connected graph.
Ensure: δ, the hyperbolicity of G (observe that δ = h∗ /2).

1: Let P [`] be the list of pairs (a, b) ∈ V × V with a < b such that dist(a, b) == `
2: Sort P [`] in increasing lexicographic order
3: Let SLL be the list of triples (`1 + `2, `1, `2) for 1 ≤ `2 ≤ `1 ≤ D
4: Sort SLL by decreasing lexicographic order
5: Let h∗ := 0
6: for all (S1, `1, `2) in SLL such that `2 > h∗ do
7: for all (a, b) ∈ P [`1], if `2 > h∗ do
8: for all (c, d) ∈ P [`2], if `2 > h∗ do {When `1 == `2, we ensure that (a, b) < (c, d) in

P [`1] }
9: h∗ := max {h∗, S1 −max {dist(a, c) + dist(b, d), dist(a, d) + dist(b, c)}}

10: end for
11: end for
12: end for
13: return h∗ /2

such that `1 + `2 ≥ 4δ and D ≥ `1 ≥ `2 ≥ 1. Furthermore, when `1 = `2, line 8 ensures
that pair (a, b) < (c, d) in P [`1]. Since we are not interested in the computation time of
lines 1-4 (which is clearly dominated by the computation of the distances beween each pairs
of vertices), the result follows.

For instance, if the input graph is a n×n grid, with diameter 2n−2 and hyperbolicity δ =
n−1 (so δ∗ = 2n−2), the value of the hyperbolicity will be obtained with the first considered
4-tuple. Lines 6-9 of Algorithm 1 will thus be executed in constant time. On the other
hand, if the input graph is a n× 2 grid, with diameter n and hyperbolicity δ = 1 (so δ∗ = 2),
almost all 4-tuples will be considered and so the running time will be in O

((
n
2

)
·
((
n
2

)
− 1
)
/2
)
.

Chordal graphs, which have hyperbolicity at most 1 [BKM01], are worst case instances for
this algorithm since its running time increases with the gap between the diameter and the
hyperbolicity.

Algorithm 1 requires to compute the distances bewteen all pairs of vertices (line 1), to sort
pairs of vertices at equal distances in lexicographic order (line 2), and also some negligeable
operations (lines 3-4). Therefore we have

Corollary 3. Given a δ-hyperbolic graph G of diameter D and the sets P [`] of pairs of vertices
at distance ` from each other, the time complexity of Algorithm 1 is in

O

max

n(n+m), n2 log n,
D∑

`1=2δ

|P [`1]|

 |P [`1]| − 1

2
+

`1−1∑
`2=max{1, 4δ−`1}

|P [`2]|




Since the computational complexity of Algorithm 1 depends on the distance distribution
of the graph and of the computed value of the hyperbolicity, we have not been able yet to
obtain closed formula for its time complexity on the particular graph classes of interest for
the EULER project. However, we will present in Section 3.1.3 some experimental results.

14

Observe that at any step of the algorithm, the value of `1 is an upper bound for the
hyperbolicity of G. Therefore, for large graphs inducing an excessive running time (some
instances may require weeks of computations), Algorithm 1 can be turned into an approxi-
mation algorithm with approximation ratio `1

h∗ . It suffices for instance to stop the execution
of the algorithm after a given time (for instance one hour) and to return the values h∗ and
`1. More precisely, we can insert one of the following test between line 6 and line 7 of the
algorithm:

• “If computation time is larger than allowed computation time, then stop computations
and return h∗ and `1”. We get h∗

2 ≤ δ ≤ `1
2 ;

• “If `1
h∗ ≤ apx , then stop computations and return h∗

2 .” We get an approximation of

the value δ of the hyperbolicity with proven approximation factor apx (i.e.., h∗

2 ≤ δ ≤
apx · h∗

2);

• “If `1
2 − h∗

2 ≤ apx, then stop computations and return h∗

2 .” We get an approximation of
the value δ of the hyperbolicity with proven additive approximation constant apx (i.e.,
h∗

2 ≤ δ ≤ h∗

2 + apx).

As we show in the next section, the main part of the running time of the algorithm
consists in closing the small gap between lower and upper bounds that are generally found
very quickly. Therefore, depending on the expected result, it may be appropriate to use the
above rules that may allow to save a lot of time while preserving a sufficient precision.

3.1.3 Experimental performances

In this section, we evaluate the performances of Algorithm 1 described above. This evaluation
is done by comparing the running time of Algorithm 1 with the time of the naive algorithm
O
(
n
4

)
. Our objective is to determine the topologies in which our algorithm is better than the

naive one. Indeed, Algorithm 1 appears to be worse than the naive one for some pathological
topologies such as grids. The good news are that its running-time outperforms the one of
known algorithms in the case of Internet-like graphs. In particular, Algorithm 1 allows us
to compute the hyperbolicity of the last CAIDA AS maps (n = 25 815 for the largest bi-
connected component of the CAIDA map of September 2012) in two weeks.

We have reported in Table 3.1 the evolution of the computation time of Algorithm 1 on
n×m grids such that n ∗m = 22 ∗ 32 ∗ 42 = 576 and n ∗m = 22 ∗ 32 ∗ 52 = 900. The running
times are averages over 10 executions of the algorithm. The hyperbolicity of a n×m grid is
δn×m = min {n,m} − 1. As expected, the computation time on square grids is way smaller
than for grids with sides of very different sizes. In Section 3.1.2, we said that rectangular grids
are some of the worst case instances for Algorithm 1. To verify this claim, we have plotted
in Figure 3.1 the relative number of visited 4-tuples with Algorithm 1 compared to the total
number of 4-tuples in the graph. Recall that a 4-tuple may be visited up to three times by the
algorithm. In these plots, we observe that as soon as the sides of the grids differ by a factor
at least 6, then the computation time of Algorithm 1 is larger than the naive algorithm, but
it is much faster when the sides of the grid differ by a factor less than 6.

Next, we have reported in Figure 3.2 the running time of Algorithm 1 on Barabasi-Albert
(BA) graphs. We have generated graphs with number of nodes in the range [1 000..10 000]
and with different values of the degree k of newly added nodes. We have generated 100

15

n m δ time

24 24 23 0.08

18 32 17 0.16

16 36 15 1.13

12 48 11 15.01

9 64 8 40.33

8 72 7 50.79

6 96 5 71.80

4 144 3 90.60

3 192 2 97.08

2 288 1 101.82

(a) n ∗m = 576

n m δ time

30 30 29 0.16

25 36 24 0.18

20 45 19 5.98

18 50 17 23.10

15 60 14 86.94

12 75 11 201.71

10 90 9 297.54

9 100 8 349.51

6 150 5 496.64

5 180 4 537.42

4 225 3 574.37

3 300 2 599.19

2 450 1 622.15

(b) n ∗m = 900

Table 3.1: Computation time in secondes of the hyperbolicity of n × m grids such that
n ∗m = 22 ∗ 32 ∗ 42 = 576 (Table 3.1a) and n ∗m = 22 ∗ 32 ∗ 52 = 900 (Table 3.1b).

graphs for each couple number of nodes and parameter k, and reported the average values.
Figure 3.2a reports the average values of the hyperbolicity of these graphs. We observe that
the hyperbolicity of BA graphs decreases with the degree of newly added nodes. Figure 3.2b
represents the average computation time of Algorithm 1 on these graphs. We observe a slow
increase of the computation time with the increase of the parameter k. This slow increase
was expected since the time complexity of both the all-pairs shortest path algorithm and
the decomposition into bi-connected components algorithm depend on the number of edges
of the graph and so on the parameter k. We also observe in Figure 3.2b some pics in the
computation times for particular combinations of the number of nodes and the parameter k.
However, at the time of writing this deliverable we have not been able to explain this surprizing
behavior. Last, we have reported in Figure 3.2c the ratio of the average number of 4-tuples

(a) n ∗m = 576 (b) n ∗m = 900

Figure 3.1: Relative performance of Algorithm 1 vs. the naive algorithm on n×m grids.

16

visited by Algorithm 1 over the total number of 4-tuples of the graphs. This highlights the
drastic running time improvement of Algorithm 1 over the naive algorithm to compute the
hyperbolicity of BA graphs. More precisely, Algorithm 1 is between 103 and 1011 times faster
than the naive algorithm.

(a) Hyperbolicity of BA graphs (b) Computation time

(c) Ratio visited/total number of 4-tuples

Figure 3.2: Computation time of the hyperbolicity of Barabasi-Albert graphs.

Last, we have reported in Table 3.2 the size of the largest bi-connected component (BCC),
the hyperbolicity, the running time and the number of visited 4-tuples by Algorithm 1 when
computing the hyperbolicity of some CAIDA maps. We have selected CAIDA maps with dif-
ferent values of the hyperbolicity to highlight the running time improvement of Algorithm 1.
As expected with the time complexity expressed in Proposition 2, the running time improve-
ment is correlated to the hyperbolicity of the CAIDA maps. Indeed, Algorithm 1 is more
than 100 times faster than the naive algorithm for these maps. Nevertheless, the running
times remains large. However, as explained in Section 3.1.2, at each step of the execution of
Algorithm 1 we get proven lower and upper bounds for the hyperbolicity of the considered
graph. Also, we have plotted in Figure 3.3 the time at which new lower and upper bounds
are obtained when computing the hyperbolicity of the maps of Table 3.2. We observe that a
few minutes of computations is sufficient for the lower bound to reach the optimal value but
that the time to decrease the upper bounds to the optimal value could be very long. In fact,
for maps with low hyperbolicity, almost all computation time is spent to prove the optimality
of the lower bound.

17

AS map name Largest BCC Hyperbolicity Time Visited 4-tuples Tot. 4-tuples

2004/01/05 10 424 2.5 336s 3.8 · 1010 ' 5 · 1014

2004/06/07 11 100 2.0 18h50m 8.8 · 1012 ' 6.3 · 1014

2005/09/05 12 957 3.0 58s 1.2 · 108 ' 1.2 · 1015

2012/06/01 25 815 2.0 30d 1.5·1015 ' 1.8 · 1016

Table 3.2: Computation time of the hyperbolicity of some CAIDA maps.

Figure 3.3: Time to reach lower and upper bounds of the hyperbolicity of CAIDA maps since
2004. Computation times for lower bounds are plotted from left to right, and from right to
left for upper bounds.

18

3.2 Chordality and treewidth

This section extends the study on chordality and treewidth initiated during the first year of
EULER and reported in Section 2.8 and 2.13 of deliverable D3.1. The main contribution of
this section is the design of a new greedy algorithm that allows to decide whether a graph
admits a large induced cycle or compute a particular tree-decomposition. In particular, this
tree-decomposition can be used for the design of efficient compact routing schemes.

Even if the algorithm does not guaranty to compute the largest induced cycle of a graph
(which is an NP-complete problem), it has been used in Chapter 5 to have first results on the
chordality and the structure of large cycles of Internet-like graphs.

3.2.1 Objectives and Motivation

A parameter related to the hyperbolicity is the chordality of a graph. The chordality of a graph
is the length of its longest induced (i.e., chordless) cycle. A graph with no induced cycle larger
than k is called a k-chordal graph. By definition of the thin triangles, it is easy to see that
bounded chordality implies bounded hyperbolicity. Some papers consider relations between
both parameters [BC03, WZ11]. Several recent works on compact routing take advantage of
such structural properties of large-scale networks for algorithm design (e.g., routing [KPBV09,
CSTW09]). Indeed, Internet-like networks have a so-called high clustering coefficient (see
e.g. [WS98, OP09]), leading to the existence of very few long chordless cycles, whereas their
low (logarithmic) diameter implies a small hyperbolicity [dMSV11]. Unfortunately, contrary
to the problem of computing the hyperbolicity of a graph, the problem of computing the
chordality of a graph G is NP-complete since it may be related to computing a longest
cycle in the graph obtained from G after subdividing all edges once. Finding the longest
induced path is W [2]-complete [CF07] and the problem is Fixed Parameter Tractable in
planar graphs [KK09]. It is coNP-hard to decide whether an n-node graph G is k-chordal for
k = Θ(n) [Ueh99].

Another way to study tree-likeness of graphs is by tree-decompositions. Introduced by
Robertson and Seymour [RS84], such decompositions play an important role in design of
efficient algorithms. Roughly speaking, a tree-decomposition maps each vertex of a graph to
a subtree of the decomposition tree in a way that the subtrees assigned to adjacent vertices
intersect [RS84, Bod98]. The nodes of the decomposition tree are called bags, and the size of
a bag is the number of vertices assigned to it (assigned subtrees intersect the bag). The width
of a tree-decomposition is the maximum size over its bags, and the treewidth of a graph is
the smallest width over its tree-decompositions. By using dynamic programming based on
a tree-decomposition, many NP-hard problems have been shown to be linear time solvable
for graph with bounded treewidth [CM93]. In particular, there are linear-time algorithms to
compute an optimal tree-decomposition of a graph with bounded treewidth [Bod93, BK96].
However, from the practical point of view, this approach has several drawbacks. First, all
above-mentioned algorithms are linear in the size of the graph but (at least) exponential in
the treewidth. Moreover, due to the high clustering coefficient of large-scale networks, their
treewidth is expected to be large [dMSV11]. Hence, to face these problems, it is important
to focus on the structure of the bags of the tree-decomposition, instead of trying to minimize
their size. For instance, several works study the diameter of the bags [DG07, Lok10].

It is NP-complete to decide whether the treewidth of a graph G is at most k [ACP87]. For
chordal graphs, cographs [BM93], circular arc graphs [SSR94], chordal bipartite graphs [KK95]

19

and etc., the treewidth problem is polynomially solvable. Bodlaender and Thilikos proved
that the treewidth of a k-chordal graph with maximum degree ∆ is at most ∆(∆−1)k−3 which
implies that treewidth is polynomially computable in the class of graphs with chordality and
maximum degree bounded by constants [BT97]. They also proved that the treewidth problem
is NP-complete for graphs with small maximum degree [BT97].

In Section 3.2.2, we describe a quadratic algorithm that, given a n-node graph G and an
integer k ≥ 3, either returns an induced cycle of length at least k + 1 in G or computes a
tree-decomposition of G with each bag having a dominating path of order ≤ k − 1. More
precisely, each bag of our tree-decomposition contains a chordless path with at most k − 1
vertices, such that any vertex in the bag is either in the path or adjacent to some vertex of
the path. In the case when G admits such a decomposition, this ensures that G has treewidth
at most (k − 1)(∆ − 1) + 2 (where ∆ is the maximum degree), tree-length at most k and
hyperbolicity at most b3k/2c. In particular, this shows that the treewidth of any k-chordal
graph is upper-bounded by O(k ·∆), improving the exponential bound of [BT97].

3.2.2 Structured Tree-decomposition

In this section, we present an algorithm that, given a n-node graph G and an integer k ≥ 3,
either returns an induced cycle of length at least k+1 in G or computes a tree-decomposition
of G with interesting structural properties. These results have been presented in [KLNS12a,
KLNS12b]. First, we need some definitions.

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I}, T = (I,M)), where T
is a tree and {Xi|i ∈ I} is a family of subsets, called bags, of vertices of G such that (1)
V = ∪i∈IXi; (2) ∀{uv} ∈ E there is i ∈ I such that u, v ∈ Xi; and (3) ∀v ∈ V , {i ∈ I|v ∈ Xi}
induces a (connected) subtree of T . The width of a tree-decomposition is the size (minus 1)
of its largest bag and its `-width is the maximum diameter of the subgraphs induced by the
bags. The treewidth denoted by tw(G), resp., tree-length denoted by tl(G), of a graph G is
the minimum width, resp., `-width, over all possible tree-decompositions of G [RS84, DG07].

Let k ≥ 2. A k-caterpillar is a graph that has a dominating set, called backbone, which
induces a chordless path of order at most k − 1. That is, any vertex of a k-caterpillar either
belongs to the backbone or is adjacent to a vertex of the backbone. A tree-decomposition is
said to be k-good if each of its bags induces a k-caterpillar.

Theorem 4. There is a O(m2)-algorithm that takes a m-edge graph G and an integer k ≥ 3
as inputs and:

• either returns an induced cycle of length at least k + 1;

• or returns a k-good tree-decomposition of G;

Proof. The proof is by induction on |V (G)| = n. We prove that either we find an induced
cycle larger than k, or for any chordless path P = {v1, . . . , vi} with i ≤ k−1, there is a k-good
tree-decomposition for G with one bag containing ΓG[P]. Obviously, it is true if |V (G)| = 1.
Now we assume that it is true for any graph G with n′ nodes, 1 ≤ n′ < n, and we show it
remains true for n-node graphs.

Let G be a connected n-node graph, n > 1. Let P = {v1, . . . , vi} be any chordless path
with i ≤ k − 1 and let N = ΓG[P], Γj = ΓG[vj] for j = 1, . . . , i and G′ = G \ N . There are
three cases to be considered:

20

Case 1. G′ = ∅. In this case, we have G = N . The desired tree-decomposition consists of
one node, corresponding to the bag N .

Case 2. G′ is disconnected. Let C1, . . . , Cr, r ≥ 2, be the connected components of G′ For
any j ≤ r, let Gj be the graph induced by Cj ∪ N . Note that any induced cycle in
Gj , j ≤ r, is an induced cycle in G. By the induction hypothesis, either there is an
induced cycle C larger than k in Gj , then C is also an induced cycle larger than k in
G, or our algorithm computes a k-good tree-decomposition TDj of Gj with one bag Xj

containing N . To obtain the k-good tree-decomposition of G, we combine the TDj ’s,
j ≤ r, by adding a bag X = N adjacent to all the bags Xj for j = 1, . . . , r. It is easy
to see that this tree-decomposition satisfies our requirements.

Case 3. G′ is connected. We consider the order of the path P = {v1, . . . , vi}. In the following
proof, first we prove that if the order of path P , i = k − 1, then we can find either an
induced cycle larger than k or the required tree-decomposition for G. Subsequently, we
prove it is also true for path with length i < k − 1 by reversed induction on i. More
precisely, if i < k− 1, either we find directly the desired cycle or tree-decomposition, or
we show that there exists a vertex vi+1 such that P ′ = P ∪ {vi+1} is a chordless path
with order i + 1. By reverse induction on i we can find either an induced cycle larger
than k or a k-good tree-decomposition of G with one bag containing ΓG[P ′] ⊇ ΓG[P].

1. If i = k − 1, then we consider the following two cases.

• Assume first that there is u ∈ ΓG(P)∪{v1, vi} (in particular, u /∈ P \ {v1, vi})
such that ΓG(u) ⊆ ΓG[P \ {u}]. Let G̃ = G \ u. Then G̃ is a graph with
n′ = n − 1 vertices. By the induction hypothesis on n′ < n, the algorithm
either finds an induced cycle larger than k in G̃, then it is also the one in G;
Otherwise our algorithm computes a k-good tree-decomposition T̃D of G̃ with
one bag X̃ containing ΓG̃[P \ {u}]. To obtain the required tree-decomposition

of G, we just add vertex u into the bag X̃. The tree-decomposition is still
k-good.

• Otherwise, there exist two distinct vertices v0 ∈ ΓG(v1) and vi+1 ∈ ΓG(vi) and
there are vertices u1, u2 ∈ V (G′) (possibly u1 = u2) such that {v0, u1} ∈ E(G)
and {vi+1, u2} ∈ E(G). If {v0, vi+1} ∈ E(G), P ∪{v0, vi+1} is an induced cycle
with k + 1 vertices. Otherwise, let Q be a shortest path between u1 and u2

in G′ (Q exists since G′ is connected). So P ∪ {vi+1, u2} ∪ Q ∪ {u1, v0} is an
induced cycle with at least k + 1 vertices in G.

2. If i < k − 1, we proceed by reverse induction on i. Namely, assume that, for any
chordless path Q with i + 1 vertices, our algorithm either finds an induced cycle
larger than k in G or computes a k-good tree-decomposition of G with one bag
containing Γ[Q]. Note that the initialization of the induction holds for i = k − 1
as described in case (b). We show it still holds for a chordless path with i vertices.
We consider the following two cases.

• Either there is u ∈ ΓG(P) ∪ {v1, vi} (in particular, u /∈ P \ {v1, vi}) such that
ΓG(u) ⊆ ΓG[P \ {u}]. That is, we are in the same case as the first item of (a).
We proceed as above and the result holds by induction on n.

• Or there is w ∈ ΓG(v1) ∪ ΓG(vi) \ P such that P ∪ {w} is chordless (i.e., w
is a neighbor of v1 or vi but not both). Therefore, we apply the induction

21

hypothesis (on i) on P ′ = P ∪ {w}. By the assumption on i, either our
algorithm returns an induced cycle larger than k or it computes a k-good
tree-decomposition of G with one bag containing ΓG[P ′] ⊇ ΓG[P].

To conclude, we describe the algorithm and study its complexity. Let G be a m-edge n-node
graph with maximum degree ∆. Roughly, the algorithm proceeds by steps. At each step,
one vertex is considered and the step takes O(m) time. We prove that at each step (but the
initial step), at least one edge will be considered and that all edges are considered at most
once. This implies a time-complexity of O(m2) for the algorithm.

The algorithm starts from an arbitrary vertex v ∈ V (G) and computes the connected
components C1, · · · , Cj of G \ Γ[v] (j ≥ 1) in time O(m). We start with the k-good tree-
decomposition for the induced graph of Γ[v] in G that consists of a bag B = Γ[v] adjacent to,
for any i ≤ j, each bag Bi = {v} ∪ {w ∈ Γ(v) : Γ(w) ∩ Ci 6= ∅}. This takes time O(m).

Now, at some step of the strategy, assume that we have built a k-good tree-decomposition
(T,X) of a connected subgraph G0 of G. Let C1, · · · , Cj (j ≤ 1) be the connected components
of G \G0, and, for any i ≤ j, let Si be the set of the vertices of G0 that are adjacent to some
vertex of Ci. Assume finally that, for any i ≤ j, there is a leaf bag Bi ⊃ Si of (T,X) where
Pi = Bi \ Si is a chordless path dominating Bi.

For any e ∈ E(G), we say that e = {x, y} is alive if there is i ≤ j such that x ∈ Si ∪ Ci
and y ∈ Ci. Note that, if an edge is alive, such an integer i is unique. An edge that is not
alive is said dead. Note also that, after the initial step, all edges in the bag B are dead and
other edges are alive.

The next step consists of the following. Choose any i ≤ j and let w be any vertex of
Si such that Q = Pi ∪ {w} is a chodless path. Note that by definition of Si, there is at
least one edge from w to Ci and that such an edge is alive before this step. We add the bag
B′ = Q ∪ Bi ∪ (Γ(w) ∩ Ci) adjacent to Bi. If Q is larger than k, by the above proof, the
algorithm finds a large cycle. Otherwise, the connected components C ′1, · · · , C ′r of Ci∪Bi \B′
are computed in time O(m). Let S′h, h ≤ r, be the subset of the vertices of Si that are adjacent
to some vertex in C ′h, and let Qh be the smallest subpath of Q dominating S′h. Computing
the sets S′1, · · · , S′r only requires a time O(m) since we have only to check the edges in B′.
For any h ≤ r, add a bag B′h = Qh ∪ S′h adjacent to B′.

It is easy to check that this algorithm follows the above proof and that it eventually
computes the desired tree-decomposition or returns a large cycle.

To conclude, it is easy to check that the set of edges alive after one step is contained in the
set of edges alive before this step, and that, at each step at least one edge (the one(s) from
w to Si) become dead. Therefore, at each step, the number of alive edges strictly decreases
and the algorithm terminates when there are no more. Since each step takes time O(m) and
there are at most m steps, the result follows.

From the above theorem, it is easy to get the following corollaries.

Theorem 5. Let G be a graph that admits a k-good tree-decomposition. Then tw(G) ≤
(k − 1)(∆− 1) + 2 where ∆ is its maximum degree, and tl(G) ≤ k.

Proof. It directly follows the fact that, in a k-good tree-decomposition, each bag has a dom-
inating path with < k vertices.

Theorem 6. Any graph G that admits a k-good tree-decomposition has hyperbolicity at most
b3k/2c.

22

Proof. Let G = (V,E) be a graph that admits a k-good tree-decomposition ({Xi|i ∈ I}, T =
(I,M)). Let T be rooted at bag X0, 0 ∈ I. For any u, v ∈ V , let us denote the distance
between u and v by dist(u, v) in G. By definition of a k-good decomposition, for any i ∈ I
and for any u, v ∈ Xi, dist(u, v) ≤ k.

Let x, y, z ∈ V and let P1, P2, P3 be any three shortest paths in G between x and y, y
and z, x and z respectively. Let u ∈ V (P1). To prove the Theorem, we show that there is
v ∈ V (P2) ∪ V (P3) such that dist(u, v) ≤ b3k/2c.

First, let us assume that there is i ∈ I such that u ∈ Xi and there is v ∈ (V (P2)∪V (P3))∩
Xi 6= ∅. In that case, dist(u, v) ≤ k and the result holds.

Otherwise, let Tu be the subtree of T induced by {i ∈ I : u ∈ Xi}. Similarly, let Tx
be the subtree of T induced by {i ∈ I : x ∈ Xi} and Ty be the subtree of T induced
by {i ∈ I : y ∈ Xi}. Let P be the path in T between Tx and Ty. Note that P may be
empty if V (Tx) ∩ V (Ty) 6= ∅. Let j ∈ V (Tx) ∪ V (Ty) ∪ V (P) that is closest to Tu in T . Note
that j /∈ V (Tu) because otherwise we would be in the first case. Note also that either Xj is
a separator between x and u or x ∈ Xj , and either Xj is a separator between y and u or
y ∈ Xj . Let Pxu and Puy be the subpaths of P1 from x to u and from u to y respectively.
By remark above, there exist vertices w ∈ V (Pxu) ∩ Xj and t ∈ V (Puy) ∩ Xj . Possibly,
w = t. Then dist(w, u) + dist(u, t) = dist(w, t) because P1 is a shortest path, therefore,
dist(w, u) + dist(u, t) = dist(w, t) ≤ k. So there is ` ∈ Xj with dist(u, `) ≤ bk/2c.

Finally, let us show that there is h ∈ V (P2 ∪ P3) ∩Xj . If x ∈ Xj or y ∈ Xj , it is obvious.
Otherwise, this is because Xj separates x and y in G, and therefore, z cannot be in both the
component of G \Xj containing x and of the one containing y, therefore, one of the paths P2

or P3 should path trough Xj .
To conclude, dist(u, h) ≤ dist(u, `) + dist(`, h) ≤ bk/2c+ k ≤ b3k/2c.

Corollary 7. Any k-chordal graph G with maximum degree ∆ has treewidth at most (k −
1)(∆− 1) + 2, tree-length at most k and hyperbolicity at most b3k/2c.

Proof. By definition of k-chordal graph and Theorem 4, any k-chordal graph admits a k-good
tree-decomposition. The result follows Theorems 5 and 6.

Corollary 8. There is an algorithm that, given a m-edge graph G and k ≥ 3, states that
either G has chordality at least k + 1 or G has hyperbolicity at most b3k/2c, in time O(m2).

We propose a compact routing scheme for any n-node graph G that admit a k-good tree-
decomposition (this includes k-chordal graphs). ∆ denotes the maximum degree of G and,
for any v ∈ V (G), degv is its degree.

Theorem 9. For any n-node m-edge graph G with maximum degree ∆ and admitting a k-
good tree-decomposition, there is a labelled routing scheme R with the following properties.
R uses addresses of size O(log n) bits, port-numbers of size O(log ∆) bits and routing tables
of size O(max{k · log ∆, log n}) bits. The routing tables, addresses and port-numbers can be
computed in time O(m2). Except the address of the destination (not modifiable), the header
of a message contains O(k · log ∆) modifiable bits. The header and next hop is computed in
time O(1) at each step of the routing. Finally, the additive stretch is ≤ k(2dlog ∆e+ 5)− 3.

23

24

Chapter 4

Towards a Bipartite Graph
Modeling of the Internet Topology

4.1 Objectives and Motivation

Modeling the properties of the Internet topology aims at generating large scale artificial IP
networks that mimic properties of real ones for simulation purposes. As shown in Chapter 1
of D3.1, current models typically consider the Internet as a simple graph where edges are
point-to-point connections between routers. This approach does not take into account point-
to-multipoint connections that exist at lower layers in the network, e.g. layer-2 clouds, such
as Ethernet switches or Token Ring. Instead, such physical point-to-multipoint connections
are modeled as several logical IP level point-to-point connections.

In this work, we rely on recent development in topology discovery based on IGMP probing
that allows for revealing part of the network’s layer-2 structure. We take advantage of this
additional knowledge for proposing an Internet model based on bipartite graphs considering
both point-to-point and point-to-multipoint connections. The model remains simple: it only
takes as input the node degree sequence for both layer-2 and layer-3 nodes, randomly generates
a bipartite graph respecting those distributions, and then derives the corresponding layer-3
topology. We show that, despite the simplicity of our model, realistic network properties,
such as high local density, emerge naturally. This is in contrast with the now common belief
that such properties can only appear with more intricate models or if explicitly injected in
random models. Besides, we also provide evidences of how the analysis performed at the
bipartite level might shed light on important properties of the real network structure.

4.2 Related Work

Improving our understanding of the Internet topology structure is extremely important. It
has much impact on the ability to provision and manage IP networks and enhance their
reliability and efficiency. It also allows for designing effective network protocols matching
the specific requirements of a large panel of applications. Assessing the quality of a network
or protocol design involves theoretical studies and simulations conducted on artificial graphs
obtained from models of the Internet topology. Many efforts have been made in modeling
Internet [HIM+08, PSV04], from very simple models [ER59] to more complex ones based on
latest developments in Internet topology discovery and modeling [ALWD05, WL10, MDBP10].

25

However, modeling the Internet remains a challenging task because of its heterogeneity and
dynamics [MOVL09, HUM+08].

Usually, the Internet is depicted as a simple graph where vertices represent, depending
on the Internet topology view, IP interfaces, routers, or autonomous systems (ASes) and
edges stand for direct connections between those vertices. In particular, when considering the
router level of the Internet, edges usually represent point-to-point links between routers, i.e.,
IP hops. However, the Internet is actually made of fundamentally different kinds of nodes
at layer-2 (L2), which induce its layer-3 (L3) structure: routers might be connected through
L2 devices like Ethernet switches, IXP, sub-networks, . . . and a L3 link between two routers
goes therefore through a L2 device. Such point-to-multipoint connections, induced from the
L2 view of the network, are generally invisible because they are challenging to discover when
using common active topology discovery techniques based on traceroute [DF07].

Being able to map Internet topologies exhibiting the two layers of connection would open
new perspectives in Internet modeling and topology generation. Indeed, one could then model
the Internet topology as a bipartite graph, i.e., a graph in which vertices can be divided into two
disjoint sets, > (e.g., Ethernet switches) and ⊥ (e.g., routers), such that every edge connects
a vertex in > to one in ⊥. Bipartite graphs are a fundamental object in computer science and,
as such, are widely studied [WS98, New01, IMF04]. A key operation over bipartite graphs
is the projection that transforms the bipartite structure into a simple graph where a link
between two routers in ⊥ exists if they are linked to a same L2 device in >. Interestingly, the
projection fits exactly the inference of the Internet L3 topology from its L2 topology. This
makes bipartite graphs (and their projection) an appealing approach for Internet topology
modeling with a L2/L3 view.

Fortunately, a recent advance in Internet topology discovery through IGMP prob-
ing [MVdSD+09] has offered an opportunity to better characterize the nature of IP con-
nections (point-to-point or point-to-multipoint). With a single IGMP probe, one can obtain
all local multicast interfaces and neighbors of a multicast router, as well as its multicast con-
nections through L2 multi-access networks. This latter feature provides point-to-multipoint
connections between L3 devices. Considering a map resulting from IGMP probing [MDBP10],
we are able to construct a bipartite graph where vertices are of the two types.

It is worth noticing that IGMP data allows one to easily discover the actual bipartite
shape of the Internet induced by the interactions between L2 and L3 devices. Generally,
such a bipartite structure is artificially generated to capture some clustering properties in flat
network ground measurements [GL06]. This is not our approach here since we stick to the
existing bipartite structure detected by the measurement tool. Note also that, although the
data obtained by mrinfo could be partial and/or biaised, the present work is indenpendant
from the quality of the data. The problem of improving the measurement tools is different
from the one of identifying relevant properties able to exploit the features observed in the
data, which is what we focus on in the present chapter.

4.3 Methodology

In this work, we step into the breach opened by the L2 devices inference and describe the
first bipartite model of the Internet topology. Our model has the strong advantage of be-
ing “simple”,i.e., it is a random-based model that does not require injecting several con-
straints. As input, we only consider the node degree distribution of both L2 and L3 devices

26

R1

R0

R2
switch

1.1.0.2

1.1
.1.1

1.1
.1.2

1.1.0.1

1.1.2
.3

1.1.2.1

R5

R6

1.1.2.2

1.1.3.1

1.1.0.2 [version 12.4]
1.1.0.2 → 1.1.0.1 [1/0/pim/querier]
1.1.2.3 → 1.1.2.1 [1/0/pim/querier]
1.1.2.3 → 1.1.2.2 [1/0/pim/querier]
1.1.3.1 → 0.0.0.0 [1/0/pim/leaf]

Figure 4.1: mrinfo example

for generating the random bipartite graph and, then, project this structure into a simple
graph. To this regard, our model can be seen as an extension of the standard configuration
model [ACL00, NWS01, XL07] using two distinct degree sequences.

Note that our model does not aim at identifying network construction mechanisms as
would do a structural model [ZCB96, ZCD97], a preferential attachment model [BA99, AB00],
or an engineer-oriented model [ALWD05]. If such approaches may bring interesting knowledge
on the networks emergence (although they are often criticized, see [WAD09]), they are usually
not well suited for formal analysis and they tend to enforce specific properties in the generated
graphs. This is why we rather follow the tradition of random models [ER59, ACL00, Wax88].

In order to assess the relevance of our model, we perform two different analyses. First,
we demonstrate that the resulting projected graphs have similar behaviors than actual ones,
specially regarding metrics that were not injected in the model, such as the local density or
the degree correlations for instance. Indeed, it is worth to notice that standard models usually
only reproduce properties they focus on but are unable to cope with all other features. On the
contrary, our random model is able to reproduce relatively accurately properties that were
not intentionally given as input. In order to emphasize this point and better evaluate the
improvements brought by our bipartite model, we confront our results with random graphs
directly generated with the configuration model from which our model derives. It results
that, as expected, the configuration model is unable to cope with other properties than the
degree distribution. Second, we evaluate different metrics on the bipartite structure itself and
give evidences of the relationship between the observed bipartite properties and the projected
ones. Our analyses show that, although not perfectly reproducing the real data, our model
succeeds in capturing most of its properties and provides mathematical tools for explaining
properties of the L3 structure from analyzes of the bipartite structure.

Analyzing the limitations derived from our first study, we also explore possible extensions
of our model. First, we investigate the interest of taking into account the correlation between
point-to-point and point-to-multi-point connections of the routers. Second, using statistical
metrics defined at the bipartite level, we identify strong redundant patterns and propose a
way to cope with such a structural property in the model. Indeed the overlapping between
L2-L3 connections is frequent in real IP networks since redundancy is a key feature to increase
the reachability between networking devices. Such resiliency patterns cannot be accurately
revealed using a L3 view only.

To conclude this section on the methodology adopted in our work, we introduce the
required background on mrinfo, a tool allowing for silently revealing all multicast IP addresses
of a router, as well as its connections towards other routers and L2 devices.

mrinfo messages use the Internet Group Management Protocol (IGMP [Dee89]). IGMP

27

was initially designed to allow hosts to report their active multicast groups to a multicast
router on their LAN. However, the Distance Vector Multicast Routing Protocol, DVMRP,
has defined two special types of IGMP messages that can be used to monitor routers [Pus03].
Although current IPv4 multicast routers do not use DVMRP anymore, they still support
these special IGMP messages. Upon reception of an IGMP ASK NEIGHBORS message, an
IPv4 multicast router replies by sending an IGMP NEIGHBORS REPLY message that lists all its
multicast enabled adjacencies. Figure 4.1 shows an example of the usage of mrinfo to query
the router R2 (1.1.0.2 is the replying interface of R2). mrinfo reports that this router is
directly connected to R0 (through interface 1.1.0.1) via a layer-3 (L3) point-to-point link.
One can also notice that R2 is connected to routers R5 and R6 through a layer-2 (L2) network
(labeled “switch” in Figure 4.1) because interface 1.1.2.3 appears twice in the mrinfo reply
(see bold text in Figure 4.1). Finally, mrinfo reports that interface 1.1.3.1 has no multicast
router neighbor (the right IP address is equal to 0.0.0.0). All this topological information
is obtained by sending a single IGMP message. mrinfo provides similar information than a
show command dedicated to the multicast routing plan.

In the analysis provided in this report, the inference of L2 networks is critical. In our
context, by L2 network, we mean a technology allowing a router to transmit IP packets to
several other IP routers through the same interface, i.e., a multi-access network. One often
distinguishes between Non Broadcast Multiple Access (NBMA) networks (e.g., ATM, Frame
Relay, X25), and broadcast networks (BN) such as most LAN networks (e.g., Ethernet, token
ring, FDDI).

These two kinds of networks behave differently as far as IP multicast is concerned. In
particular, when using Protocol Independent Multicast (PIM) as a routing protocol in a BN,
only one of the PIM IP neighbors is elected as the querier [Fen97]. Moreover, in common BN
such as L2 Ethernet switches, the IP view around the L2 device should exhibits symmetric
properties and reveals that IP interfaces involved in this symmetric point-to-multipoint con-
nection are allocated within a tight subnet prefix. In NBMA networks, IP packets are usually
transmitted via circuits that behave as a collection of point-to-point or point-to-multipoint
connections. Such properties can be easily revealed within the mrinfo range: in this work, we
focus on most common BN such as L2 Ethernet switches. These represent the vast majority
of multi-access networks in the mrinfo dataset that we use.

In this work, we consider the publicly available mrinfo dataset [Pan]. It is worth to notice
that obtaining L2 and L3 topologies is also possible using Gunes and Sarac’s subnet inference
technique [GS07]. We believe that the framework provided in this document can also be
applied on Gunes and Sarac’s dataset.

4.4 Bipartite Graphs and our Model

We first give a theoretical presentation of bipartite graphs (Section 4.4.1) that will be used
for modeling topology data collected with mrinfo. Then, we explain how we model a subset
of the router level topology as a bipartite graph (Section 4.4.2).

4.4.1 Bipartite Graphs

A bipartite graph is a triplet G = (>,⊥, E), where > is the set of top nodes, ⊥ the set of
bottom nodes, and E ⊆ > × ⊥ the set of links. Compared to standard graphs, nodes in a
bipartite graph are in two disjoint sets, and the links are always between a node in one set

28

A B C D E F

1 2 3 4

(a) bipartite graph

1

2

3
4

(b) >-proj.

A

B

C

D

E F

(c) ⊥-proj.

Figure 4.2: Example of bipartite graph and its {>,⊥}-projections

and a node in the other set. An example of bipartite graph is given in Figure 4.2a, where >
nodes are depicted by squares and ⊥ nodes by circles.

The ⊥-projection of G is the graph G⊥ = (⊥, E⊥) where two nodes (of ⊥) are linked
together if they have at least one neighbor in common (in >) in G: E⊥ = {(u, v), ∃x ∈
> : (u, x) ∈ E and (v, x) ∈ E}. The >-projection is defined dually. Both projections are
illustrated in Figure 4.2b and 4.2c.

Classical Analysis over Projections. In order to analyze this bipartite structure, it is
natural to transform a bipartite graph into one of its projection in order to compute standard
metrics defined for graphs. Let us recall briefly here those metrics and the usual properties
shared by real-world networks [WS98].

Let G = (V,E) be the (projected) graph. We denote by Γ(v) the set of neighbors of v ∈ V :
Γ(v) = {u ∈ V, (u, v) ∈ E} and by deg(v) its degree: deg(v) = |Γ(v)|.

The usual statistics used to characterize such a graph involve its size (n = |V |), its number
of links (m = |E|), its highest degree (∆ = maxv deg(v)), and its average degree (k = 2.m

n).
Over those notions, one can also study the density ρ = 2.m

n.(n−1) that is usually small as real
networks happen to be very sparse. Indeed the probability that a link exists between two
randomly selected nodes is generally very small.

On the contrary, two nodes sharing a common neighbor have usually a high probability
to be linked. This property is often referred to as the local density and is generally captured
by the clustering coefficient and the transitivity ratio [WS98, SW05a, SW05b]. The first one
computes, for every node v ∈ V , the probability that two of its neighbors are linked together.
This is denoted by cc(v) = ∆(v)

∨(v) where ∆(v) is the number of triangles (sets of three nodes with

three links) to which v belongs and ∨(v) = deg(v).(deg(v)−1)
2 the number of pairs of neighbors

of v. The clustering coefficient of the graph is the average value cc =
∑

v cc(v)
n .

The second coefficient, the transitivity ratio, provides a more direct computation of the
property over the whole graph. Let ∆ =

∑
v ∆(v) and ∨ =

∑
v ∨(v), then tr = 3.∆

∨ is defined
as the transitivity ratio of G.

A classical observation is that those two quantities are high, at least compared to the
density. In other words, if one selects a random pair of links with an extremity in common
(transitivity ratio) or a random node and two of its neighbors (clustering coefficient), then
the probability that the third possible link exists is high.

Specific Metrics for Bipartite Graphs. The metrics defined in previous paragraph have
the advantage to be well understood and allow for immediate analysis of the flat topology.

29

On the other hand, the required projection leads to a loss of information. It is thus necessary
to define extensions of those metrics on the bipartite structure itself.

From a bipartite graph G = (>,⊥, E) and for each top node v ∈ >, we denote by Γ>(v)
the set of bottom neighbors of v: Γ>(v) = {u ∈ ⊥, (u, v) ∈ E} and by Γ⊥ Γ>(v) the set of
top neighbors of v: Γ⊥ Γ>(v) = {u 6= v ∈ >,∃x ∈ ⊥ : (u, x) ∈ E and (v, x) ∈ E}. We use
similar notations for the bottom nodes Γ⊥(v) and Γ> Γ⊥(v). For instance, on Figure 4.2a,
Γ>(1) = {A,B,C} and Γ⊥ Γ>(1) = {2, 3} . Similarly, Γ⊥(C) = {1, 2, 3} and Γ> Γ⊥(C) =
{A,B,D,E}.

Let n> (respectively n⊥) be the number of > (respectively ⊥) nodes and mbip be the
number of bipartite links. We denote by k> (respectively k⊥) the average degree of > (re-
spectively ⊥) nodes and ρbip =

mbip

n>.n⊥
the density of the bipartite graph. On Figure 4.2a,

n> = 4, n⊥ = 6, k> = 2.5, k⊥ = 1.6, mbip = 10, and ρbip = 0.42.
Those statistics are natural extensions of graph metrics. However, for the local density,

there is no standard variant since, by definition, there is no triangle in a bipartite graph. As
suggested by Latapy et al. [LMDV08], we will rely on the following coefficient that tends to
capture the overlapping between the neighborhood of two nodes of >

cc>(u, v) =
|Γ>(u) ∩ Γ>(v)|
|Γ>(u) ∪ Γ>(v)| . (4.1)

This coefficient is interesting as it captures the relative overlap between neighborhoods of
top nodes, i.e., cc>(u, v) is equal to 1 if the neighborhood of u and v intersects exactly, to 0
if they do not share any neighbor. If we apply the overlapping coefficient on nodes 1 and 2
in Figure 4.2a, we have cc>(1, 2) = |{A,B,C}∩{B,C,D}|

|{A,B,C}∪{B,C,D}| = 0.5.
From this coefficient, it becomes natural to define the clustering coefficient related to a

specific > node v. This is given by

cc>(v) =

∑
u∈Γ⊥ Γ>(v)

cc>(u, v)

|Γ⊥ Γ>(v)| . (4.2)

Applied on node 1 of Figure 4.2a, it gives cc>(1) = 0.375. This coefficient enables to study
the distribution of this property over the top nodes as well as its correlation with the degree
or other properties. Then, one can naturally compute the bipartite top clustering coefficient
cc> of G as the average value of cc>(v) over all the nodes v of >. More formally

cc>(G) =
1

|>|
∑
v∈>

cc>(v). (4.3)

Following those definitions, we can derive the dual cc⊥(G) bottom clustering coefficient
of G which finally leads to the global clustering coefficient of G defined by:

ccbip(G) =
n>cc>(G) + n⊥cc⊥(G)

n> + n⊥
. (4.4)

4.4.2 Model

Our methodology is sketched in Figure 4.3 and Figure 4.4. We first start by removing loops1

in our dataset (“cleaning step” on Figure 4.4). We then have a dataset that contains a set of

1It affects less than 0.3% of the links on average.

30

R3

R2
S1

R4

R1

(a) network

R3R2R1 R4

S1

(b) raw data

R3R2R1 R4

S1 S2

(c) BipReal

R2

R4

R1

R3

(d) PReal

R3R2R1 R4

S1 S2

(e) BipGen

R2

R4

R1

R3

(f) PGen

Figure 4.3: Example of transformation between network, raw data, BipReal, PReal, BipGen,
and PGen

Raw Data (Fig. 3(b))

BipReal (Fig. 3(c))

cleaning step

BipGen (Fig. 3(e))

PGen (Fig. 3(f))

⊥-projection

PReal (Fig. 3(d)) CM

bip random
generation

random
generation

⊥-projection

Projection Evaluation (Sec. 3.2)

Bipartite Evaluation (Sec. 3.3)

Figure 4.4: Model setup

L3 devices (routers) and L2 devices (typically switches) with links between them and among
routers (see Figure 4.3b). Because of these point-to-point links between routers (between
R2 and R3 in this example), this is not a pure bipartite graph, as defined in Section 4.4.1.
However, there is no difference between a point-to-point link and a pair of routers connected
through a L2 device2 that itself is connected only to these two routers. On Figure 4.3b, the
direct link between R2 and R3 can be replaced by a L2 device of degree 2 linking only R2

and R3 (see S2 in Figure 4.3c) without any loss or addition of relevant information. Indeed, if
we ⊥-project Figure 4.3c, we get back the direct link between R2 and R3. In addition, there

2The point-to-point link may actually be seen as a L2 device as it can be the case using OSPF.

31

is no such L2 devices with degree 2 in the raw data as IGMP probing can only detect L2
devices connecting, at least, three routers. Consequently, we replace each point-to-point link
between two routers by a new L2 device linking them without any loss of information. This
results in a bipartite graph that encodes exactly the same information as the raw data, and
that we call BipReal. Although this step has no impact regarding the projection, it concerns
an important fraction of links in the real data since point-to-point connections represent 58%
of all the links on average.

The classical modeling approach consists in computing the ⊥-projection PReal of BipReal
(see Figure 4.3d), and, then, in modeling it with a random graph CM obtained with the
Configuration Model [ACL00, NWS01, XL07]. This model produces a random graph with
the node degree sequence given in input of the model, the one of PReal here. We claim that
this approach is not satisfying as it does not allow to capture other properties than the one
being part of the model. For instance, if one wants to also capture local density properties,
one has to look for another model such as the one introduced by Newman [New09]. However,
this would lead to the same observation, i.e., no other properties than the ones injected will
be captured and one has to look for another model if additional properties are desired.

Instead, we propose a model that relies directly on the real bipartite structure in order to
generate graphs that will reproduce several aspects of the actual data. Our model consists
in using the degree sequences of L2 and L3 devices in the bipartite graph BipReal in order
to generate a random bipartite graph BipGen (see Figure 4.3e) and project it into a standard
graph PGen (see Figure 4.3f). Following the tradition of random models, the BipGen graph is
obtained by shuffling the links between L2 and L3 nodes while maintaining the node degree
distribution at both levels. Our expectation is that this bipartite representation of the data
will produce a graph PGen close to the actual one PReal, closer than the CM one, in par-
ticular regarding other metrics than node degree distribution (e.g., the local density, degree
correlations, . . .).

For the evaluation, we use the dataset provided by mrinfo, as described above
and [MVdSD+09]. From the four year daily dataset, we arbitrarily select, each month, the
largest output file, leading thus to 56 global topologies (generally they exhibit a large con-
nected component having more than 7, 000 nodes). From this subset, we more specifically fo-
cus on the largest topology, corresponding to the data collected by mrinfo on 2006/09/07. We
infer the presence of L2 devices following methodology discussed by Mérindol et al. [MDBP10,
Section 2.3].

The rest of the section is devoted to the comparison of core statistics in order to assess the
quality of the models. Section 4.5.1 focuses on statistics on the projection while Section 4.5.2
studies the statistics related to the bipartite level. Our purpose is to check whether this
simple process provides good results, in particular regarding metrics that were not injected
in the model. Recall that, during the whole transformation process, we only relied on the L2
and L3 node degree distributions. Connections between the two layer devices are then simply
randomized without injecting any other structural relationship.

4.5 Model evaluation

In this section, we evaluate the model proposed in previous section.

32

Raw Data Ratios
PReal PGen CM 2006 Avg case

n 9,740 9,749 9,740 1.00 1.00

m 35,567 48,877 35,470 1.37 1.32

ρ 7.5 10.3 7.5 1.37 1.32

k 7.3 10.0 7.3 1.37 1.32

∆ 58 234 58 4.03 2.93

tr 0.88 0.53 0.01 0.60 0.72

cc 0.58 0.42 0.00 0.72 0.73

Table 4.1: Global statistics for projection evaluation

4.5.1 Projection Evaluation

Here, we evaluate the projection by considering general statistics before going into details.

General Statistics The first statistics we focus on concern some basic properties observed
in most real-world networks [WS98], formally presented in Section 4.4.1. For each metric, the
right part of Table 4.1 (labeled as “Ratios”) positions the data used in this report (the column
labeled as “2006”) with respect to the set of 56 IGMP topologies (the column labeled as “Avg
case”), each BipGen topology being generated 10 times, thus leading to 10 corresponding PGen

projections. The left part of Table 4.1 (labeled as “Raw Data”) provides absolute values for
the PGen and PReal graphs according to the largest topology used over the document.

From Table 4.1, one can see that the number of links, m, is significantly higher for PGen

than in the actual graphs (around 37%). It follows naturally that the density (×10−4 in
Table 4.1) and the average degree are also higher for PGen. As explained later in this doc-
ument, it comes mainly from the fact that there exists overlaps and significant correlations
between the two levels of nodes that are not necessarily preserved during the randomization
process. On the other hand, the CM graph is particularly close to actual values regarding the
same properties. It is not surprising since this model focuses precisely and only on the degree
sequence of the projection. Looking at the transitivity ratio and the clustering coefficient,
Table 4.1 reveals that the CM model is unable to take account of the local density captured by
those coefficients. The PGen model seems, on the contrary, able to capture it (although the
values are quite different) in the sense that the local density is relatively very high compared
to the global density, the key point for this property.

Finally, it is worth to notice that, for several properties, Table 4.1 reveals that the selected
topology positions itself in a worst case scenario compared to the averaged results over the
56 topologies. This is particularly obvious for the highest degree. This indicates that the
conclusions drawn from the analysis of this particular case would also be relevant for the
other dataset.

A Deeper Analysis In order to refine the general statistics provided above, Figure 4.5
presents the distribution of the degrees for the real data, PReal, and the random graphs
generated by the two methods, PGen and CM. The horizontal axis, in log-scale, is the degree
of the nodes, while the vertical axis, also in log-scale, presents the inverse cumulative mass.

33

100 101 102 103

degree
100

101

102

103

104

in
v
e
rs

e
cd

f

PReal

PGen

CM

Figure 4.5: Inverse cumulative degree distribution

As expected, the CM model is very efficient (it is superimposed on PReal on Figure 4.5) as its
process is precisely to mimic the degree sequence given in input, i.e., the one of PReal.

The slight differences observed stem from the cleaning steps (removing multiple-links,
loops, etc) made during the generation. Regarding the PGen method, one can see that it is
less efficient but it shows a similar distribution. One might notice that the main differences
are located in the higher degrees. This is also corroborated by Table 4.1. The highest
degree is significantly higher for the PGen graph than the real one (234 instead of 53). It
partially comes from the fact that, although the generated bipartite graph respects the degree
distribution of the routers and the L2 devices, it does not ensure that the overlapping of the
L2 devices is preserved, thus increasing the degrees of L3 nodes in the projection. This
potential overlapping and other possible correlations between the two layers of node will be
investigated more precisely in Section 4.5.2 and 4.6.2.

0.0 0.2 0.4 0.6 0.8 1.0
clustering coefficient

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li

z
e
d

in
v
e
rs

e
cd

f

PReal

PGen

CM

Figure 4.6: Clustering coefficient inverse
cumulative distribution

100 101 102 103

degree
0.0

0.2

0.4

0.6

0.8

1.0

cl
u

st
e
ri

n
g

co
e
ffi

ci
e
n

t

PReal

PGen

CM

Figure 4.7: Average clustering coefficient
associated to a given degree

Figure 4.6 presents the inverse cumulative distribution of the clustering coefficient for
the real data, PReal, and graphs generated by the two methods, PGen and CM. Note that
the plots are normalized over the number of nodes with degree ≥ 2 in order to avoid side

34

BipReal BipGen

nL2 10,224 10,224

nL3 9,758 9,758

mbip 25,422 25,415

kL2 2.5 2.5

kL3 2.6 2.6

ρbip 0.00025 0.00025

ccbip 0.37 0.27

Table 4.2: Global statistics for bipartite evaluation

effects from the nodes of degree 1, for which the notion of clustering coefficient is inadequate.
Figure 4.6 clearly shows that the CM model is unable to provide a correct representation of
such a distribution. This is corroborated by Table 4.1 as the clustering coefficient as well as
the transitivity ratio are close to 0. This is due to the fact that the model does not consider
the local density and that the number of triangles is very low (only 1 299 triangles while the
actual graph has over 203 608 ones). On the other hand, the PGen graph provides a similar
progression, but with a significant shift of the values.

Figure 4.7 shows the correlation between the node degree and the average clustering
coefficient, i.e., a (x, y) dot means that the average clustering coefficient for the nodes having
degree x is y. Figure 4.7 confirms the analysis made above. Whatever the degree of a node
in the CM model, its clustering coefficient remains close to zero. The PGen graph, on the other
hand, is able to present a similar scatter plot shape, although the values are significantly
different. More interestingly, one can see that high clustering coefficients are related to nodes
having a similar degree on both figures.

The main difference concerns small degree nodes. For instance, nodes with degree 2 in
PGen graphs have an average clustering coefficient of 0.1 while actual ones are close to 0.4.
This indicates an interesting characteristic of the two bipartite structures. Whereas in the
actual bipartite, it seems that, when a router is connected to two others routers, they tend
to share L2 devices. This is absolutely not the case for the PGen graph. This particular
difference concerning degree-2 nodes can be explained by the L2 devices added during the
first step of the PGen generation (see Section 4.4.2). A deeper study of the degree correlations
in the bipartite structure will confirm this statement (see Section 4.6.1).

This first analysis made on the projected graphs confirms the relevance of using bipartite
structure to model the data as it succeeds in reproducing globally the characteristics of the
real network. In particular, it is able capture metrics that are not part of the model. This is
a significant improvement in itself since the usual way to obtain properties is to encode them
directly in the generation process, which we claim is not satisfying in a long term perspective.

4.5.2 Bipartite Evaluation

This section intends to better characterize the differences observed between real (i.e., BipReal)
and L2L3 (i.e., BipGen) projections from the point of view of the bipartite structure. Following
notations presented in Section 4.4.1, we compare standard properties of bipartite graphs.

35

100 101 102

degree in bipartite
100

101

102

103

d
e
g
re

e
in

p
ro

je
ct

e
d BipReal

BipGen

Figure 4.8: Correlation between degrees in the bipartite and in the projection

General Statistics Table 4.2 gathers the statistics presented in Section 4.4.1 for the real
and the random bipartite graphs, where > refers to L2 nodes (L2) and ⊥ to L3 nodes (L3).
It shows that all the simple properties are respected by the random bipartite graph, except
for the bipartite clustering coefficient for which a slight shift is observed. Note that we do
not present the ratios given in Table 4.1 here since they are all equal to 1 (either for this
specific case or the average ones), except for the bipartite clustering coefficient for which our
case ratio (0.73) is slightly worst than the average value (0.78).

Those observations show that our model succeeds in preserving the global characteristics
of the real bipartite structure but do not provide insight on why the projections differ. This
is why we turn now to a more refined analysis over those notions.

A Deeper Analysis First, Figure 4.8 presents the correlation between the degree of L3
nodes in the bipartite graph and their average degree in the projection, i.e., a (x, y) dot
means that the nodes having degree x in the bipartite structure have an average degree y in
the projection.

Figure 4.8 shows that the behavior is similar in both cases. In particular, they both follow
a straight line in the log-log scale for x values ≥ 3 with a similar slope. But two important
differences are noticed. First, the values are significantly lower for the actual bipartite. This
indicates some redundancies in the bipartite structure, meaning that many neighbors of nodes
in the projection share actually several common L2 devices in the bipartite. This overlapping
pattern induces the lowering of their degree in the projection.

From the BipGen points in Figure 4.8, one can conclude that this redundancy over the
L2 nodes is seemingly lost when shuffling the links in the bipartite. Note that this is true
in particular for high degree nodes, suggesting that the difference observed for the highest
degree in the projection might be due to this redundancy. Another difference can be pointed
out for low degree nodes for which the remark stated above does not stand. Degree-1 nodes
in particular present the opposite situation: in real bipartite, the single L2 device to which
they are connected happens to have a relatively high degree (close to 6 on average). This
differs both from the tendency observed for nodes with degree ≥ 3 and from the random case
for which the correlation is consistent for all degrees.

Figure 4.9 and 4.10 focus on the bipartite clustering coefficient as defined in Section 4.4.1.

36

0.0 0.2 0.4 0.6 0.8 1.0
clustering coefficient

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

BipReal

BipGen

Figure 4.9: Clustering coefficient distribu-
tion

100 101 102

degree
0.0

0.1

0.2

0.3

0.4

0.5

cl
u

st
e
ri

n
g

co
e
ffi

ci
e
n

t

BipReal

BipGen

Figure 4.10: Degree correlation

Figure 4.9 presents the cumulative bipartite clustering coefficient of L2 nodes for real and
random bipartite graphs, while Figure 4.10 shows the correlation between degree of L2 nodes
and their average bipartite clustering coefficient (i.e., a (x, y) dot means that the average
bipartite clustering coefficient for L2 nodes having degree x is y).

Both figures show that the two bipartite graphs have a similar behavior regarding this co-
efficient although a non negligible fraction of nodes in the real bipartite has a higher clustering
coefficient than in our model. This is particularly true for low degree nodes (Figure 4.10).
This means that low degree L2 nodes tend to share their neighbors with other L2 nodes.
This phenomenon explains the gap observed in Figure 4.9 for high clustering coefficients and
corroborates the difference observed for the global ccbip statistics in Table 4.2. It strength-
ens also our former remark on the redundancy that seems to be more important in the real
bipartite topology than in the random one and that explains the differences observed on high
degree nodes in the projection.

In order to test this hypothesis, we compute two more refined properties. The bipartite
clustering coefficient, although dealing with overlapping of L2 nodes, is defined for pairs of
nodes. We might want to use a more direct notion defined for a single L2 node. One possible
solution is to use the redundancy coefficient [LMDV08] defined for all L2 nodes v as the
fraction of pairs (u,w) of L3 neighbors of v that are connected to a common L2 node other
than v. When such a case occurs, then (u,w) is linked in the projection whether v exists or
not. Thus, we might consider v as redundant as far as u and w are concerned. Our analysis
shows that the two topologies behave very differently regarding this coefficient: on average,
27% of L3 nodes pairs connected to a L2 device in a real case would not be affected by the
removing of this device in term of their link in the projection. This proportion drops to 0.3%
in the random case.

The notion above focuses on the L2 nodes that are redundant for the projection. One
might similarly define a notion of redundancy over the links, i.e., the links that would not
modify the projection if they were removed from the bipartite graph. Let us call internal link
such a link [ATML12]. Our analysis shows that 13.7% of links in the real bipartite graph are
internal links, while this proportion is only 0.2% for the random case.

These two last properties are clearly in relation with the notion of degree in the projection

37

A B C D N

1 2 3 4

. . .

(a) before randomization

A B C D N

1 2 3 4

. . .

(b) after randomization

Figure 4.11: Effects of bipartite random generation (BipReal to BipGen) on L3 degree

and, as such, explain partially the differences observed in Section 4.5.1. A deeper analysis is
left for further works but Section 4.6.3 already provides interesting directions to improve our
model.

All the properties explored in Section 4.4.2 show the benefit one can gain from modeling
such L2-L3 data with bipartite graphs. While it offers support for generating flat graphs that
are able to reproduce qualitatively several and independent properties of the original data
(see Section 4.5.1), it also proposes new mathematical tools to analyze its structure from
the point of view of the bipartite graph itself. In particular, it allows for identifying which
aspects of the real network might stem from random processes and which ones are due to
strong designed patterns.

4.6 Discussion

In order to better understand the limitations of our model illustrated in Section 4.5.1 and 4.5.2,
we investigate here two interesting properties: (i) we evaluate the effects of the bipartite
random generation on L3 degrees and, (ii), we study the redundancy between L2 devices
(i.e., we analyze the cases in which removing a L2 node or a L2-L3 link would affect or not
the L3 projection).

While the first property (i), detailed in Section 4.6.1, allows us to emphasize an interesting
correlation between the L3 degree and the L2-L3 degree, the second property (ii), discussed
in Section 4.6.2, allows us to exhibit strong patterns and to explain how point-to-multipoint
connections “behave” in real networks. Finally, we envision two possible extensions to improve
our model in Section 4.6.3.

4.6.1 Correlation Analysis

Although our model respects the degree distribution of both L2 and L3 devices, there remains
one important difference between the raw data and the proposed bipartite structure. As
explained in Section 4.4.2, due to the definition of bipartite graphs, we first replace any point-
to-point connections between routers by a virtual L2 device connecting them. Although this
modeling is strictly equivalent to the point-to-point connection for the projection perspective,
it might have an impact on the structure during the randomization process.

Indeed, as shown in Figure 4.11, a simple rewriting in the bipartite graph may induce an
important modification for the degree of the nodes in the projected graph. This is the case

38

0 10 20 30 40 50
L3 degree

0

5

10

15

20

d
e
g
re

e
L

3
→

L
2

(a) Real

0 10 20 30 40 50
L3 degree

0

5

10

15

20

d
e
g
re

e
L

3
→

L
2

(b) Random

Figure 4.12: Degree versus point-to-multipoint degree

for node B in this virtual example. Before the randomization, it is connected to a unique
L3 node (both via node 1 and 2, see Figure 4.11a), thus having degree one in the projection.
But simply switching the extremities of links (2, B) and (3, C) leads to a new bipartite graph
(see Figure 4.11b) in which B is now connected to every nodes (to A via 1 and to all others
via 3), thus increasing drastically its degree in the projection. Obviously, this example is an
extreme case but it illustrates how the randomization process at the bipartite level may affect
the degree properties of the projections.

In order to study how such a randomization may impact the generated graphs, we inves-
tigate how routers are connected to L2 and L3 devices in the raw data and in random graphs
(considering here only “actual” L2 devices). Figure 4.12 shows the correlation between L3
degrees and the number of point-to-multipoint connections both for real data and random
bipartite graphs. On each plot, a (x, y) dot stands for a router having x links in the bipartite
graph, y of them being with a L2 device with degree strictly higher than 2 (recall that a L2
nodes with degree 2 stands precisely for point-to-point connections).

Figure 4.12a shows a striking fact: routers with degree higher than 20 have no connection
to real L2 devices but only to point-to-point connections. As explained above in the example,
our randomization process does not verify such a strong characteristic, as it can be noticed
on Figure 4.12b. This means that, in our model, it is likely that routers having a high L3
degree (i.e., routers having only point-to-point links) will be connected to actual L2 devices
(whose degree is strictly greater than 2), thus increasing, and potentially significantly, their
degree in the projection.

This observation on real data leads us to explore a more constrained model able to preserve
the correlation between the number of point-to-point and point-to-multipoint connections of
routers collected in the ground data. It relies on splitting the L3 degree into two disjoint val-
ues: one for the number of point-to-point links and one for the number of point-to-multipoint
ones. Once such a couple of degrees for each L3 node has been defined, it is easy to adapt
our former model to cope with this distinction.

Surprisingly, this approach does not improve significantly the properties observed in the
generated projected graphs (regarding the ones observed in the real projections). Some char-
acteristics of the random projections are slightly better than with our model, such as the

39

EBR 1 EBR 2

R1 R2 Ri−1 Ri

. . .

(a) 2011

EBR 1 EBR 2

R1 R2 Ri−1 Ri

. . .

(b) 2007

Figure 4.13: PoP configuration in London for Level3

highest degree that is a bit lower (on average) but still higher than the actual one. Further,
the overall degree distribution and correlations studied in Section 4.4.1 fail to be better re-
produced. Indeed, the low number of large degree routers in the raw data set limits their
impact on global properties.

4.6.2 Redundant Networking Patterns

At the end of Section 4.5.2, we identified an interesting property using the redundancy coef-
ficient and internal links. Indeed, the data considered in this work exhibits many redundant
Point-of-Presence (PoP) patterns.

Figure 4.13 illustrates such redundant patterns between L2 devices observed in the raw
data. In both Figure 4.13a and 4.13b (both figures come from the Level3 London PoP ob-
served in 2011 and 2007), one can guess that the redundancy coefficient and the number of
internal links are high. Such network structures, generally required for physical/logical redun-
dancy and/or load balancing, are not random. Thus, these structures, favoring the network
robustness, imply that the degree in the projected graph will be lower for the projection of
the real network than for the projection of the random bipartite graph.

On Figure 4.13a, we can observe that the two L2 devices generate two cliques of i + 1
routers that only differ on EBR1 and EBR2 (while these two routers are connected through
multiple parallel point-to-point links). As a result of the projection, i links will disappear in
the projection of the real graph while it is likely that, in the random bipartite graph, those
links will be distributed over all the network: the projection will then have a higher average
and maximal degree.

The example given on Figure 4.13b exacerbates this observation: here, while two of the
six L2 devices3 interconnects the i routers, i−k other routers are connected again through the
four others L2 devices. This kind of configuration is not that rare and can, at least, partially
explain our random model limitations on metrics previously highlighted.

3Note that it is possible that such a symmetry involves some VLAN configurations leading so to two
physical L2 devices having three VLANs. Furthermore, such an evolution between 2007 and 2011 suggests an
improvement in the architecture capacity.

40

A B C D E F

1 2 3 4

α

Figure 4.14: A Tripartite view of IP networks

4.6.3 Next Steps

Observations made in Section 4.6.1 and Section 4.6.2 open the way to the design of improved
models, potentially fixing lacks of the former one. The two improvements we envision belong
to two distinct families of models: random and structural.

On the one hand, we could rely on the strong redundancy patterns highlighted in Sec-
tion 4.6.2. Based on such observations, it becomes natural to attempt to capture the re-
dundant PoP patterns illustrated in Figure 4.13. One possible way would be to encode the
overlapping among L2 devices in the model itself. To do so, one can extend the bipartite
structure into a tripartite one using a third level to integrate such a redundancy.

In practice, one can encode any overlapping among L2 devices by the addition of a
new node at a third level (L1), connecting both the L2 and L3 devices they are covering
(see [LPCN10]). Applying this procedure on the bipartite graph of Figure 4.2a, for example,
would result in the tripartite structure presented in Figure 4.14. Indeed, the nodes 1 and 2 are
both connected to nodes B and C in the bipartite graph. This overlapping is then encoded
in the tripartite graph by the addition of a new third-level node α connecting A, B, 1, and 2.

Once such a tripartite structure has been defined, one can easily apply similar randomiza-
tion processes than the one proposed in this work. This process would shuffle independently
L1-L3 links and L1-L2 links but preserve the structure defined by the new third level. This
would result in generating a new tripartite graph presenting the same redundancy patterns
than the original ones that could eventually be projected into a bipartite graph.

On the other hand, we could follow the path opened by the observations in Section 4.6.1:
there are evidences of a significant correlation between a router degree and the degrees of
L2 devices connected to it. We observed, for instance, that very small degree routers are
connected to high degree L2 devices (on average). More generally, backbone routers (in an
AS core) have a large degree and mostly L3-L3 links, while access routers (providing Internet
services to clients) exhibit a lower degree and, generally, mainly L3-L2 connections. However,
although this kind of design features can bring improvements in the ability of the model to
reproduce this specific property, it also comes with a loss of generality in generated graph
properties. As mentioned in the introduction, we believe that random models, such as our
tripartite proposal, are more suited for formal analysis.

The two directions suggested here may take several forms. They would require to in-
vestigate different mapping as well as to define new extensions of metrics proposed for the
bipartite structure analysis. We leave these promising directions for future work.

41

42

Chapter 5

Evolution of structural properties
of Internet-like networks

5.1 Evolution of structural properties

5.1.1 Objectives and Motivation

In this chapter, we extend the preliminary results presented in D3.1 on the measurement and
analysis of the structural properties of the Internet topology (AS/router topology). More
precisely, in D3.1, we have measured various properties (that we recall below) on 11 CAIDA
maps (from 2004 to 2011). We have also initiated the study of the same set of properties for
several models of Internet-like topology (GNP, GNM, GLP). In order to test our simulation
tools, we performed the latter study only on networks with small size (around 1000 nodes).
Since, we have extended our campaign of measurement. This chapter describes the obtained
results and their analysis.

During the second year of EULER, we have considered the evolution of the CAIDA Au-
tonomous Systems (AS) map between 2004 (10k AS) and nowadays (the CAIDA map of June
2012 has around 45k advertised AS). Moreover, for each of the 9 CAIDA maps (one per year)
studied during this period, we have generated one GLP graph with the same profile (number
of nodes, degree distribution, etc.) and have done the same measurements on these generated
models. Note that, due to the huge size of the considered networks, this study has required
to improve our tools both of measurement and of simulation. In particular, the new efficient
algorithms that we have designed (see Section 3) have allowed us to measure new properties
such as hyperbolicity that we were unable to measure before in large-scale graphs.

All these measurements allowed us to analyze the long-term topology evolution of the
Internet properties between 2004 and 2012. This is interesting since during this period, the
scale of its macroscopic properties has changed durably (e.g., network size increase).

In addition to the new measures we obtained, in this chapter, we provide an analysis of
the evolution of the properties of Internet-like networks in short-term dynamic conditions
(while D3.1 mainly focussed on the study of these properties in stationary conditions). By
short-term dynamic conditions, we mean for instance the failures of links. This is classically
modeled by the removal of one (or a ”small” set of) link(s) selected either by means of a
known distribution or randomly. In our experiments, we have randomly selected in advance
the sets of links to remove, thus generating a set of 80 000 graphs on which we have measured

43

various properties (around 2 months of computation). Our approach has the advantage to be
reproducible since all graphs have been stored.

We start by carefully describing our experimental protocol, then we list the obtained
results and analyze them.

5.1.2 Experimental Protocol

CAIDA maps and generated graphs. As mentioned above, the experiments that we
have conducted consider 9 CAIDA maps (see Table 5.1) [CAI]. For each selected CAIDA
map (around one per year), we have derived a corresponding GLP profile.

Recall that, the generation of GLP topology depends on five parameters n, β,m,m0, p (see
page 12 of D3.1 for more details). β ∈ (−∞, 1) is a tunable parameter that governs the GLP
process and indicates the preference for a new node (edge) connected to more popular nodes.
The generation of the graph starts with a random tree with m0 nodes. Then, the following
process goes on until the graph reaches n nodes.

• With probability p, m ≤ m0 new links are added. A node with degree ki is chosen to
be an endpoint of such a new link with probability Π(ki) = ki−β∑N

j=1(kj−β)
where N is the

current number of nodes.

• With probability 1− p a new node with degree m is added. Again, a node with degree
ki is selected to be a neighbor of this new node with probability Π(ki).

For each considered CAIDA map with n nodes, we generated a set of GLP graphs with n
nodes. Parameter m is estimated to 1.13 [CCG+02] and m0 = 6 [BT02]. Then, parameters p
and β are evaluated according to the formula in [BT02] depending on the degree distribution,
the number of nodes, m and m0. For each CAIDA map, we have generated 100 GLP graphs
with same profile n,m, m0, p and β (depending on the considered CAIDA map).

Table 5.1 resumes the selected CAIDA maps and GLP profiles properties.

CAIDA maps GLP parameters

Name Size Largest BCC Profile m0 m β p Required Size

2004/01/05 16 301 10 424 1 6 1.13 0.8109 0.4410 23 469

2004/12/06 18 501 11 910 2 6 1.13 0.7952 0.4536 27 520

2005/12/05 20 889 13 319 3 6 1.13 0.7830 0.4355 31 075

2006/12/25 23 918 14 949 4 6 1.13 0.7583 0.4494 35 740

2007/12/03 26 690 16 348 5 6 1.13 0.7362 0.4345 40 868

2008/12/01 30 356 19 149 6 6 1.13 0.7042 0.4986 44 640

2010/01/20 33 508 20 940 7 6 1.13 0.6745 0.4951 49 750

2011/01/16 36 878 23 214 8 6 1.13 0.55 0.5973 65 270

2012/06/01 41 203 25 815 9 6 1.13 0.5880 0.6161 68 850

Table 5.1: GLP profiles derived from CAIDA maps.

44

About the dynamic model. In the sequel, we have studied the short-term evolution of
the properties in presence of failures of links. For this purpose, we have considered random
failures, i.e., removal of random links, at two levels. First, we have considered the removal
of small sets of links (5 links) looking at the impact of the removal of each link. Second, we
have considered the impact of the simultaneous removal of larger set of links (100 links).

More precisely, for any graph described in previous paragraph (both the CAIDA maps and
the GLP models), we have performed the following process. Starting from an initial graph
G0 with largest bi-connected component C, we have created a sequence (G0, G1, · · · , Gr) of
graphs where Gi is obtained from Gi−1 by removing a set of random links in C. The number of
links removed at each time follows the following sequence (1; 1; 1; 1; 1; 100; 1; 1; 1; 1; 1; 100; · · ·),
that is, we start by removing one edge, which is done five time, and then we remove 100 edges
simultaneously, then we remove one edge five times, and so on. The process is done until C
becomes disconnected.

Note that, for each of the 900 generated graphs described in previous paragraph, we have
performed this process and stored all the obtained graphs.

This procedure has been also applied on a bipartite graph and its associated 9 random
instances as detailed in Section 4 page 25.

About measured properties. We have considered most of the properties documented in
D3.1. Each of the following properties has been computed for all CAIDA maps and graphs
generated (including the graphs obtained by the dynamic model described above) and their
largest bi-connected component (LBCC).

We briefly recall the definitions of these properties (see D3.1 for more details).

• number of nodes n, number of edges m, density ρ = 2m
n(n−1) ;

• maximum- minimum- average- node degree, degree distribution, rank distribution;

• number of (bi)-connected components, distribution of connected components size;

• diameter (length of a longest path), radius (minimum eccentricity);

• distance distribution, average shortest path length 〈dist〉 for some node, characteristic
path length (median of 〈dist〉) clustering coefficient over all nodes);

• hopplot distribution (probability that a random pair of vertices are at distance at
most dist);

• clustering coefficient distribution (the clustering coefficient of a node u with degree
deg(u) is the number of edges between neighbors of u over deg(u)(deg(u)−1)/2), global
clustering coefficient (average local clustering coefficient), number of triples (sum of the
local clustering coefficient);

• assortativity (probability that two nodes with similar degree are connected).

In addition, we have considered the robustness of the considered graph topologies to nodes
or edges removals. That is, we have measured the average number of necessary edges (resp.
nodes) removals to disconnect the graph. This notion refers to the all-terminals reliability as
defined by Colbourn [Col87] which is the probability that all-to-all communications can be

45

established given the probability p of failures of an edge (resp. node). In other words, the
higher the number of edges (resp. nodes) to remove from the graph before it gets disconnected,
the more reliable it is.

We also are interested in obtaining bounds on other properties that are more difficult
to compute such as chordality and treewidth (NP-complete, see Section 3). For these last
properties, due to time-limitation, we only obtained some results in stationary conditions
(without including the dynamic).

Storage of generated graphs and measures. The generated graphs are stored in sepa-
rate files (one file per graph). The filename convention is as follows:

model-name profile-number instance-number.edgelist

When considering graphs with removed links:

model-name-number instance-number edge-number-of-removed-edges.edgelist

For example, glp 1 5.edgelist is the fifth generated instance of the first profile of the
GLP model when as 20040607.edgelist is the CAIDA map provided the 7 of june 2004. For
graphs with removed edges, glp 1 5 edge-200.edgelist will be the fifth generated instance
of the first profile of the GLP model with the edge removal procedure applied until to have
200 edges removed.

Each evaluated property of a graph is stored in a separate file. The file name is the same
as the input graph file name for which the property has been determined plus the name of
the property both separated by an underscore. Property file extension is ”prop”. Content
format of the computed property files is the same than in D3.1 experimentations.

Due to the huge amount of topologies generated (over 60GB), a new set of tools based on he
Grph library has been designed to build and automatize experimentations for the computation
of properties over selected sets of graphs. These computations have been distributed over two
clusters at Inria.

5.1.3 Numerical results and Analysis

5.1.3.1 Long term evolution of CAIDA maps

In Deliverable D3.1, several properties of some CAIDA AS maps (between 2004 and 2011)
have been reported. In this section, we go further in the analysis of the long-term evolution
of these properties. First, we report new measurements based on CAIDA maps released on
december 2008 (2008/12) and june 2012 (20012/06). In particular, the CAIDA map of 2012
has around 6000 new nodes and 20000 new edges (compared to the CAIDA map of 2011).
Second, we describe the evolution of the properties during this 9-years long period. The
measures of the properties of the CAIDA maps are reported in Table 5.2. Table 5.3 describes
the measures of same properties of the restriction of these CAIDA maps to their largest
bi-connected components.

46

P
ro

p
e
rt

y
C

A
ID

A
m

a
p
s

2
0
0
4
/
0
1
/
0
5

2
0
0
4
/
1
2
/
0
6

2
0
0
5
/
1
2
/
0
5

2
0
0
6
/
1
2
/
2
5

2
0
0
7
/
1
2
/
0
3

2
0
0
8
/
1
2
/
0
1

2
0
1
0
/
0
1
/
2
0

2
0
1
1
/
0
1
/
1
6

2
0
1
2
/
0
6
/
0
1

N
u

m
b

er
of

n
o
d

es
16

30
1

18
50

1
2
0

8
8
9

2
3

9
1
8

2
6

6
9
0

3
0

3
5
6

3
3

5
0
8

3
6

8
7
8

4
1

2
0
3

N
u

m
b

er
of

ed
ge

s
32

95
5

38
26

5
4
1

8
2
0

4
9

0
8
9

5
5

3
3
6

6
4

7
6
8

7
5

0
0
1

1
0
3

4
8
5

1
2
1

3
0
9

D
en

si
ty

0.
00

02
4

0.
00

02
3

0
.0

0
0
1
9

0
.0

0
0
1
7

0
.0

0
0
1
5

0
.0

0
0
1
5

0
.0

0
0
1
3

0
.0

0
0
1
5

0
.0

0
0
1
4

M
in

im
u

m
d

eg
re

e
1

1
1

1
1

1
1

1
1

A
ve

ra
ge

d
eg

re
e

4.
04

4.
14

4
4
.1

0
4
.1

5
4
.2

7
4
.4

8
5
.6

1
5
.8

9

M
ax

im
u

m
d

eg
re

e
2

33
1

2
32

8
2

3
7
9

2
3
5
8

2
6
3
2

2
2
8
3

2
6
3
1

2
9
7
2

3
5
3
7

D
ia

m
et

er
10

10
1
0

1
1

1
0

1
0

1
1

1
1

1
0

R
ad

iu
s

5
5

6
6

5
5

6
6

5

A
v
g.

sh
or

te
st

p
at

h
le

n
gt

h
3.

77
3.

79
3
.8

3
3
.8

7
3
.8

7
3
.8

4
3
.8

6
3
.8

1
3
.8

4

C
h

ar
ac

te
ri

st
ic

p
at

h
le

n
gt

h
3.

64
3.

65
3
.7

1
3
.7

4
3
.8

0
3
.7

9
3
.8

2
3
.7

7
3
.7

8

N
u

m
b

er
of

b
ic

on
n

ec
te

d
co

m
p

.
1

37
8

1
55

0
1

7
3
6

2
0
2
2

2
3
1
7

2
5
4
0

2
8
9
1

3
1
2
4

3
4
8
8

L
ar

ge
st

b
ic

on
n

ec
te

d
co

m
p

.
10

42
4

11
91

0
1
3

3
1
9

1
4

9
4
9

1
6

3
4
8

1
9

1
4
9

2
0

9
4
0

2
3

2
1
4

2
5

8
1
5

N
u

m
b

er
of

co
n

n
ec

te
d

tr
ip

le
s

8.
8
·1

0
6

10
.2
·1

0
6

1
1.

1
·1

0
6

1
3
.1
·1

0
6

1
4
.9
·1

06
1
9
.9
·1

0
6

2
3
·1

06
3
4
·1

0
6

4
3
·1

0
6

G
lo

b
al

cl
u

st
er

in
g

co
effi

ci
en

t
0.

23
3

0.
24

3
0
.2

3
6

0
.2

2
1

0
.2

0
3

0
.2

3
8

0
.2

1
7

0
.2

4
0

0
.2

4
0

A
ss

or
ta

ti
v
it

y
0.

01
5

0.
01

7
0
.0

1
7

0
.0

2
0
.0

1
7

0
.0

2
6

0
.0

2
3

0
.0

4
0
.0

4

N
o
d

es
ro

b
u

st
n

es
s

12
11

1
1

1
1

1
0

1
1

1
1

1
1

1
1

E
d

ge
s

ro
b

u
st

n
es

s
5

6
5

6
6

6
6

8
8

L
P

ow
er

la
w

ex
p

on
en

t
-1

.1
1

-1
.1

1
-1

.1
2

-1
.1

2
-1

.1
4

-1
.1

3
-1

.1
3

-1
.1

3
-1

.1
1

C
at

er
p

il
la

ri
ty

24
4

32
1

3
0
6

2
9
4

3
9
0

5
6
0

6
8
0

3
9
6

5
5
2

T
re

ew
id

th
ca

te
rp

il
la

ri
ty

1
70

3
1

98
7

1
6
9
3

3
3
5
2

3
8
9
7

3
1
9
3

3
5
9
9

5
2
7
9

4
2
6
6

Table 5.2: Values of properties for CAIDA maps.
47

P
ro

p
e
rt

y
C

A
ID

A
m

a
p

s
-

b
ic

o
n

n
e
c
te

d
c
o
m

p
o
n

e
n
t

2
0
0
4
/
0
1
/
0
5

2
0
0
4
/
1
2
/
0
6

2
0
0
5
/
1
2
/
0
5

2
0
0
6
/
1
2
/
2
5

2
0
0
7
/
1
2
/
0
3

2
0
0
8
/
1
2
/
0
1

2
0
1
0
/
0
1
/
2
0

2
0
1
1
/
0
1
/
1
6

2
0
1
2
/
0
6
/
0
1

N
u

m
b

er
of

n
o
d

es
10

42
4

11
91

0
1
3

3
1
9

1
4
,9

4
9

1
6

3
4
8

1
9
,1

4
9

2
0

9
4
0

2
3

2
1
4

2
5

8
1
5

N
u

m
b

er
of

ed
ge

s
27

06
1

31
66

6
3
4

2
3
6

4
0
,1

0
5

4
2
,9

7
2

5
7

1
9
2

6
2
,4

0
6

8
9

7
8
3

1
0
5

8
9
4

D
en

si
ty

0.
00

05
0.

00
04

5
0
.0

0
0
3
9

0
.0

0
0
3
6

0
.0

0
0
3
2

0
.0

0
0
3
1

0
.0

0
0
2
8

0
.0

0
0
3
3

0
.0

0
0
3
2

A
ve

ra
ge

d
eg

re
e

5.
19

5.
32

5
.1

4
5
.3

6
5
.2

6
5
.9

7
5
.9

6
7
.7

3
8
.2

0

A
ve

ra
ge

d
eg

re
e

3.
00

3.
09

2
.9

8
3
.1

2
3
.0

5
3
.4

8
3
.4

9
4
.5

5
8
.2

0

M
ax

im
u

m
d

eg
re

e
1

95
2

1
96

4
2

0
1
9

2
0
0
6

2
2
7
7

1
9
5
5

2
4
0
0

2
6
7
9

3
0
4
7

D
ia

m
et

er
8

8
8

8
8

8
8

8
8

R
ad

iu
s

4
5

4
4

4
4

4
4

4

A
v
g.

sh
or

te
st

p
at

h
le

n
gt

h
3.

38
3.

40
3
.4

5
3
.4

6
3
.4

6
3
.4

7
3
.4

9
3
.4

5
3
.4

7

C
h

ar
ac

te
ri

st
ic

p
at

h
le

n
gt

h
3.

24
3.

25
3
.3

3
3
.3

4
3
.3

5
3
.3

8
3
.4

1
3
.4

0
3
.4

4

N
u

m
b

er
of

co
n

n
ec

te
d

tr
ip

le
s

6.
5
·1

0
6

7.
7
·1

0
6

8
.3
·1

0
6

9
.9
·1

06
1.

1
·1

0
7

1.
5
·1

0
7

1.
8
·1

0
7

2
.8
·1

07
3.

6
·1

0
7

G
lo

b
al

cl
u

st
er

in
g

co
effi

ci
en

t
0.

37
1

0.
38

7
0
.3

7
8

0
.3

6
3

0
.3

4
2

0
.3

8
8

0
.3

5
7

0
.3

9
1

0
.3

9
4

A
ss

or
ta

ti
v
it

y
0.

01
9

0.
02

2
0
.0

2
1

0
.0

2
5

0
.0

2
1

0
.0

3
3

0
.0

2
8

0
.0

4
9

0
.0

5

N
o
d

es
ro

b
u

st
n

es
s

11
4

13
4

1
4
1

1
5
0

1
6
6

1
8
9

1
9
6

2
1
5

2
8
5

E
d

ge
s

ro
b

u
st

n
es

s
29

7
29

5
3
2
6

3
9
9

3
7
8

4
4
4

4
5
7

6
8
0

7
0
1

P
ow

er
la

w
ex

p
on

en
t

-1
.0

8
-1

.0
9

-1
.1

-1
.1

-1
.1

1
-1

.1
1

-1
.1

2
-1

.1
3

-1
.1

1

C
at

er
p

il
la

ri
ty

-
-

-
-

-
-

-
-

-

T
re

ew
id

th
ca

te
rp

il
la

ri
ty

-
-

-
-

-
-

-
-

-

Table 5.3: Values of properties for the largest biconnected components of the CAIDA maps.48

Largest bi-connected component. The size of the AS network has increased from 16301
nodes and 32955 edges (2004) to 41203 nodes and 121309 edges (2012) while the size of its
bi-connected component has increased from 10424 nodes and 27061 edges (2004) to 25815
nodes and 105894 edges (2012). It is interesting to observe that the ratio between the size
of the network and its largest bi-connected component has been stable for the nodes around
1.59 and decrease from 1.21 to 1.12 for the edges until 2010 and remains stable around 1.14
for 2011 and 2012. In 2008, the ratio between the number of edges of the network and the
number of edges of its largest bi-connected component has dropped down to 1.12 which can
be explained by the fact that several smaller bi-connected components that were existing until
2008 have been merged with the main largest bi-connected component.

Global clustering coefficient and Density. Between 2004 and 2012, the global density
has oscillated between 0.00024 and 0.00014. Similarly, the local density represented by the
clustering coefficient slightly oscillates between 0.203 (in 2007) and 0.240 (Dec. 2004) and is
currently equal to 0.243. This indicates that the ratio between the number of new edges over
the number of new nodes remains stable (very slightly increases).

Degree distribution. The general trend is the increasing of degree of nodes. Hence, the
average degree increased from 4.04 to 5.89 and the maximum degree increased from 2331 to
3537. This clearly confirms that nodes tends to connect to high degree nodes. Also, the
degree distributions for each CAIDA map are plotted in Figure 5.2b. They clearly follow a
power law distribution whose coefficient remains very stable between -1.11 and -1.14.

In the largest bi-connected component, the average degree increases from 5.19 to 8.20.
The increase is particularly important during the last two years. This is due to the fact that
the largest bi-connected component has increased a lot (see paragraph above) and that, now,
almost all new links belong to it.

The assortativity has be multiplied by 2 (from 0.015 to 0.04). This positive assortativity
expresses that many nodes with similar degree are connected with each other.

Shortest path length. The diameter has remained stable equal to 10 (and to 8 in the
bi-connected component). The average shortest path length has first increased from 3.77 to
3.83 (from 2004 to 05) and then has oscillated between 3.81 to 3.87. It is currently equal to
3,84. The average shortest-path length in the largest bi-connected component has followed
the same evolution from 3.84 to 3.47. It is important to note the small difference between
the average shortest-path length in the network and in the largest bi-connected component.
This indicates that most (all) of the nodes that do not belong to the largest bi-connected
component are very closed to (neighbors of) it.

Edge and Node robustness. To measure the edge- and node- robustness of our networks
and their bi-connected components, we have randomly removed nodes (resp., edges) until
disconnecting the network. We have repeated this experiment 100 times for each network
and we report the average of the obtained value. Clearly, the deviations of our experiments
are very high since the number of experiments (100) is quiet small compared with the size of
the networks. This is due to time-limitations.

The node-robustness and the edge-robustness of the AS network have not evolved during
the studied period since it kept a very small value: from 10 to 12 for the nodes and from 5

49

to 8 for the edges. This is not surprising since most of the nodes that are not in the largest
bi-connected component are nodes with degree one and their proportion has remained the
same.

More interestingly, the “average” node-robustness of the largest bi-connected component
has increased from 114 to 285 and the “average” edge-robustness has increased from 297 to
701. Surprisingly, this implies that, in 2004, the removal of 1, 1% edges chosen randomly
allowed to disconnect the largest bi-connected component, while in 2012, removing randomly
0, 7% of the edges is sufficient. Maybe this behavior is due to the small number of experiments
we did due to time-limitation.

Cycles and Bags We have executed the algorithm detailed in Section 3) on each of the
CAIDA maps. Due to its time complexity (quadratic in the number of edges) we have only
done one execution per map. However, note that, since it is a greedy algorithm that depends
on the ordering of the vertices, it would be interesting to do other executions.

Using this algorithm, we were able to find induced cycles larger than 244 (CAIDA map
of 2004) and induced cycles larger than 552 (in 2012). This is a bit surprising since the high
clustering coefficient suggests that such large induced cycles should not exist or should at
least be rare. It is an interesting question to know whether there are numerous such large
induced cycles. Also this polynomial-time algorithm allowed us to show an upper bound of
1703 (in 2004) and of 4266 (in 2012) of the treewidth of the AS network.

In conclusion, these results clearly express the growth of the network (number of nodes,
edges, maximum degree, etc.) while its general global/average characteristics remain un-
changed (power law coefficient, diameter, proportion between the whole graph and the largest
bi-connected component etc.). As an exception, and surprisingly, the robustness of the net-
work has decreased.

5.1.3.2 Long term evolution of GLP and comparison with CAIDA measures

In [BT02], the analyze of the GLP model shows that it fits several properties (eg. degree
distribution, average shortest path, etc) of the Internet. However, this study was only per-
formed in comparison with a CAIDA map of 2002. Thus, the next results present the long
term evolution of GLP graphs and compares them with the corresponding CAIDA maps:
both the whole graphs and their bi-connected component were analyzed. The measures of
the properties of the GLP graphs are reported in Table 5.4. Table 5.5 describes the mea-
sures of same properties of the restriction of these GLP graphs to their largest bi-connected
components.

Largest bi-connected component and Density. The size of GLP graphs increased from
16301 nodes to 41203 nodes as GLP profiles have been computed from CAIDA maps. The
number of edges increased from 29079 edges (profile 1) to 107 964 edges (profile 9). However,
for each profile, the number of edges is smaller compared to those of CAIDA maps. When ob-
serving the ratio between the size of the GLP graph with its largest bi-connected component,
the ratio decreased from 3.34 to 2.46 for the nodes and 1.64 to 1.29 for the edges. This is
significantly different from the evolution of the CAIDA maps bi-connected components which
remains stable over the years with a ratio of 1.59 for the nodes and decreased from 1.21 to
1.13 between 2004 and 2008 and remained stable around 1.14 until 2012 for the edges.

50

P
ro

p
e
rt

y
G

L
P

p
ro

fi
le

s
w

it
h
β

1
2

3
4

5
6

7
8

9

N
u

m
b

er
of

n
o
d

es
16

30
1

1
8

5
0
1

2
0

8
8
9

2
3

9
1
8

2
6

6
9
0

3
0

3
5
6

3
3

5
0
8

3
6

8
7
8

4
1
2
0
3

N
u

m
b

er
of

ed
ge

s
29

07
9

3
3

9
1
8

3
7

5
2
3

4
4

3
2
2

4
8

7
2
9

6
1

8
2
5

6
8

4
2
5

9
3

3
1
4

1
0
7

9
6
4

D
en

si
ty

0.
00

02
2

0.
0
0
0
2

0
.0

0
0
1
7

0
.0

0
0
1
5

0
.0

0
0
1
4

0
.0

0
0
1
3

0
.0

0
0
1
2

0
.0

0
0
1
4

0
.0

0
0
1
3

M
in

im
u

m
d

eg
re

e
1

1
1

1
1

1
1

1
1

A
ve

ra
ge

d
eg

re
e

3.
57

3
.6

7
3
.5

9
3
.7

3
.6

5
4
.0

7
4
.0

8
5
.0

6
5
.2

4

M
ax

im
u

m
d

eg
re

e
1

05
6

1
1
1
4

1
2
0
9

1
2
7
2

1
3
5
9

1
3
5
2

1
4
2
2

1
3
4
3

1
4
2
9

D
ia

m
et

er
8.

9
9
.0

6
9
.2

9
.4

9
.6

9
.5

9
.6

7
9
.5

8
9
.3

4

R
ad

iu
s

4.
9

5
5

5
5

5
5
.1

5
.1

5
.0

1

A
v
g.

sh
or

te
st

p
at

h
le

n
gt

h
3.

60
3
.6

3
3
.6

7
3
.7

3
.7

5
3
.7

2
3
.7

6
3
.7

1
3
.6

8

C
h

ar
ac

te
ri

st
ic

p
at

h
le

n
gt

h
3.

52
3
.5

4
3
.5

8
3
.6

1
3
.6

7
3
.6

4
3
.6

8
3
.6

2
3
.5

8

N
u

m
b

er
of

b
ic

on
n
ec

te
d

co
m

p
.

1
98

8
2

3
0
4

2
6
7
9

3
1
5
3

4
7
8
1

5
3
2
0

4
7
4
1

5
3
6
3

L
ar

ge
st

b
ic

on
n

ec
te

d
co

m
p

.
4

86
9

5
6
6
0

6
4
1
9

7
6
1
4

8
6
1
5

1
0

4
8
5

1
1

8
8
1

1
5

2
3
8

5
6
9
8

N
u

m
b

er
of

co
n

n
ec

te
d

tr
ip

le
s

4.
3
·1

06
5.

2
·1

0
6

6
·1

0
6

7.
2
·1

0
6

8
·1

0
6

1
·1

0
7

1.
2
·1

0
6

1.
7
·1

0
7

2
.2
·1

07

G
lo

b
al

cl
u

st
er

in
g

co
effi

ci
en

t
0.

06
9

0
.0

6
7

0
.0

6
2

0
.0

6
0

0
.0

5
5

0
.0

5
6

0
.0

6
4

0
.0

7
6

0
.0

7

A
ss

or
ta

ti
v
it

y
0.

08
4

0
.0

9
0
.0

8
2

0
.0

8
7

0
.0

8
0
.1

0
8

0
.1

0
5

0
.1

6
1

0
.1

7

N
o
d

es
ro

b
u

st
n

es
s

9.
12

8
.0

9
7
.9

7
.3

7
.3

5
7
.0

4
6
.9

6
.9

4
7
.3

E
d

ge
s

ro
b

u
st

n
es

s
2.

53
2
.6

6
2
.6

1
2
.7

3
2
.7

1
3
.0

9
3
.1

4
.3

6
4
.4

P
ow

er
la

w
ex

p
on

en
t

-1
.1

3
-1

.1
4

-1
.1

5
-1

,1
6

-1
.1

7
-1

.1
7

-1
.1

8
-1

.1
8

-1
.1

6

Table 5.4: Average values of properties for GLP graphs with β.

51

P
ro

p
e
rt

y
G

L
P

p
ro

fi
le

s
w

it
h
β

-
b

ic
o
n

n
e
c
te

d
c
o
m

p
o
n

e
n
t

1
2

3
4

5
6

7
8

9

N
u

m
b

er
of

n
o
d

es
4

87
0

5
6
6
1

6
4
2
0

7
6
1
5

8
6
1
5

1
0

4
8
6

1
1

8
8
1

1
5

2
3
8

1
6

7
1
6

N
u

m
b

er
of

ed
ge

s
17

64
7

21
0
7
7

2
3

0
5
3

2
8

0
1
8

3
0

6
5
3

4
1

9
5
4

4
6

7
9
7

7
1

6
7
4

8
3

4
5
6

D
en

si
ty

0.
00

14
9

0.
0
0
1
3
2

0
.0

0
1
1
2

0
.0

0
0
9
7

0
.0

0
0
8
3

0
.0

0
0
7
6

0
.0

0
0
6
6

0
.0

0
0
6
2

0
.0

0
0
6
0

M
in

im
u

m
d

eg
re

e
2

2
2

2
2

2
2

2
2

A
ve

ra
ge

d
eg

re
e

7.
25

7
.4

5
7
.1

8
7
.3

6
7
.1

2
8
.0

0
7
.8

8
9
.4

1
9
.9

9

M
ax

im
u

m
d

eg
re

e
66

7
7
2
2

7
8
1

8
5
0

9
1
2

9
8
0

1
0
4
2

1
0
9
8

1
1
7
1

D
ia

m
et

er
6.

19
6
.2

9
6
.4

8
6
.6

2
6
.9

0
6
.8

6
6
.9

2
6
.8

6
6
.7

4

R
ad

iu
s

3.
53

3
.5

6
3
.7

7
3
.8

5
3
.9

9
4
.0

0
4
.0

0
4
.0

0
3
.9

9

A
v
g.

sh
or

te
st

p
at

h
le

n
gt

h
3.

09
3
.1

1
3
.1

5
3
.1

7
3
.2

2
3
.2

0
3
.2

4
3
.2

3
3
.2

0

C
h

ar
ac

te
ri

st
ic

p
at

h
le

n
gt

h
3.

03
3
.0

5
3
.0

8
3
.1

1
3
.1

5
3
.1

4
3
.1

7
3
.1

5
3
.1

3

N
u

m
b

er
of

co
n

n
ec

te
d

tr
ip

le
s

1
.9

6
·1

0
6

2.
46
·1

06
2.

7
8
·1

0
6

3.
5
6
·1

0
6

3
.9

5
·1

0
6

6.
0
7
·1

06
6.

9
0
·1

0
6

1.
2
1
·1

0
7

1
.5

8
·1

0
7

G
lo

b
al

cl
u

st
er

in
g

co
effi

ci
en

t
0.

27
3

0
.2

5
9

0
.2

4
1

0
.2

2
4

0
.2

0
2

0
.2

0
2

0
.1

8
4

0
.1

7
6

0
.1

9
4

A
ss

or
ta

ti
v
it

y
0.

14
4

0
.1

4
8

0
.1

3
5

0
.1

3
8

0
.1

2
8

0
.1

5
5

0
.1

4
8

0
.2

0
0

0
.2

1
0

Table 5.5: Average values of properties for the largest biconnected component of GLP graphs
with β.

52

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.001 0.01 0.1 1

fra
ct

io
n

of
 n

od
e(

s)

Clustering coefficient

Clustering coefficient distribution

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01 0.1 1

fra
ct

io
n

of
 n

od
e(

s)

Clustering coefficient

Clustering coefficient distribution

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.1: Clustering coefficient distributions for CAIDA maps and corresponding GLP
graphs.

The sizes of the largest bi-connected components in CAIDA maps and their corresponding
GLP models are very different: the one of CAIDA is more than twice than the one of GLP
model. This is due to the preferential attachment function of the GLP model which makes
the new nodes to attach preferentially to a small kernel avoiding to reinforce the connectiv-
ity of these new nodes. To better parameterize the GLP model, it could be interesting to
slightly modify the preferential attachment function related to the addition of new edges. This
phase of addition of new edges could be used to increase the size of the largest bi-connected
component.

The global density oscillate from 0.00022 to 0.00014 which is close the density evolution
of the CAIDA maps.

Global clustering coefficient. The long-term evolution of the coefficient clustering dis-
tribution of GLP graphs is depicted in Figures 5.1a. It oscillates between 0.055 (profile 5)
and 0.076 (profile 8). There is a clear difference with the measures of this property in CAIDA
maps (oscillations between 0.203 in 2007 and 0.240 in Dec. 2004). This is not surprising since
it is well known that the property of having a high clustering coefficient is not captured by
the GLP model. This is mainly due to the larger number of degree-one nodes in GLP graphs
(see paragraph below) and to the fact that, in CAIDA map, a non negligible fraction of nodes
have clustering coefficient between 0.2 and 1 while, in GLP, very few nodes have clustering
coefficient exceeding 0.2.

Note that in D3.1 we had noticed a difference between our measures (performed on GLP
graphs with 1000 nodes) and the measures obtained in [BT02] for similar models. Our new
results obtained on larger instances confirm our previous observations.

Degree distribution. First, we notice that the degree-distribution of GLP models does not
change and keeps following a power law distribution similar to the one of the corresponding
CAIDA maps. This is clearly expected by construction of these graphs.

The long-term evolution of the average and maximum degree of the GLP graphs follows
the same trend as the ones of the corresponding CAIDA maps. The average degree increases
from 3.57 to 5.24, i.e., both the value and the evolution are comparable to the one of CAIDA
maps. On the other hand, the maximum degree of GLP graphs increases from 1056 to 1429.

53

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

fra
ct

io
n

of
 n

od
e(

s)

Degree

Complementary degree distribution

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

fra
ct

io
n

of
 n

od
e(

s)

Degree

Complementary degree distribution

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.2: Complementary degree distributions for CAIDA maps and corresponding GLP
graphs.

This is much smaller than the maximum degree observed in CAIDA maps (from 2331 to 3537).
This difference can be better observed when looking at the degree distribution in Figures 5.2a
and 5.2b. Indeed, the degree distributions of CAIDA maps and corresponding GLP models
is comparable until degree around 1000. However, the tails of the degree distributions of the
CAIDA map speads until nodes with degree more than 3000, while the tails of the degree
distributions of the GLP graphs concentrate all large degree node around 1000.

This can be explained by the fact that, in the AS network, a small set of ASes are much
more important than other. On the other hand, in GLP graphs, nodes that emerge with a
bigger degree will grow in parallel due to the preferential attachment function. It would be
interesting to put a weight on a small fraction of the nodes among the ones with large degree
to bias the preferential attachment.

Shortest path length. On GLP graphs we observe a diameter comprised between 8.9 and
9.34 which is close to the diameter of 10 in CAIDA maps. In the GLP graphs bi-connected
components the diameter is comprised between the smaller values 6.19 and 6.92 compare to
the diameter of 8 in the bi-connected component of the CAIDA maps.

The average shortest path length in GLP has increased from 3.60 (profile 1) to 3.75 (profile
5) and has then oscillated between 3.68 and 3.76. This is very similar to CAIDA maps shortest
path lengths which has increased from 3.77 to 3.83 and oscillated between 3.81 and 3.87. In
the bi-connected component of the GLP graphs the average shortest path length increased
between 3.09 to 3.15 and has then oscillated between 3.14 and 3.13.

Figure 5.3 shows the distance distributions on a loglog scale on GLP graphs and CAIDA
maps. As expected from the previous observations, both of the plots are very similar. These
similarities were also observed in [BT02].

To conclude, GLP graphs and CAIDA maps have similar behavior for most of the prop-
erties. They mainly differ concerning the clustering coefficient that was already known as a
drawback of the GLP model. Here, we have confirmed that these similarities keep unchanged
through the long-term evolution. Another differences that we pointed out in D3.1 and here
are the smaller size of the largest bi-connected component of the graphs generated via the
GLP model, such as the difference in their maximum degree. Here we propose an alternative

54

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

fra
ct

io
n

of
 n

od
e(

s)

distance

Distance distribution

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

fra
ct

io
n

of
 n

od
e(

s)

distance

Distance distribution

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.3: Shortest path length distribution.

to cope with these defaults (see the corresponding paragraphs above).

5.1.3.3 Short-term evolution

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 50 100 150 200 250 300 350

de
gr

ee

Number of removed edges

Average degree

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 200 400 600 800 1000 1200

de
gr

ee

Number of removed edges

Average degree

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.4: Short term evolution of the average degree.

As described in the experimental protocol section (Section 5.1.2), in each of the considered
graphs, we have sequentially removed small set of randomly selected edges of the largest bi-
connected component until it becomes disconnected. The results obtained so far are reported
in Figures 5.4 to 5.9.

The results show no significative evolution of the measured properties (average and max-
imum degrees, assortativity, density, clustering coefficient, average shortest path length, di-
ameter and radius). Some pathological behaviors appear for the CAIDA map of 2004 and the
corresponding GLP graphs which can be explained by their small sizes and smaller average
degrees.

These experiments highlight that the AS network is very robust to random (small) failures.
Moreover, the similarity between the CAIDA maps and the GLP graphs behaves well under
this kind of short term dynamic.

However, these properties reflect a global behavior of the considered topologies and do
not reflect the local changes in the connectivity. For instance, shortest path lengths are

55

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200 250 300 350

de
gr

ee

Number of removed edges

Max out vertex degree

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 200 400 600 800 1000 1200

de
gr

ee

Number of removed edges

Max out vertex degree

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.5: Short term evolution of the maximum degree.

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0 50 100 150 200 250 300 350

As
so

rta
tiv

ity

Number of removed edges

Assortativity

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 200 400 600 800 1000 1200

As
so

rta
tiv

ity

Number of removed edges

Assortativity

as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116

(b) CAIDA maps

Figure 5.6: Short term evolution of the assortativity.

very stable but the actual shortest paths could differ a lot: routing tables entries could be
drastically modified. Therefore, the next steps will be as follows. On one hand, we will study
more clever dynamic scenarii modeling more localized or correlated failures (e.g., shared risk
link groups). On the other hand, we will study the local impact of these topological changes.
We have initiated such a study in Chapter 6.

56

 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 0 50 100 150 200 250 300 350

Av
er

ag
e

sh
or

te
st

 p
at

h
le

ng
th

Number of removed edges

Average shortest path length

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 3.38

 3.4

 3.42

 3.44

 3.46

 3.48

 3.5

 0 200 400 600 800 1000 1200

Av
er

ag
e

sh
or

te
st

 p
at

h
le

ng
th

Number of removed edges

Average shortest path length

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.7: Short term evolution of the average shortest path length.

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 0 50 100 150 200 250 300 350

D
ia

m
et

er

Number of removed edges

Diameter

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 8

 8.2

 8.4

 8.6

 8.8

 9

 0 200 400 600 800 1000 1200

D
ia

m
et

er

Number of removed edges

Diameter

as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116

(b) CAIDA maps

Figure 5.8: Short term evolution of the diameter.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 50 100 150 200 250 300 350

C
lu

st
er

in
g

co
ef

fic
ie

nt

Number of removed edges

Clustering Coefficient

profile 1
profile 2
profile 3
profile 4
profile 5
profile 6
profile 7
profile 8
profile 9

(a) GLP graphs

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0 200 400 600 800 1000 1200

C
lu

st
er

in
g

co
ef

fic
ie

nt

Number of removed edges

Clustering Coefficient

as-20040105
as-20041206
as-20051205
as-20061225
as-20071203
as-20081201
as-20100120
as-20110116
as-20120601

(b) CAIDA maps

Figure 5.9: Short term evolution of the clustering coefficient.

57

5.2 Evolution of the hyperbolicity

5.2.1 Objectives and Motivation

In Deliverable D3.1 and in Section 3 page 11 of this deliverable, we recalled that the (Gromov)
hyperbolicity of a graph reflects how the metric (distances) of the graph is close to the metric of
a tree. This structural property has been proven effective for the design of distance decreasing
routing schemes (greedy routing), in particular for graph topologies with small hyperbolicity.
More precisely,

Definition 10. Given four nodes u, v, w, x of a graph G, the half difference between the two
larger of the distance sums dist(u, v)+dist(w, x), dist(u,w)+dist(v, x), dist(u, x)+dist(v, w)
is called the hyperbolicity of the 4-tuple (u, v, w, x).

The hyperbolicity δ of an n-node graph G is the maximum hyperbolicity of its
(
n
4

)
4-tuples.

The Internet topology evolves over time due to its growth (addition of new nodes and
links) and to equipments or softwares errors causing the temporary unavailability of some
nodes and links. In this section, we perform an extensive study of the evolution of the
hyperbolicity. This study mainly relies on CAIDA maps but also on simulations performed
on random generated graphs (GLP, Erdos-Reyni, etc.) with same kind of dynamics.

This bunch of data allows us to show that the hyperbolicity of Internet-like graphs is resis-
tant to the deletion of up to 15% of the edges. More important, it appears that this stability
occurs at an even more local level since the hyperbolicity of the 4-tuples is almost unchanged
(both for the hyperbolicity of the 4-tuples independently and for their distribution). This
reveals that there are many shortest paths between (almost) any pairs of nodes. It would
be interesting to better understand the corresponding hidden structure that is related to the
density and to the betweenness centrality of such networks.

We start in Section 5.2.2 with some theoretical facts on the short term evolution of the
hyperbolicity of a graph. Then, in Sections 5.2.3 and 5.2.4, we discuss the short and long
terms evolution of the hyperbolicity of maps of the Internet.

5.2.2 Theoretical worst case behavior

In this section, we focus on very simple dynamic scenarii when random edges are removed or
added. For simple graph classes, we show that in the worst case, the hyperbolicity may differ
drastically and that it may both increase or decrease in an unpredictable way.

The short term evolution of the hyperbolicity corresponds to the evolution of this value
when one or few links are added to or removed from a given graph. From a theoretical per-
spective, it is easy to show that the addition or the removal of an edge can change drastically
the hyperbolicity of a graph. Furthermore, this simple modification of the graph may either
increase or decrease the hyperbolicity. To understand this, let us consider some examples.
We first recall the hyperbolicity of some simple graph classes.

• Block graphs (i.e., connected graph in which every 2-connected subgraph is a clique)
are 0-hyperbolic, and so are trees and cliques;

• Cycles of order n = 4p+ε, with p ≥ 1 and ε ∈ {0, 1, 2, 3}, are (p−1/2)-hyperbolic when
ε = 1, and p-hyperbolic otherwise;

• n×m grids, with 2 ≤ n ≤ m, are (n− 1)-hyperbolic.

58

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Main/Deliverables?action=file&upname=Deliverables/D31.pdf

We now show that the addition of an edge may decrease the hyperbolicity of a graph, and
reciprocally that the removal of an edge can increase the hyperbolicity.

• Let C4 be the cycle of order 4 with vertex set V = {0, 1, 2, 3} and edges
{(i, i+ 1 mod 4), i ∈ V }. We know that C4 is 1-hyperbolic. Adding edge (0, 2), we
obtain a 1/2-hyperbolic graph. Adding further edge (1, 3), we obtain the complete
graph K4 which is 0-hyperbolic.

• Let C4p, with p ≥ 2, be the cycle of order 4p. The addition of edge (0, i), for i ∈
[2 . . . 2p− 1], reduces the hyperbolicity from p to d(4p− i)/4e − αi, where αi = 0 when
i ≡ 0, 1 mod 4, 1/2 when i ≡ 2 mod 4, and 1 when i ≡ 3 mod 4.

Next, we show through examples that adding an edge to a graph may drastically increase
its hyperbolicity, and so reciprocally that the removal of an edge may drastically decrease the
hyperbolicity of a graph.

• The path P4p of order 4p, with p ≥ 1, is 0-hyperbolic but the cycle C4p is p-hyperbolic;

• Let G be the 1-hyperbolic 2 × 4q grid, with q ≥ 2. Let now H be the graph
G plus the edge ((0, 0), (1, 4q − 1)). Then H is q-hyperbolic with certificate
{(0, 2q), (0, 3q + 1), (1, 0), (1, q)}.

With above examples, we have seen that the addition or the removal of a well chosen edge
can change drastically the hyperbolicity of a graph. The question is now to check whether
such extreme behaviors may happen in practice, and in particular on Internet-like graphs. In
next subsections, we show that the hyperbolicity of Internet-like networks actually tolerates
very well random edge deletions.

5.2.3 Long term evolution of the hyperbolicity of Internet-like networks

CAIDA maps. In Deliverable D3.1, we have reported on the hyperbolicity of some CAIDA
maps of the AS topology of the Internet. Thanks to our new algorithm for determining the hy-
perbolicity of a graph, presented in Section 3.1.2 page 13 of this deliverable, we have been able
to compute the hyperbolicity of all available CAIDA maps since 2004 (173 maps). Although
the new algorithm improves upon the naive one, the overall computation time represents
several months of computations. Indeed, the determination of the hyperbolicity of the 2011
CAIDA map only took 12 days of computations (but maps with hyperbolicity 3 requires only
a few minutes of computations). The computed values are reported in Figure 5.10 where the
first axis corresponds to the dates the maps where produced. We have one dot per CAIDA
map and we have also reported the linear interpolation of the hyperbolicity.

Figure 5.10 provides several informations. First, we observe some measurement bias,
for instance for the map of 07/06/2004 which has hyperbolicity 2 while maps produced in
the months before and after have hyperbolicity 2.5. The same holds for the maps with
hyperbolicity 3 (05/09/2005 and 06/02/2006). A frequent variation is also observed between
consecutive maps in the period from 2007 till 2009. We still do not know whether this behavior
is due to some bias of the measurement or whether it comes from some hidden fact.

The main observation resulting from this experimet is that the hyperbolicity of CAIDA
maps has decreased in average from 2.5 to 2 and the hyperbolicity is stable since 2009. This is
not surprising and it is clearly due to the fact that the AS network has become bigger during
the last decade. In particular, many new links have appeared and have broken large cycles
that made 4-tuples with bigger hyperbolicity.

59

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Main/Deliverables?action=file&upname=Deliverables/D31.pdf

Figure 5.10: Evolution of the hyperbolicity of CAIDA maps since 2004.

Random generated graphs. To have a deeper understanding of this behavior, we have
conducted similar experiments on generated graphs (some of them modeling Internet-like
networks). More precisely, we have observed the evolution of the hyperbolicity of three
random graph models, GNP, BA, GLP (see Chapter 1 of D3.1 for definitions). It appears
that the hyperbolicity keeps the same “stability” over the growth of such evolving networks.

For the GNP graph model, we start from a GNP graph with n = 500 nodes generated
with probability p ∈ {0.01, 0.02, 0.03} and successively add a new node connected to previous
nodes with probability p. For the BA graph model, we start with a BA graph with n = 500
nodes generated with degree k = 2 (new nodes are connected to k existing nodes) and then we
successively add a new node of degree k connected to the previous ones according the preferen-
tial attachement principle. Last, for the GLP graph model, we start from a GLP graph whose
largest biconnected component has n = 500 nodes, generated with parameters (m0,m, β, p) ∈
{(m0 = 6,m = 1.13, β = 0.6447, p = 0.4695), (m0 = 20,m = 1, β = 0.75, p = 0.55)} and then
we perform successively growth steps, that is with probability p we add a node and connect
it with preferential attachement to one or two existing nodes (growth), or with probability
1 − p we add one or two edges between existing nodes (densification). We have computed
the value of the hyperbolicity after every addition of 10 vertices. The results are reported in
Figure 5.11.

Note that we stopped the experiments after the size of the largest bi-connected component
achieved 1000 nodes. This is because the stability of the hyperbolicity already clearly appears
in such experiments and experiments on larger size graphs would give similar results. For
instance, the hyperbolicity of BA models on 10000 nodes have been shown to be around 3.5
in Figure 3.2a page 17.

In Figure 5.11a, we observe that the hyperbolicity of BA graphs growth rapidely to 2,
and then stays stable. This is compatible with the plots of Figure 3.2a page 17 showing
that BA graphs with 1 000 vertices and k = 2 have in average hyperbolicity 2. Furthermore,
thanks to Figure 3.2a we know that the hyperbolicity of BA graphs would continue to growth
with the growth of the network (3.5 ≤ δ ≤ 4 when n = 10 000). Concerning GNP graphs,
it has been observed in [Sha11, NST12] that the hyperbolicity of GNP graphs generated
with probability p = c/n, where c is a constant, increases with n since the probability of
having induced cycles of size up to O(log n) is positive. In our experiments, reported in
Figure 5.11b, the probability p is a constant and so the ratio p/(c/n) increases with n.
Indeed, when n = 1 000, we have (log2 n)/n ' 0.01. In addition, it is well known that GNP

60

(a) BA (b) GNP

(c) GLP(m0 = 6,m = 1.13, β = 0.6447, p = 0.4695) (d) GLP(m0 = 20,m = 1, β = 0.75, p = 0.55)

Figure 5.11: Evolution of the hyperbolicity with the growth of some graph models.

graphs with p = O((log2 n)/n) have a single connected component with low diameter and
that the diameter decreases when p increases. Since the hyperbolicity of a graph is upper
bounded by half its diameter, we expect the hyperbolicity to decrease when p increases or
when p is a constant and n increases. This is exactly what we observe in Figure 5.11b. In
Figure 5.11c we observe that the hyperbolicity of GLP graphs generated with parameters
(m0 = 6,m = 1.13, β = 0.6447, p = 0.4695) is always 2, while the hyperbolicity of GLP
graphs generated with parameters (m0 = 20,m = 1, β = 0.75, p = 0.55) and reported in
Figure 5.11d varies between 1.5 and 2.

Altogether, these experiments show that the observed variations of the hyperbolicity are
small compared to the variations that could theoretically occur.

5.2.4 Short term evolution of the hyperbolicity

Next we evaluate the evolution of the hyperbolicity of these graph models when removing
sets of randomly chosen edges. We consider in particular major failure events resulting in
the removal of 1, 5 or 10% of the edges. We have reported in Table 5.6 the evolution of the
hyperbolicity for GNP, BA and GLP graph models. Results are averages over 100 experi-
ments (sets of randomly chosen edges). To conduct these experiments, we use the following
parameters:

• GNP-1 and GNP-2 are biconnected GNP graphs of order 5 000 generated with proba-
bility p = 0.002 and 0.005 respectively;

61

• BA-1 and BA-2 are two BA graphs generated with parameter k = 2 (newly added
nodes are connected to two nodes). BA-1 has 5 000 nodes and BA-2 10 000 nodes.
These graphs are biconnected by construction;

• GLP-1 and GLP-2 are GLP graphs with respectively 15 000 and 18 000 nodes, generated
with parameters m0 = 6, m = 1.13, β = 0.6447, and p = 0.4695 (See Deliverable D3.1
for more details on the choice of the parameters). The largest biconnected components
have respectively 5 029 and 5 836 nodes.

• GLP-3 and GLP-4 are GLP graphs with respectively 20 000 and 25 000 nodes, generated
with parameters m0 = 20, m = 1, β = 0.75, and p = 0.55. The largest biconnected
components have respectively 3 943 and 5 317 nodes.

Topology δ 1% of the edges 5% of the edges 10% of the edges
min mean max min mean max min mean max

GNP-1 3 3 3 3 3 3 3 3 3 3

GNP-2 2 2 2 2 2 2 2 2 2 2

BA-1 3.5 3.5 3.505 4 3.5 3.56 4 3.5 3.65 4

BA-2 3.5 3.5 3.555 4 3.5 3.8 4 3.5 3.985 4

GLP-1 2 2 2 2 2 2 2 2 2 2

GLP-2 2 2 2 2 2 2 2 2 2 2

GLP-3 2 2 2 2 2 2 2 2 2 2

GLP-4 2 2 2 2 2 2 2 2 2 2

Table 5.6: Evolution of the hyperbolicity when removing 1, 5 or 10% of the edges.

We observe that the hyperbolicity of GNP and GLP graphs are robusts to edge removals
and that the hyperbolicity of BA graphs increases in average of less than 0.5. This is due
to the fact that between the majority of pairs of vertices, there are many shortest paths.
Hence, the removal of few edges do not change their distance. Globally, the all pair shortest
paths are stable. To illustrate it, we “followed” a fixed set of 4-tuples and evaluated the
evolution of their hyperbolicity (i.e., the measure of the hyperbolicity of this 4-tuple) during
the sequence of edges removal. More precisely, we did the following experiment: (i) we have
chosen randomly 10 000 4-tuples in the largest biconnected component plus the certificate for
the hyperbolicity of the graph, that is a 4-tuple with maximum hyperbolicity (returned by
Algorithm 1); (ii) we removed 100 edges of the graph and compute the new hyperbolicity
of the chosen 4-tuples; (iii) repeat edge removals until 15% of the edges have been removed;
(iv) plots in Figure 5.12 the average number of 4-tuples going from one given value of the
hyperbolicity (axis “hyperbolicity before removal”) to a new value (axis “hyperbolicity after
removal”) between consecutive iterations. It appears that the large majority of this sample
keeps the same value (around 99%). Moreover, it is interesting to note that when a variation
occurs it is a small one: i.e., the number of tuples whose hyperbolicity is modified by strictly
more than 0.5 is very very small. We did the same experiment on CAIDA AS maps of 2004
and 2009 and we observe a similar behavior for these maps and GLP graphs.

62

https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Main/Deliverables?action=file&upname=Deliverables/D31.pdf

(a) Avg. BA-1 (b) Avg. BA-2

(c) Avg. GLP-2 (d) Avg. GLP-3

(e) CAIDA 2004/01/05 (f) CAIDA 2009/01/05

Figure 5.12: Evolution of the hyperbolicity of 4-tuples when removing edges

63

Bipartite model. Last, we did the same experiments on graphs produced using the bi-
partite graph model presented in Section 4 page 25. We have reported in Table 5.7 the
hyperbolicity of these graphs which is in average 0.5 higher that CAIDA maps. Then, we
have reported in Figure 5.13 the evolution of the hyperbolicity of randomly chosen 4-tuples
when removing up to 15% of the edges. Globally, these graphs are very similar to BA, GLP
and CAIDA maps with respect to hyperbolicity.

Instance name δ

PROJ BIP BCOMP collect 2006-09-07 6.0

PROJ RANDOM BIP BCOMP collect 2006-09-07-i, i ∈ [1..6] ∪ [8..10] 3.0

PROJ RANDOM BIP BCOMP collect 2006-09-07-7 3.5

ADJ MOLLOYREED PROJ BIP BCOMP collect 2006-09-07-i, i ∈ [1..6] ∪ [8..10] 3.0

ADJ MOLLOYREED PROJ BIP BCOMP collect 2006-09-07-7 3.5

Table 5.7: Hyperbolicity of UPMC maps

(a) PROJ RANDOM BIP BCOMP collect 2006-09-
07-1

(b) ADJ MOLLOYREED PROJ BIP BCOMP collect 2006-
09-07-1

Figure 5.13: Evolution of the hyperbolicity of 4-tuples when removing edges

64

Chapter 6

Impact of edge deletions on
Routing/Forwarding paths

In previous chapter, we have given an overview of the evolution of structural properties of
Internet-like networks when they are subject to addition/removal of links/nodes. This gives
us a good understanding on the long/short term evolution of these properties. In particular,
we have seen that several global properties of Internet-like graphs are not affected by the
short/long term evolution (modeled by the removal or addition of links/nodes), however local
variations may have strong consequences on the routing of packets. For instance, while the
distance distribution of the CAIDA maps remains unchanged, the existing paths such as the
paths stored in routing tables actually evolve. Therefore, in this chapter we focus on the
impact of these evolutions on routing.

We consider different levels of paths that may be impacted due to the topology evolution.

Topological path: (loopfree) path defined between pair of vertices (u, v) in a graph G;

Routing path: topological path between two nodes as computed by a routing function on
the topology and/or distance information. The set of routing paths computed on a
given topology defines the routing topology.

Forwarding path: topological path actually followed by incoming message guided by the
local decision as determined by the routing function.

For instance, links deletion due to some failures in the AS network may impact the routing
in different ways. First, the information stored in the routing tables (following BGP) may
become out of date. Second, the paths actually followed by messages using the (out-dated)
stored information may become faulty, either by creating loops or increasing drastically the
length of forwarding paths. In Section 6.1, we provide a theoretical analysis of such a behavior.
After the removal of some edges, routing tables that have become inaccurate are called liars
(following the terminology of [HKK04, HKKK08, HIKN10]). The main studied question is to
establish the relationship between the number of removed links and the number of liars (i.e.,
of faulty routing paths) that appear.

In Section 6.2, we focus on the impact of edges deletion in greedy routing algorithm. More
precisely, we consider the embedding of CAIDA maps into Euclidean metric space, guided by
the embedding of spanning trees. In this context, we evaluate the percentage of nodes that

65

become disconnected (around 15%-20%) after edge removals. Among the remaining nodes,
we show that the greedy algorithm achieves almost optimal performance with respect to the
(average) stretch.

6.1 Impact of Edge Deletions on shortest path Routing Tables

In this section, we deal with an error model in distributed networks. For a target t, every node
is assumed to give an advice, i.e., to point to a neighbor that take closer to the destination.
Any node giving a bad advice is called a liar. Starting from a situation without any liar, we
study the impact of topology changes on the number of liars. More precisely, we establish a
relationship between the number of liars and the number of distance changes after one edge
deletion. Whenever ` deleted edges are chosen uniformly at random, for any graph with n
nodes, m edges and diameter D, we prove that the expected number of liars and distance
changes is O(`

2·D·n
m) in the resulting graph. The result is tight for ` = 1. For some specific

topologies, we give more precise bounds. These results have been presented in [GIH11].

6.1.1 Objectives and Motivation

Nowadays, in a communication network, a corresponding situation can occur. Let us consider
the routing task. Due to its dynamicity (change of topology, time required to update local
information) and its large-scale size, current networks are not immune to faults and crashes.
It is no more realistic to blindly trust the data stored locally at each node. For instance,
the Border Gate Protocol (BGP) used in Internet to route messages between autonomous
systems implicitly assumes that some paths are known to reach any target. Ideally, these
paths are as short as possible. Unfortunately, many messages do not reach their destination
because no paths are temporally known although some paths could exist. Is there a way to
find such paths ?

In the following, for a given target t, we informally refer to a liar as a node containing
bad information about the location of t. A series of papers [HKK04, HKKK08, HIKN10]
tackle the problem of locating a target (node, resource, data, ...) in presence of liars.

A first model was introduced by Kranakis and Krizanc [KK99]. They designed algorithms
for searching in distributed networks having the ring or the torus topology, when a node has
a constant probability of being a liar. A more realistic model was proposed by Hanusse et al.
[HKK04]: the number of liars is a parameter k and during a routing query, the information
stored at every node is unchanged. The main performance measure is the number of edge
traversals during a request. Several algorithms, either generic or dedicated to some topologies,
and bounds are presented in [HKK04, HKKK08, HIKN10] and are typically of the form
O(dist +kO(1)) (for path,grids, expanders,. . .) or Θ(dist +2O(k)) for bounded degree graphs,
dist being the distance between the source and the target.

In these papers, there is an implicit assumption: the number of liars is small. Our goal is
to evaluate whether this is realistic or not. Starting from a network without any liar, we aim
at estimating bounds on the number of liars obtained after few changes of topology. It turns
out that this problem is related to the problem of estimating the number of distance changes
after few edge/node deletions or insertions. In this section, we focus on edge deletions for the
following reasons: it is a more atomic event than node deletion (any node deletion can be
represented as a sequence of edge deletions) and a deletion is much more dramatic than an
insertion in our context. On the one hand, after one deletion, there is potentially no known

66

or existing path toward the target and on the other hand, after one insertion, we could only
miss a shortcut.

6.1.2 Related works

The influence of topology changes on graph parameters is studied in several works. In [CG84,
SBvL87], it is proved that for any sequence of ` edge deletions that do not disconnect the
graph, the diameter D of any unweighted graph turns to be less than D(` + 1). Our work
is also related to the computation of the most vital node of a shortest path [NPW03], that
is the node whose removal results in the largest increase of the distance for a given pair of
source/target, and the Vickrey pricing of edges [HS01].

Recently, some work on dynamic data structures for shortest paths/distance computation
problems has been proposed. By dynamic, we mean that the data structures can tolerate some
topology changes in a given network. A dynamic network model defines how the underlying
graph changes/evolves over time. More precisely, the following type of models are usually
considered:

• Evolving models without constraint : it consists in an ”online” insertion and/or suppres-
sion of links and/or nodes. Roughly speaking, if G(t) is the network at time t then G(0)
and G(t) can be quite different.

• Failure model : G(t) is a subgraph of G(0). In practice, we consider that few nodes/links
are removed from G(0).

The most standard model of dynamic network is the following: starting from an initial graph,
a sequence of ` insertions/deletions of edges/nodes is done. Each query has to be answered
taking into account the ` updates. The most naive solution consists in recomputing all
shortest paths after any update but it is generally quite costly. For instance, the update
time of the fastest dynamic algorithms for the all-pairs shortest path takes O(n2 ·polylog(n))
[DI04, Tho04]. It turns out that in the failure model, it is not always necessary to recompute
all shortest paths. Some solutions provide efficient data structures dedicated to the problem
of reporting shortest path or distance queries for ` = 1. More precisely, we can distinguish
data structures dedicated to exact solution [DTCR08, BK09] or constant approximation of
the solution [KB10, CLPR10], that is a constant factor of shortest path/distance after one
edge/node deletion. The challenge is to handle efficiently more than ` > 1 updates. To our
knowledge, the more general result is the `-sensitivity distance [CLPR10] oracle for which a
data structure of size O(` · s · n1+1/s log n) is able to approximate the distance between any
node pairs within a factor O(s · `) for undirected graphs in O(` logO(1) n) time. Note that the
data structures report distances / routing paths, given the knowledge of the ` nodes/edges
to avoid. They provide a similar result for weighted graphs and, only if ` ≤ 2, for compact
routing.

In these works, the implicit model is the one of a strong adversary model : the worst
sequence of updates. This is sometimes too pessimistic to explain and to model macroscopic
observations done on real dynamic networks. In the following, we will also consider the average
adversary model : any sequence of ` updates has the same probability to occur. Estimating
the number of distance changes in a dynamic network can be used to get a tight analysis of the
update time. In King’s algorithm analysis ([Kin99] - section 2.1 or [Ber09]), the update time to
maintain a shortest path tree turns to be O(D ·#number of distance changes from the root)

67

for connected bounded degree graphs whenever ` = 1. Our results allow to analyze the
average case.

6.1.3 Contributions and Methodology

Models. The network is modeled by a graph G = (V,E) of |V | = n nodes and |E| = m
edges. G is assumed to be connected and unweighted. The neighbourhood of vertex u is
noted Γ(u) and includes u itself. Given a target located at a node t, each node u ∈ V \ {t}
has an advice Adv(u) ∈ Γ(u) \ {u}. Node u is a truthteller if Adv(u) belongs to a shortest
path from u to t and otherwise u is a liar. The set of advice A can also define a directed
subgraph of G, noted GA. There is an arc (u, v) in GA if and only if v = Adv(u). Whenever
there exists no liar, GA is a shortest path spanning tree rooted at t.

We shall investigate two main parameters:

• the number of liars k = kG(A) for a set of advice A in graph G

• and the size of the set S of nodes whose distance to t has changed after one edge deletion.

For instance, in Figure 6.1, we have n − D lying nodes pointing toward a dead-end in the
rightmost drawing and D− 1 nodes whose distance to t has changed after one edge deletion.

Given a graph G without any liar and a target t, we aim at analysing the combined effect
of the choice of set of advice A and the set of ` edges. Note that A is not arbitrary since we
assume that G has no liar. After a deletion, it may happen that the resulting graph turns
to be disconnected. Nodes that do not belong to the connected component of node t become
liars. The set of advice is unchanged with a potential exception: if a deleted edge was used
as an advice, one extremity needs to draw another advice among its current neighbours. We
focus on two models:

• The adversary model
¯

: this model represents a worst-case analysis. An adversary has
the capacity of choosing A, the set of edges to remove and the potential new advice to
draw. Thus, k is maximal in this model.

• The average/random model
¯

: A is assumed to be chosen uniformly at random in the
universe of set of advice without liars for the given graph. The set of edges to delete
and the potential new advice are chosen uniformly at random.

G̃ is the resulting subgraph of G after ` deletions.

Results. The majority of our results focus on the average model since most of the results
in the adversary model are simpler. However, it is interesting to take the two models in order
to see a potential gap between them.

More precisely, our main result in the average model is the following: after ` deleted edges
are chosen uniformly at random, for any graph of n nodes, m edges and diameter D, we prove
that the expected number of liars, E(k), and the expected number of distance changes E(|S|)
is in O(`

2·D·n
m) in the resulting graph.

Tagle 6.1 shows our results after one deletion in both models. Note that the notation Θ(·)
simultaneously stands for a lower bound and an upper bound. The lower bound means that
there exists a graph of the family for which the number of liars is in Ω(·).

68

Note that an edge deletion does not necessarily imply the creation of a liar even if some
nodes have changed their distance to t (the complete graph is not the only example1). Con-
versely, some liars can appear without any change of distance within the graph.

Topology
¯

Adversary
¯

Average
¯

Graphs of diameter D Θ(n) Θ(Dnm)

Square Grid Θ(
√
n) Θ(1)

Erdös-Rényi model n−1
4 + 1 Θ(1

n)

Hypercube log n− 1 Θ(1
logn)

Table 6.1: Number of liars induced by a single edge deletion

For the family of graphs of diameter D, it is easy to reach the bound for the adversary
model : just take a path of D nodes and add a star of n − D leaves to one extremity. If t
is located to the other extremity, one edge deletion can disconnect the graph implying k and
|S| to be of linear size. Even if somebody would restrict edge deletion to connected graphs,
we can easily claim a lower bound of Ω(n−D) (see Figure 6.1).

G
truthtellers

liars

s1

s2
t

s1

s2

t

D − 1 nodes

sn−2D+1 sn−2D+1

GA

Figure 6.1: An example of an edge deletion that creates n−D liars

The remaining part of this section is structured as follows. We start by exhibiting a
relationship between the number of distance changes and the number of liars induced by an
arbitrary edge deletion (Lemma 13). Then, we prove that, in the average model, E(|S|) ≤ Dn

m .
Combining with Lemma 13, we show that E(k) < 2D (Theorem 17). This result is then
improved (Theorem 19) and generalized to ` edge deletions (Theorem 22) . More precisely,

we prove that the deletion of ` random edges creates at most O(`
2·n·D
m) liars. In the last

section, we give more precise bounds for specific topologies (see Table 6.1).

1In the complete graph, for every source node there is only one disconnecting edge. If this edge is removed
then every possible advice is correct (point toward a node at distance 1 of the destination)

69

6.1.4 General Results

We start by presenting some notations and some easy facts used in this work.

Notations.

G̃e G after deletion of edge e, G̃e = (V,E \ e), or simply G̃.
dist(u, v) distance in G from u to v.

dist
G̃

(u, v) distance in G̃ from u to v.
Γ(X) X’s neighbourhood in G, Γ(X) =

⋃
x∈X Γ(x)

Adv−1(X) set of nodes advising another node that belongs to X, i.e., Adv−1(X) = {u ∈
V | Adv(u) ∈ X}

F(e) indicates if edge e = {x, y} belongs to the set of advised edges GA.
More precisely, F(e) = 1 if Adv(x) = y ∨ Adv(y) = x and F(e) = 0 otherwise.

Many of our proofs are based on the notion of (s, t)-disconnecting edges:

Definition 11. An edge {x, y} is (s, t)-disconnecting if it belongs to all shortest paths from
s to t

The deletion of a (s, t)-disconnecting edge implies

the event Es,t : dist
G̃

(s, t) > dist(s, t) (6.1)

Otherwise, there exists a shortest path from s to t which does not contain {x, y}. The set of
disconnecting edges from s to t is denoted Cs,t. It follows that

Lemma 12. The distance from s to t is modified by a single edge deletion if and only if this
edge belongs to Cs,t.

6.1.4.1 Relationships between the number of liars and the number of distance
changes

Let us denote S = Set = {s ∈ V | deletion of e ⇒ Es,t} the set of nodes that have changed
their distance to t after the deletion of some edge e.

Lemma 13. In any graph containing k′ liars, the number of liars k after deletion of an edge
e always satisfies ∣∣Adv−1(S) \ S

∣∣ ≤ k ≤ ∣∣Adv−1(S)
∣∣+ F(e) + k′ (6.2)

Proof. In any graph with k′ liars, after one edge deletion, we study the impact for every node
(i.e., advice) on the resulting number of liars k. For every node u with v ∈ V,Adv(u) = v, we
have :

distG(u, t)− distG(v, t) ∈
{
{1} if u is a truthteller
{0,−1} if u is a liar

If u /∈ S and v ∈ S then

dist
G̃

(u, t)− dist
G̃

(v, t)

{
{0,−1} if u was a truthteller
{−1} if u was a liar

70

hence u becomes (or remains) a liar. The minimum number of liars added by the deletion is
then

k ≥
∣∣Adv−1(S) \ S

∣∣
Let us now consider the upper bound. First assume that the removed edge e 6= {u, v}. If
v /∈ S then u remains a liar if it was :

• u ∈ S and v /∈ S then :

dist
G̃

(u, t)− dist
G̃

(v, t) ∈
{

[2,∞] (impossible2) if u was a truthteller
{0, 1} (could be a liar) if u was a liar

• if u /∈ S and v /∈ S then dist
G̃

(u, t)− dist
G̃

(v, t) = distG(u, t)− distG(v, t).

If u ∈ S and v ∈ S, then dist
G̃

(u, t) − dist
G̃

(v, t) ∈ {1, 0,−1}, so u could be a liar or not
independently of its previous state. So, the maximum number of liars added by one edge
deletion is

k ≤
∣∣Adv−1(S)

∣∣
If Adv−1(S) was not containing any liar then the resulting number of liars after deletion is

k ≤
∣∣Adv−1(S)

∣∣+ k′

Finally, if the removed edge e = {u, v}, i.e., F(e) = 1, then u has to change its advice and
become a liar, ∣∣Adv−1(S) \ S

∣∣ ≤ k ≤ ∣∣Adv−1(S)
∣∣+ F(e) + k′

6.1.4.2 Upper bounds for ` = 1 deleted edge

According to our model, and as we have already seen in Lemma 13, liars apparition is due to
distance changes and advice deletion.

Number of distance changes in the average model

Lemma 14. In any m-edge graph G = (V,E), if an edge, chosen uniformly at random, is
removed from E then the number |S| of distance changes satisfies

∀t ∈ V : E(|S|) =
1

m

∑
s∈V \{t}

|Cs,t|. (6.3)

Proof. From Lemma 12, if edge {x, y} is chosen uniformly at random in E then ∀s ∈ V :

P(Es,t) =
|Cs,t|
m

Let Xs,t be a random variable defined by Xs,t = 1 if Es,t, and Xs,t = 0 otherwise. We get

E(|S|) = E(
∑

s∈V \{t}

Xs,t) =
∑

s∈V \{t}

E(Xs,t) =
∑

s∈V \{t}

P(Es,t) =
1

m

∑
s∈V \{t}

|Cs,t|

2impossible because u and v are neighbours

71

Corollary 15. For any n-node, m-edge graph of diameter D, after one random edge deletion,
we have in the average model

E(|S|) ≤ D(n− 1)

m
. (6.4)

Proof. In a graph of diameter D, by definition, all shortest paths lengths are at most D. So,
∀s ∈ V \ {t}, there is at most D (s, t)-disconnecting edges in E.

Number of liars in the average model Applying Lemma 13, we get

Corollary 16. For any n-node, m-edge graph of diameter D and maximal degree ∆ without
liar, after one random edge deletion, we have E(k) ≤ (D∆+1)(n−1)

m .

This turns to be optimal up to a constant factor for bounded degree graphs (see Theo-
rem 20). However, this is not the case whenever the graph has nodes of unbounded degree.

Theorem 17. For graphs of diameter D without liar, after random one edge deletion , we
have

E(k) ≤ 2D (6.5)

Proof. According to Lemma 13, for any edge e, if |See,t| nodes change their distance to t,

then the number of added liars after deletion of edge e, is at most |Adv−1(S)| + F(e) ≤∑
s∈S |Adv−1(s)|+ F(e).

Take the possible m edge deletions trials and consider the m corresponding sets Si for
i going from 1 to m. In a given trial in which event Es,t occurs, each node s adds at most
|Adv−1(s)| ≤ deg(s)−1 liars (excluding itself) since G contains initially no liar and at least one
neighbour of s is closer to t than s. Since ∀s ∈ V \{t}, event Es,t can occur in at most |Cs,t| ≤ D
instances among the m ones. It follows that for given s,

∑
i:s∈Si |Adv

−1(s)| ≤ D(deg(s)− 1).

Thus, for any i ∈ [1,m], we have k
G̃i
≤ |Adv−1(Si)| + F(e) ≤ ∑s∈Si deg(s). Summing

over all values of i, we get

m∑
i=1

k
G̃i
≤

m∑
i=1

∑
s∈Si

deg(s) =
∑

s∈V \{t}

∑
i:s∈Si

deg(s) ≤
∑

s∈V \{t}

D · deg(s) = 2m ·D

It turns out that E(k
G̃

) ≤ 2mD
m = 2D.

A more precise bound can be found by reasoning on a hierarchical cutaway of G from
distance 0 to D with respect to target t. The following part shows a detailed proof based on
this principle to get a tighter upper bound (≤ D · n/m).

Nodes in danger Let Tu,t be the set of nodes that have at least one shortest path to t
through u ∈ V (see Figure 6.2). Let Li = {u ∈ V | dist(u, t) = i} be the set of nodes at
distance i from t. Every node v ∈ Tu,t with u ∈ Li is in danger3 with respect to level i if and
only if only one shortest path from u to t exists. In Figure 6.2, all nodes from sets Tu2,t and
Tu3,t are in danger.

3can potentially turns into a liar

72

Distances and shortest paths Let Ci = {{x, y} | x ∈ Li, y ∈ Li−1 ∧ Γ(x) ∩ Li−1 = {y}}
be the set of disconnecting edges between Li and Li−1. Let Bt(i − 1) be the set of nodes at
distance at most i−1 from t. If G is not connected then the set of edges that does not belong
to the connected component of t is C∞.

e4

t

Li

Li−1

Se3t Se4t

e1 e2 e3

Figure 6.2: G levels and nodes in danger (grey filled areas).

Lemma 18. For any graph, without any assumption on the number of liars, if the edge {x, y}
is deleted and i ≤ D then

E(k | {x, y} ∈ Ci) ≤
n− |Bt(i− 1)|

|Ci|
(6.6)

and E(k | {x, y} ∈ C∞) = 0.

Proof. The number of disconnecting edges between Li and Li−1 is

|Ci| = |{x ∈ Li, |Γ(u) ∩ Li−1| = 1}|

The average number of liars added by a deletion between levels Li and Li−1 is at most4

E(k | {x, y} ∈ Ci) ≤
|⋃x∈Li

Tx,t|
|Ci|

≤ n−Bt(i− 1)

|Ci|

Theorem 19. For D ≥ 2, the numbers of liars added by deleting an edge chosen uniformly
at random in E is

E(k) ≤ D(n− D−1
2)

m
≤ D(n− 1)

m
(6.7)

For D = 1, E(k) = k = 0. This result holds for arbitrary graphs, unnecessarily connected.

4some already lying nodes could belong to
⋃

x∈Li
Tx,t, these liars will be counted twice

73

Proof. The expected average number of liars is the sum of the expected number of liars
induced by deletions between every levels L1, L2, . . . , LD

E(k) =

∞∑
i=1

(E(k | {x, y} ∈ Ci)× P({x, y} ∈ Ci)) =

D∑
i=1

(E(k | {x, y} ∈ Ci)× P({x, y} ∈ Ci))

The probability of deleting an edge at level i is

P({x, y} ∈ Ci) =
|Ci|
m

Thus,

E(k) ≤
D∑
i=1

n− |Bt(i− 1)|
|Ci|

× |Ci|
m
≤ Dn

m
− 1

m

D∑
i=1

|Bt(i− 1)|

∀i ∈ D, |Bt(i− 1)| ≥ i− 1, hence, the average number of liars added is

E(k) ≤ Dn

m
− D(D − 1)

2m
≤ D(n− D−1

2)

m

6.1.4.3 Lower bound

Theorem 20. For any integers n,m,D such that m ≥ n ≥ 2D ≥ 20,

• there exists a graph of n+O(1) nodes, Θ(m) edges and diameter D for which the expected

number of liars after a random edge deletion is greater than (D−8)n
32m .

• there exists a graph of Θ(n) nodes, Θ(m) edges and diameter D for which the expected
number of distance changes after a random edge deletion is Ω(Dnm).

Proof. Let us consider a graph H (see H1 in Figure 6.3) built in the following way: take a
complete graph of size r and a stable of size r′. Add two extra nodes u, v and link them to
the r + r′ nodes. This graph has diameter 2, r + r′ + 2 nodes and r(r−1)

2 + 2(r + r′) edges.
Take now four copies of H named H1, H2, H3 and H4. For i going from 1 to 4, link ui to
v(i mod 4)+1 by a path of D/2− 4 edges. The resulting graph G has diameter D. We set up

r =

⌈√
m−D

2

⌉
and r′ =

⌈
n−D

4 − r
⌉
. It follows that G has n+O(1) nodes. The total number

of edges is Θ(n). This graph is presented in Figure 6.3.
Without loss of generality, assume now that target t is either between u1 and v2 or belongs

to H1. In the first case, it follows that every node of H3 (excluding v3 and potentially u3)
has v3 as advice toward t. The probability that the deleted random edge belongs to the
path from u2 to v3 is p = D−8

2m . The expected number of liars/distance changes is at least

p(r + r′) ≥ (D−8)n
16m .

For the second case, every node of H3 excluding u3 or v3 can point arbitrarily to u3 and
v3. Take the node given by the majority. If v3 (resp. u3) is chosen, then p corresponds to the
probability that the deleted random edge belongs to the path from u2 to v3 (resp. v3 to u4).

The expected number of liars turns to be greater than p(r+r
′

2) ≥ (D−8)n
32m .

74

H1

v4

u4

u1

D/2− 4
u2

v3

v2

v1

u3

H2

H3

H4

Figure 6.3: Sample graph in which the lower bound is reached.

In this last case, in order to get a similar lower bound for the expected number of distance
changes, we just have to slightly modify each Hi copy. We just substitute each node of
the stable set by an edge between two nodes. Each copy turns to have r + 2r′ nodes and
r(r−1)

2 + 2r + 3r′ edges. We only have to consider the distance change from t and r′ nodes of
this new set. To have r′ = Θ(n), we might have to consider a graph G with Θ(n) nodes (at
most 2n is enough).

6.1.5 Number of liars after ` deletions

Lemma 21. After ` edge deletions in any graph G of diameter D, every connected component
of the resulting graph have diameter at most D(`+ 1).

Proof. As claimed in [SBvL87], given `, the maximum diameter of the graph obtained by
deleting ` edges from a graph G of diameter D is D(`+ 1), assuming that the resulting graph
is still connected. Now, if a single deletion disconnect in two parts a connected component
of diameter D, both resulting components will have diameter at most D. So, after ` + 1
deletions, any connected component has at most diameter D(`+ 1).

Theorem 22. Let G be a n-nodes, m-edges graph of diameter D without any liars. For any
` ≤ m, the deletion of ` edges chosen uniformly at random in G creates an expected number
of liars of O(min(`

2·D·n
m , n)).

Proof. As stated in Theorem 19, deleting one edge into a graph of diameter D without liars
creates an average of at most D(n − 1)/m liars. From Lemma 21, the deletion of ` edges

75

creates

E(k) ≤
∑̀
i=1

Di(n− 1)

m− (i− 1)
≤
∑̀
i=1

Di(n− 1)

m− (`− 1)
≤ D(n− 1)

m− (`− 1)

∑̀
i=1

i

or

E(k) ≤ D(n− 1)

m− (`− 1)
× `(`− 1)

2

Since the number of liars could not exceed the number of nodes, the expected number of liars
is O(min(`

2·D·n
m , n)).

6.1.6 Specific Topologies

In this section, we show how tight the bounds are for some specific topologies. We just
briefly describe the sketch of proofs. The study gives a justification for the introduction of
the adversary model. In order to get tight bounds in the average model, we exhibit the worst
configurations of advice and evaluate their probabilities in the average model.

Theorem 23. In the adversary model,

• k = Θ(n) for Erdös-Rényi’s random graphs with parameter p = 1/2;

• k = Θ(
√
n) for square grids;

• k = log2 n− 1 for hypercube.

In the average model,

• k = Θ(1/n) for Erdös-Rényi’s random graphs with parameter p = 1/2;

• k = Θ(1) for square grids;

• k = Θ(1/ log n) for hypercube.

Here is some clue about the behaviour of the different graph families in the adversary
model :

• Erdös-Rényi’s random graphs: each pair of nodes is connected with probability p. For
p = 1/2, almost all graphs have diameter 2. If the deleted edge is between L1 and L2

then only 1 node can turn into a liar. However, a deletion between L0 = {t} and L1 can
create Θ(n) liars since on average, there are (n−1)/4 neighbours in L2 of any individual
node of L1.

• grids: only nodes that share a coordinate (same row or column) with t have (s, t)-
disconnecting edges and thus can change their distance to t. The number of distance
changes is then |S| = Θ(

√
n) for square grids. An adversary can force all neighbours of

S to point to S. From Lemma 13, we get that k = Θ(
√
n).

• hypercube: only target’s neighbours can increase their distance to t after one edge
deletion, so |S| ≤ 1 and only k ≤ log2 n− 1 nodes of level L2 can become liars.

In order to get tight bounds for the average model, we simulate the m possible edge
deletions and average k:

76

• Erdös-Rényi’s random graphs: only edges leading to advice deletion can create liars.
Condition on this event, on average, only Θ(1) liars appear. However, this event occurs
with probability Θ(1/n). In the other cases, no liar are obtained.

• grids: with probability 1 − Θ(1/
√
n), there is no (s, t)-disconnecting edge between a

random node and t. It follows that, with probability 1−Θ(1/
√
n), we have at most one

new liar (if the deleted edge contains an advice). With probability Θ(1/
√
n), we have

Θ(
√
n) liars.

• hypercube: only edges leading to an advice deletion or being neighbours of t can create
liars. However neighbours of t can not become liars. For nodes of levels Li≥2, there is
no distance change after one edge deletion. Since E(F(e)) = n−1

n log2 n
= Θ(1/ log n), we

have E(k) = O(1/ log n). To get a lower bound of Ω(1/ log n), we just have to consider
the n/2 closest nodes from t. The probability that the deleted edge is linked to one of
these nodes is at least 1/2 and condition on this event, with probability at least 1

2 log2 n
,

a new advice is required and create a liar.

6.1.7 Conclusion

This work shows the importance of the diameter for the number of distance changes and
liars appearances in a dynamic graph model. Of course, it would be interesting to consider
edge/node addition. Contrary to edge deletion, an edge addition can drastically change the
distance within the graph. Even for grids, the number of distance changes would be Ω(n)
after a random edge addition.

77

6.2 Greedy routing and embeddings

In this section, we describe recent theoretical and experimental work on greedy routing and
embeddings. Parts of these results have been presented in [CK12] and [Kal12].

6.2.1 Objectives and Motivation

Greedy routing utilizes a particular assignment of node addresses so that routing of packets
can be performed using only the address of the current node of a traveling packet, the addresses
of its neighbors, and the address of the destination node. The node addresses are usually
defined using a greedy embedding. Formally, a greedy embedding of a graph G = (V,E)
into a host metric space (X,dist) is a function f : V → X so that the following property
holds: for any two nodes u, t of G, there exists a node v in the neighborhood Γ(u) of u in
G so that dist(f(v), f(t)) < dist(f(u), f(t)). A typical example of a host metric space is the
d-dimensional Euclidean space Rd equipped with the Euclidean distance `2. Given a greedy
embedding f , the coordinates of point f(u) can be used as the address of node u. Then, when
node u has to take a decision about the next hop for a packet with destination address f(t),
it has to select among its neighbors a node with address f(v) such that dist(f(v), f(t)) <
dist(f(u), f(t)). It is clear that, in this way, the packet is guaranteed to reach its destination
within a finite number of steps.

Greedy embeddings were first defined by Papadimitriou and Ratajczak [PR05]. They
proved that any 3-connected planar graph can be greedily embedded into the 3-dimensional
Euclidean space using a non-Euclidean distance function. They also conjectured that every
such graph can be greedily embedded in the Euclidean space with Euclidean distance; this
conjecture was later proved by Moitra and Leighton [LM10]. Kleinberg [Kle07] showed that
any tree can be greedily embedded in the 2-dimensional hyperbolic space. This immediately
yields a greedy embedding for any graph (by just embedding a spanning tree). Epstein and
Woodrich [EG11] observed that the coordinates of the nodes in Kleinberg’s embedding require
too much space and modified it so that each coordinate is represented with O(log n) bits
(where n is the size of the graph). Greedy embeddings into O(log n)-dimensional Euclidean
spaces (with `∞ distance) are also known [Kle07] and exploit an isometric embedding of trees
into Euclidean spaces due to Linial et al. [LLR94].

Note that the approach of computing the greedy embedding of a spanning tree ignores
several links of the network. Hence, it may be the case that even though a packet could
potentially reach its destination with a few hops using a shortest path, it is greedily routed
through a path that has to travel across a constant fraction of the nodes of the whole network.
The measure that can quantify this inefficiency is the stretch of a greedy routing algorithm,
i.e., the ratio between the length of the path used by the algorithm over the length of the
corresponding shortest path.

Let us proceed with a formal definition of the stretch of a greedy embedding.

Definition 24. Let f be a greedy embedding of a graph G into a metric space (X,dist). A
path 〈u0, u1, ..., ut〉 is called a greedy path if ui+1 ∈ argminv∈Γ(ui){dist(f(v), f(ut))}, where
Γ(ui) denotes the neighborhood of ui in G. We say that f has stretch ρ for graph G if, for
every pair of nodes u, v of G, the length of every greedy path from u to v is at most ρ times
the length of the shortest path from u to v in G. The stretch of f is simply the maximum
stretch over all graphs.

78

We use the terms no-stretch and optimal stretch to refer to embeddings with stretch equal
to 1.

Maymounkov [May06] considers the question of whether no-stretch greedy embeddings
into low-dimensional spaces exist. Among other results, he presents a lower bound of Ω(log n)
on the dimension of the host hyperbolic space for greedy embeddings with optimal stretch.
Furthermore, he conjectures that any graph can be embedded into Euclidean or hyperbolic
spaces with a polylogarithmic number of dimensions with no stretch. We remark that a
proof of this conjecture would probably justify greedy routing as a compelling alternative to
compact routing [PU89].

Flury et al. [FPW09] present a greedy embedding of any n-node graph into an O(log2 n)-
dimensional Euclidean space that has stretch O(log n). Each coordinate in their embedding
uses O(log n) bits. They used the min-maxc distance function which views the d-dimensional
Euclidean space as composed by d/c c-dimensional spaces and, for a pair of points x, y,
takes the `∞ norm of the projections of x and y into those spaces, and finally takes the
minimum of those `∞ distances as the min-maxc distance between them. Their embedding
uses an algorithm of Awerbuch and Peleg [AP90] to compute a tree cover of the graph and
the algorithm of Linial et al. [LLR94] to embed each tree in the cover isometrically in a
low-dimensional Euclidean space.

6.2.2 Theoretical investigations

In our recent paper [CK12], we present lower bounds on the number of dimensions required
for low-stretch greedy embeddings into Euclidean spaces. We first disprove Maymounkov’s
conjecture by showing that greedy embeddings into (Rd, `2) have optimal stretch only if the
number of dimensions d is linear in n. The proof uses an extension of the hard crossroads
construction in [May06] and exploits properties of random sign pattern matrices. Namely, we
make use of a linear lower bound due to Alon et al. [AFR85] on the minimum rank of random
N × N sign pattern matrices. We also obtain an Ω(

√
n) lower bound through an explicit

construction that uses Hadamard matrices.

Furthermore, we present trade-offs between the stretch of greedy embeddings into Rd
and the number of dimensions d for different distance functions. Namely, for every integer
parameter k ≥ 3, we show that greedy embeddings into Rd with `p distance have stretch

smaller than k+1
3 only if d ∈ O

(
n1/k

log p

)
. This implies that the best stretch we can expect with

a polylogarithmic number of dimensions is Ω
(

logn
log logn

)
. Our arguments use a result of Erdös

and Sachs [ES63] on the density of graphs of high girth and a result of Warren [War68] that
upper-bounds the number of different sign patterns of a set of polynomials. In particular,
starting from a dense graph with high girth, we construct a family of graphs and show that,
if d is not sufficiently large, any embedding f fails to achieve low stretch for some graph in
this family.

We extend our lower bound arguments to greedy embeddings into Rd that use the min-
maxc distance function that has been used in [FPW09]. Note that the lower bound does not
depend on any other characteristic of the embedding of [FPW09] and applies to every embed-
ding in (Rd,min-maxc). We show that the best stretch we can hope for with d ∈ polylog(n) is

Ω
(

logn
log logn

)
. This lower bound indicates that the embedding of Flury et al. [FPW09] is almost

optimal among all greedy embeddings in (Rd,min-maxc). Furthermore, our proof applies to

79

a larger class of distance functions including `∞.

6.2.3 Experimental results

Our recent experimental work on real Internet snapshots [Kal12] comes in sharp contrast with
the pessimistic worst-case lower bounds of the previous section. Our work makes extensive
use of isometric embeddings of trees into Euclidean spaces, an algorithmic idea that has also
been used in [Kle07] and [FPW09]. An isometric embedding of a tree into (Rd, `∞) is a
mapping of the nodes of the tree into points of Rd such that the `∞-distance of any two
points is equal with the distance of the corresponding nodes in the tree. Such an embedding
can be computed using an algorithm due to Linial et al. [LLR94]. In particular, the algorithm
of [LLR94] guarantees that d ∈ O(log n), where n is the number of nodes in the input tree.
Furthermore, the points computed have integer coordinates. So, our basic routing algorithm
is a greedy one using the node addressing computed by the isometric embedding of a spanning
tree of the network.

We have tested the basic routing algorithm using data provided by caida.org. After
processing the data, we have created ten snapshots of the Internet AS-graph that cover the
period between September 2007 and January 2012. The size of these snapshots is depicted
in the following table and is indicative (but not precise) information for the evolution of the
Internet during that period.

snapshot date #nodes #edges av. degree

13/9/2007 12, 190 25, 822 4.24

2/1/2008 14, 038 28, 714 3.38

2/7/2008 14, 128 29, 218 4.14

3/1/2009 15, 205 31, 328 4.12

2/7/2009 15, 427 31, 706 4.12

1/1/2010 16, 695 33, 315 4.00

1/7/2010 17, 143 35, 765 4.18

2/1/2011 18, 427 39, 462 4.28

1/7/2011 19, 281 41, 131 4.26

2/1/2012 20, 098 42, 338 4.22

It is important to briefly comment on the structure of these graphs since the good per-
formance of our routing algorithms is mainly due to the particular structure of such graphs.
Each snapshot consists of a small set of high-degree nodes that are almost fully connected.
The rest of the network mainly consists of tree-like structures that are rooted on core nodes
while there are additional few edges between different tree-like structures. In our implementa-
tions, we have used spanning trees that are rooted in the (core) node of highest degree. Such
a spanning tree contains approximately half of the network edges and naturally excludes most
of the edges in the core. However, our algorithm extensively uses edges that are not included
in the spanning tree and result in efficient routing.

In our experiments, we have mainly measured the stretch of greedy paths and the conges-
tion in the network links assuming uniform (all-to-all) traffic. As it can be seen in Figure 6.4,
the average stretch (over all source-destination pairs of nodes) is almost optimal; it is sharply
concentrated between 1.04 and 1.05 for all instances. This implies that a limited expansion
(i.e., doubling the AS-graph size) has almost no effect to average stretch. In contrast, the

80

(a) Average stretch (b) Maximum congestion

Figure 6.4: Average stretch (left) and maximum congestion (right) resulted by the application
of the basic routing algorithm.

results related to congestion are suboptimal. Figure 6.4 indicates that maximum congestion
(i.e., the maximum number of greedy paths that cross some link) can be up to 4% of the
total (all-to-all) network traffic. Such a single-digit percentage is to be expected due to the
network structure but, at first glance, there is room for improvements.

So, we have also considered variations of the basic routing algorithm in order to balance the
traffic among the links in the core (and the incoming/outgoing ones). We have implemented
three such alternative routing algorithms. Each of them uses several spanning trees and their
embeddings into (Rd, `∞).

• random ST: Greedy routing is performed using the isometric embedding of a randomly
selected spanning tree.

• shortest ST: Greedy routing is performed using the embedding of that spanning tree
that minimizes the `∞-distance between the source and the destination. Ties are broken
randomly.

• step-by-step ST: Greedy routing is performed using the embedding of different spanning
trees in the following way: for each intermediate node, the next hop is selected using the
embedding of that spanning tree that minimizes the `∞-distance from the destination
node. Again, ties are broken randomly.

The experiments with the variations of the basic routing algorithm use four different
spanning trees (produced using random breadth-first-search). As Figure 6.5 indicates, a
naive use of randomness is not beneficial. The average stretch of random ST is considerably
higher (between 1.07 and 1.08) than that of the basic routing algorithm and of the other two
variations. Shortest ST outperforms both step-by-step ST and the basic routing algorithm,
achieving an average stretch around 1.03. A slightly different picture holds for congestion;
the three variations improve the basic routing algorithm rather significantly. Again, random
ST is inferior to the other two variations; among shortest ST and step-by-step ST, the latter
leads to better congestion for most (8 out of 10) instances.

81

(a) Average stretch (b) Maximum congestion

Figure 6.5: Average stretch (left) and maximum congestion (right) resulted by the application
of the three variations of the basic routing algorithm.

In addition, we have considered dynamic scenarios, where a part of the network fails,
with the objective to assess the performance of our routing algorithms in these cases. In the
following, we present results for the case when a large number of links (in particular, 10% of
the links in the network) fail. We have performed additional experiments for node failures;
the corresponding results are qualitatively similar and have been omitted from this report.

(a) Percentage of route failures (b) Variations

Figure 6.6: Percentage of route failures (over all source-destination node pairs) for the basic
routing algorithm (left) and its variations (right) when 10% of the network edges fail.

We remark that, in the case of faults, routing some source-destination pairs will be im-
possible. This will obviously be the case when the network loses connectivity but it can
also arise due to the fact that the embedding information has been computed on a graph
that is different from the one that survived after faults. Figure 6.6 (left side) represents the

82

percentage of source-destination node pairs which the basic routing algorithm fails to route.
This is between 14% and 16% of all source-destination node pairs, a rather high value which
one would expect to improve using the three variations of the basic routing algorithm. In-
terestingly, only step-by-step ST yields such an improvement (to approximately 10% of all
source-destination node pairs).

Next, we have measured the average stretch of the successful greedy paths; for the basic
routing algorithm, this turns out to be almost equal to the original one (i.e., around 1.05).
Similarly to the case without faults, shortest ST improves average stretch (see Figure6.7).

(a) Average stretch for the basic routing algorithm (b) Variations

Figure 6.7: Average stretch for the basic routing algorithm (left) and its variations (right)
when 10% of the network edges fail.

The congestion does not deteriorate significantly due to faults (this is probably due to the
uniformity in failures). For the basic routing algorithm, the corresponding values are between
3.5% and 4.5%. The three variations yield even better congestion values; step-by-step ST
outperforms any other algorithm with respect to congestion in all instances.

In conclusion, the basic routing algorithm achieves almost optimal performance with re-
spect to the (average) stretch. Its main drawback is the high congestion which is probably
due to its resemblance to routing in a spanning tree. In order to mitigate this effect, we
have considered three variations that rely on many different spanning trees. Concerning the
dynamic scenarios considered, the main outcome is that our two metrics are rather unaffected
by dynamicity (edge/node faults) albeit the unavoidable fact that there is a non-negligible
probability of routing failure. The step-by-step ST algorithm performs satisfactorily with
respect to this metric.

Besides the metrics considered above, the major advantage of our approach is the efficiency
in computing the embedding and is an indication that embeddings into Euclidean spaces
may be more preferable than embeddings into hyperbolic ones [BPK10, EG11, Kle07]. For
example, as a comparison to the work of Boguna et al. [BPK10] where a greedy embedding of
a 24K-node Internet snapshot into the hyperbolic plane uses a sophisticated algorithm that
runs for 24 hours, our technique required only 22 seconds.

83

(a) Maximum congestion (b) Variations

Figure 6.8: Maximum congestion (as a percentage of the total successful source-destination
pairs) for the basic routing algorithm (left) and its variations (right) when 10% of the network
edges fail.

84

Chapter 7

Conclusion

In this deliverable, we have reported on activities performed in the context of Task T3.1 during
the second year of EULER. Our work is a direct continuation of D3.1 where a rich set of graph
properties (characteristic of the Internet topology and/or useful for routing) and models for
Internet-like topologies were identified. We have proposed efficient algorithms to test several
of these properties, focusing on those properties whose computation is challenging in large-
scale graphs (hyperbolicity, chordality). The proposed algorithms have been implemented
through our simulator and allowed us to obtain new measurements by scaling the large size
of considered networks. During this period, we also have proposed a new graph model of
the Internet topology based on bipartite relationship between routers and Internet switches.
This model is really promising since the measurements we performed on it show that it well
fits many properties of Internet-like topology. In particular, it satisfies both the power-low
distribution and the high clustering coefficient of the Internet.

An important part of this deliverable is dedicated to the study of the short and long
term evolution of the Internet. We have performed an extensive (and very time-consuming)
campaign of simulations in order to analyze the behaviors of the properties identified in
D3.1 under dynamic conditions both in the Internet topology (CAIDA maps) and in graph
theoretical models. These measurements pointed out two main facts. First, Internet-like
topologies (both CAIDA maps and graph theoretical models) are very robust to random link
failures (even when up to 5-10% of links are removed). This highlights the fact that, in such
topologies, there are many shortest paths between nodes. This important property should
be taken into account in the design of routing scheme in Tasks T3.3 and T4.3 since it means
that many paths can be used providing a good stretch. Moreover, topological changes should
have a low impact on the long term routing schemes performances. Second, the behavior of
theoretical graph models follows the one of “real” Internet topology (CAIDA maps) under
the same kind of dynamic. This is a new hint for showing the relevance of these models.

For studying more “important” failures such as the removal of a set of correlated links
(e.g., shared risk link groups or set of links modeling an attack), we proposed theoretical study
of the worse case behaviour of some properties when a finite set of links is removed. More
precisely, we have studied the impact of edge deletions on the number of modified forwarding
routes entries and established theoretical bounds. We have also evaluated the impact of edge
deletions on the stretch and the congestion of greedy routing. In this worse case dynamic
model, we have observed that local properties are subject to large variations. In particular, few
edge deletions could force to update many forwarding routes in the router nodes. Therefore,

85

topological changes have a strong impact on the short term routing scheme performances.
More precisely, this enforce the need for routing schemes able to quickly compute new routes
to restore data flows and connectivity, and then converge to optimal state. The analysis of
the impact of edge deletions on the short term behavior of routing schemes requires specific
simulations and experimentations as planed in Tasks T3.3 and T4.3.

All the results obtained in Task 3.1 (and documented in D3.1 and D3.3) confirms that the
design of novel routing algorithms must be guided by structural properties of Internet-like
graphs. In particular, it suggests that the routing schemes to be designed must intrinsically
take into account the existence of numerous shortest paths to be more robust and to avoid
frequent updates. On the theoretical point of view, our study of properties and models both
in static and dynamic conditions lead to many open problems. For instance, it would be
interesting to provide a theoretical study of the evolution of properties under edge removal
such as the one we provide on the evolution of the distances. To conclude, the development of
new graph models for the Internet and the study (both theoretical analysis and measurements)
of structural properties will have important benefits in the design and the evaluation of routing
scheme in Tasks T3.3 and T4.3. In particular, the simulator developed during this task will
clearly be useful.

86

Bibliography

[AB00] R. Albert and A. L. Barabàsi. Topology of evolving networks: Local events
and universality. Physical Review Letters, 85(24):5234–5237, December 2000.

[ACL00] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs.
In Proc. ACM Symposium on Theory of Computing (STOC), May 2000.

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM J. Alg. Discrete Methods, 8:277–284, 1987.

[AFR85] N. Alon, P. Frankl, and V. Rodl. Geometrical realization of set systems and
probabilistic communication complexity. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science, SFCS ’85, pages 277–280,
Washington, DC, USA, 1985. IEEE Computer Society.

[ALWD05] D. Alderson, L. Li, W. Willinger, and J. C. Doyle. Understanding Internet
topology: Principles, models and validation. IEEE/ACM Transactions on Net-
working, 13(6):1205–1218, December 2005.

[AP90] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, SFCS ’90, pages 503–513
vol.2, Washington, DC, USA, 1990. IEEE Computer Society.

[ATML12] O. Allali, L. Tabourier, C. Magnien, and M. Latapy. Internal links and pairs
as a new tool for the analysis of bipartite complex networks. Social Network
Analysis and Mining, 2012. to appear.

[BA99] A. L. Barabási and R. Albert. Emergence of scaling in random networks. In
Science, volume 286, pages 509–512, October 1999.

[BC03] H-J. Bandelt and V. Chepoi. 1-hyperbolic graphs. SIAM J. Discrete Math.,
16(2):323–334, 2003.

[Ber09] A. Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths
with fast query and close to linear update time. In FOCS, pages 693–702, 2009.

[BK96] H. L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

[BK09] A. Bernstein and D. R. Karger. A nearly optimal oracle for avoiding failed
vertices and edges. In STOC, pages 101–110, 2009.

87

[BKM01] G. Brinkmann, J. H. Koolen, and V. Moulton. On the hyperbolicity of chordal
graphs. Annals of Combinatorics, 2001.

[BM93] H. L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of
cographs. SIAM J. Discrete Math., 6(2):181–188, 1993.

[Bod93] H. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In STOC, pages 226–234, 1993.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998.

[BPK10] M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the internet with
hyperbolic mapping. Nature Communications, 1(art. 62), 2010.

[BT97] H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small chordal-
ity. Disc. Ap. Maths, 79(1-3):45–61, 1997.

[BT02] T. Bu and D. Towsley. On distinguishing between internet power law topology
generators. In 21th Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), volume 2 of Lecture Notes in Computer
Science, pages 37–48. IEEE, 2002.

[CAI] The cooperative association for internet data analysis (caida). autonomous sys-
tems maps. http://as-rank.caida.org/data/.

[CCG+02] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Will-
inger. The origin of power laws in internet topologies revisited. In 21th Annual
Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), volume 2, pages 608–617. IEEE, 2002.

[CDE+08] V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Notes on
diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces
and graphs. Electronic Notes in Discrete Mathematics, 31:231–234, 2008.

[CF07] Y. Chen and J. Flum. On parameterized path and chordless path problems. In
CCC, pages 250–263, 2007.

[CFHM12] W. Chen, W. Fang, G. Hu, and M. W. Mahoney. On the hyperbolicity of
small-world and tree-like random graphs. Technical Report arXiv:1201.1717,
September 2012.

[CG84] F. R. K. Chung and M. R. Garey. Diameter bounds for altered graphs. Journal
of Graph Theory, 8(4):511–534, 1984.

[CK12] I. Caragiannis and C. Kalaitzis. Space lower bounds for low-stretch greedy
embeddings. In G. Even and M. M. Halldórsson, editors, SIROCCO, volume
7355 of Lecture Notes in Computer Science, pages 1–12. Springer, 2012.

[CLPR10] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. f-sensitivity distance oracles
and routing schemes. In Proceedings of the 18th annual European conference on
Algorithms: Part I, ESA’10, pages 84–96, Berlin, Heidelberg, 2010. Springer-
Verlag.

88

http://as-rank.caida.org/data/

[CM93] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. TCS, 109:49–82, 1993.

[Col87] Charles J. Colbourn. The Combinatorics of Network Reliability. Oxford Uni-
versity Press, Inc., New York, NY, USA, 1987.

[CRA] CRAN: The Comprehensive R Archive Network project. http://cran.

r-project.org/.

[CSTW09] W. Chen, C. Sommer, S-H. Teng, and Y. Wang. Compact routing in power-law
graphs. In 23rd Int. Symp. on Distributed Computing (DISC), volume 5805 of
LNCS, pages 379–391. Springer, 2009.

[Dee89] S. Deering. Host extensions for IP multicasting. RFC 1112, Internet Engineer-
ing Task Force, August 1989.

[DF07] B. Donnet and T. Friedman. Internet topology discovery: a survey. IEEE
Communications Surveys and Tutorials, 9(4):2–15, December 2007.

[DG07] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diam-
eter. Discrete Mathematics, 307(16):2008–2029, 2007.

[DI04] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004.

[dis] distory: Distance between phylogenetic histories. http://cran.r-project.

org/web/packages/distory/index.html.

[DKK07] M. Dynia, M. Korzeniowski, and J. Kutylowski. Competitive maintenance of
minimum spanning trees in dynamic graphs. In J. van Leeuwen, G. G. Italiano,
W. van der Hoek, C. Meinel, H. Sack, and F. Plasil, editors, SOFSEM (1),
volume 4362 of Lecture Notes in Computer Science, pages 260–271, Harrachov,
Czech Republic, January 2007. Springer.

[dMSV11] F. de Montgolfier, M. Soto, and L. Viennot. Treewidth and hyperbolicity of
the internet. In 10th IEEE International Symposium on Networking Computing
and Applications (NCA), pages 25–32. IEEE Comp. Soc., 2011.

[DTCR08] C. Demetrescu, M. Thorup, R. Alam Chowdhury, and V. Ramachandran. Or-
acles for distances avoiding a failed node or link. SIAM J. Comput., 37:1299–
1318, January 2008.

[EG11] D. Eppstein and M.T. Goodrich. Succinct greedy geometric routing using hy-
perbolic geometry. IEEE Transactions on Computers, 60(11):1571 –1580, nov.
2011.

[ER59] P. Erdos and A. Renyi. On random graphs. Pub. Math. Debrecen, 6:290–297,
1959.

[ES63] P. Erdös and H. Sachs. Reguläre graphen gegebener taillenweite mit min-
imaler knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-
Natur., 12:251–257, 1963.

89

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/distory/index.html
http://cran.r-project.org/web/packages/distory/index.html

[Fen97] W. Fenner. Internet group management protocol (IGMP), version 2. RFC
2236, Internet Engineering Task Force, November 1997.

[FPW09] R. Flury, S. V. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In INFOCOM, pages 1737–1745. IEEE, 2009.

[GIH11] C. Glacet, D. Ilcinkas, and N. Hanusse. The impact of edge deletions on the
number of errors in networks. In 15th International Conference on Principles
of Distributed Systems (OPODIS), volume 7109 of Lecture Notes in Computer
Science, pages 378–391. Springer, December 2011.

[GL06] J.-L. Guillaume and M. Latapy. Bipartite graphs as models of complex net-
works. Physica A, 371(2):795–813, 2006.

[Gro87] M. Gromov. Hyperbolic groups. Essays in Group Theory, 8:75–263, 1987.

[GS07] M. Gunes and K. Sarac. Inferring subnets in router-level topology collection
studies. In Proc. ACM/USENIX Internet Measurement Conference (IMC),
November 2007.

[HIKN10] N. Hanusse, D. Ilcinkas, A. Kosowski, and N. Nisse. Locating a Target with an
Agent Guided by Unreliable Local Advice. In Proceedings of the 29th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
PODC 2010, pages 355–364, Zurich Suisse, 2010. ACM New York, NY, USA.

[HIM+08] H. Haddadi, G. Iannaccone, A. Moore, R. Mortier, and M. Rio. Network topolo-
gies: Inference, modeling and generation. IEEE Communications Surveys and
Tutorials, 10(2):48–69, April 2008.

[HKK04] N. Hanusse, E. Kranakis, and D. Krizanc. Searching with mobile agents in
networks with liars. Discrete Applied Mathematics, 137:69–85, 2004.

[HKKK08] N. Hanusse, D. J. Kavvadias, E. Kranakis, and D. Krizanc. Memoryless search
algorithms in a network with faulty advice. Theor. Comput. Sci., 402(2-3):190–
198, 2008.

[HS01] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge
worth? In FOCS, pages 252–259, 2001.

[HUM+08] H. Haddadi, S. Uhlig, A. Moore, R. Mortier, and M. Rio. Modeling Inter-
net topology dynamics. ACM SIGCOMM Computer Communication Review,
38(2):65–68, March 2008.

[IMF04] A. Iamnitchi, R. Matei, and I. Foster. Small world file-sharing communities.
In Proc. IEEE INFOCOM, April 2004.

[Ita08a] G. F. Italiano. Fully dynamic all pairs shortest paths. In Kao [Kao08].

[Ita08b] G. F. Italiano. Fully dynamic minimum spanning trees. In Kao [Kao08].

[Kal12] C. Kalaitzis. Efficient addressing and routing in large-scale communication
networks. Msc thesis, University of Patras, 2012.

90

[Kao08] M-Y. Kao, editor. Encyclopedia of Algorithms. Springer, 2008.

[KB10] N. Khanna and S. Baswana. Approximate shortest paths avoiding a failed
vertex: Optimal size data structures for unweighted graphs. In STACS, pages
513–524, 2010.

[Kin99] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In FOCS, pages 81–91, 1999.

[KK95] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. J. Algorithms,
19(2):266–281, 1995.

[KK99] E. Kranakis and D. Krizanc. Searching with uncertainty. In Proc.
SIROCCO’99,, pages 194–203, 1999.

[KK09] Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle
in planar graphs and bounded genus graphs. In 20th Annual ACM-SIAM Symp.
on Discrete Alg. (SODA), pages 1146–1155. SIAM, 2009.

[Kle07] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM 2007.
26th IEEE International Conference on Computer Communications. IEEE,
pages 1902 –1909, may 2007.

[KLNS12a] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-chordal graphs: from cops and
robber to compact routing via treewidth. In 14es Rencontres Francophones
sur les Aspects Algorithmiques de Télécommunications (AlgoTel), pages 83–86,
2012.

[KLNS12b] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-chordal graphs: from cops and
robber to compact routing via treewidth. In 39th International Colloquium
on Automata, Languages and Programming (ICALP, track C), volume 7392 of
Lecture notes in computer science, pages 610–622. Springer, 2012.

[Knu05] D. Knuth. The art of computer programming, volume 4, Fascicle 2, chapter
Generating All tuples and permutations. Addison-Wesley, February 2005.

[KPBV09] D. V. Krioukov, F. Papadopoulos, M. Boguñá, and A. Vahdat. Greedy forward-
ing in scale-free networks embedded in hyperbolic metric spaces. SIGMETRICS
Performance Evaluation Review, 37(2):15–17, 2009.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some
of its algorithmic applications. In Foundations of Computer Science, 1994
Proceedings., 35th Annual Symposium on, pages 577 –591, nov 1994.

[LM10] T. Leighton and A. Moitra. Some results on greedy embeddings in metric
spaces. Discrete Comput. Geom., 44(3):686–705, October 2010.

[LMDV08] M. Latapy, C. Magnien, and N. Del Vecchio. Basic notions for the analysis of
large two-mode networks. Social Networks, 30(1):31–48, January 2008.

[Lok10] D. Lokshtanov. On the complexity of computing treelength. Discrete Applied
Mathematics, 158(7):820–827, 2010.

91

[LPCN10] M. Latapy, T.H.D. Phan, C. Crespelle, and T.Q. Nguyen. Termination of mul-
tipartite graph series arising from complex network modeling. In Proc. Interna-
tional Conference on Combinatorial Optimization and Applications (COCOA),
December 2010.

[May06] P. Maymounkov. Greedy embeddings, trees, and euclidean vs. lobachevsky
geometry. Manuscript, 2006.

[MDBP10] P. Mérindol, B. Donnet, O. Bonaventure, and J.-J. Pansiot. On the impact
of layer-2 on node degree distribution. In Proc. ACM/USENIX Internet Mea-
surement Conference (IMC), November 2010.

[MOVL09] C. Magnien, F. Ouedraogo, G. Valadon, and M. Latapy. Fast dynamics in In-
ternet topology: Observations and first explanations. In Proc. 4th International
Conference on Internet Monitoring and Protection (ICIMP), May 2009.

[MVdSD+09] P. Mérindol, V. Van den Schriek, B. Donnet, O. Bonaventure, and J.-J. Pan-
siot. Quantifying ASes multiconnectivity using multicast information. In Proc.
ACM/USENIX Internet Measurement Conference (IMC), November 2009.

[New01] M. Newman. Scientific collaboration networks. network construction and fun-
damental results. Physical Review E, 64(1), June 2001.

[New09] M. E. J. Newman. Random graphs with clustering. Physical Review Letters,
103(5), July 2009.

[NPW03] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a
shortest path. Theor. Comput. Sci., 296:167–177, March 2003.

[NST12] O. Narayan, I. Saniee, and G. H. Tucci. Lack of spectral gap and hyperbolicity
in asymptotic Erdös-Renyi sparse random graphs. In 5th International Sym-
posium on Communications, Control and Signal Processing (ISCCSP), pages
1–4, Rome, Italy, May 2012. IEEE.

[NWS01] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graphs with
arbitrary degree distribution and their applications. Phys. Rev. E., 64, July
2001.

[OP09] T. Opsahl and P. Panzarasa. Clustering in weighted networks. Social Networks,
31(2):155–163, 2009.

[Pan] J.-J. Pansiot. mrinfo dataset. see http://svnet.u-strasbg.fr/mrinfo/.

[PR05] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theor. Comput. Sci., 344(1):3–14, November 2005.

[PSV04] R. Pastor-Satorras and A. Vespignani. Evolution and Structure of the Internet:
a Statistical Physics Approach. Cambridge University Press, February 2004.

[PU89] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, 1989.

92

http://svnet.u-strasbg.fr/mrinfo/

[Pus03] T. Pusateri. Distance vector multicast routing protocol version 3 (DVMRP).
Internet Draft (Work in Progress) draft-ietf-idmr-dvmrp-v3-11, Internet Engi-
neering Task Force, October 2003.

[RS84] N. Robertson and P. D. Seymour. Graph minors. iii. planar tree-width. J.
Comb. Theory, Ser. B, 36(1):49–64, 1984.

[SBvL87] A. Schoone, H. Bodlaender, and J. van Leeuwen. Improved diameter bounds
for altered graphs. In Gottfried Tinhofer and Gunther Schmidt, editors, Graph-
Theoretic Concepts in Computer Science, volume 246 of Lecture Notes in Com-
puter Science, pages 227–236. Springer Berlin / Heidelberg, 1987.

[Sha11] Y. Shang. Lack of gromov-hyperbolicity in colored random networks. PanAmer-
ican Mathematical Journal, 21(1):27–36, 2011.

[SSR94] R. Sundaram, K. S. Singh, and C. P. Rangan. Treewidth of circular-arc graphs.
SIAM J. Discrete Math., 7(4):647–655, 1994.

[SW05a] T. Schank and D. Wagner. Approximating clustering coefficient and transi-
tivity. Journal of Graph Algorithms and Applications (JGAA), 9(2):265–275,
2005.

[SW05b] T. Schank and D. Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Proc. International Workshop on Experi-
mental and Efficient Algorithms (WEA), May 2005.

[Tho04] M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing nega-
tive cycles. In SWAT, pages 384–396, 2004.

[Ueh99] R. Uehara. Tractable and intractable problems on generalized chordal graphs.
Technical Report COMP98-83, IEICE, 1999.

[WAD09] W. Willinger, D. Alderson, and J. C. Doyle. Mathematics and the Internet:
a source of enormous confusion and great potential. Notices of the American
Mathematical Society, 56(5), May 2009.

[War68] H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans-
actions of the American Mathematical Society, 133(1):pp. 167–178, 1968.

[Wax88] B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 6(9):1617–1622, December 1988.

[WL10] X. Wang and D. Loguinov. Understanding and modeling the Internet topology:
Economics and evolution perspective. IEEE/ACM Transactions on Network-
ing, 18(1):257–270, February 2010.

[WS98] D. J. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, 1998.

[WZ11] Y. Wu and C. Zhang. Hyperbolicity and chordality of a graph. Electr. J.
Comb., 18(1), 2011.

93

[XL07] X. Xu and F. Liu. A novel configuration model for random graphs with given
degree sequence. Chinese Physics, 16(2), February 2007.

[ZCB96] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an internet-
work. In Proc. IEEE INFOCOM, March 1996.

[ZCD97] E. Zegura, K. Calvert, and M. Donahoo. A quantitative comparison of graph-
based models for internetworks. In IEEE/ACM Transactions on Networking,
volume 5, pages 770–783, December 1997.

94

	Context and document summary
	Notations
	New algorithms for property testing
	Hyperbolicity
	Objectives and Motivation
	Exact algorithm for computing the hyperbolicity: Design and theoretical analysis
	Experimental performances

	Chordality and treewidth
	Objectives and Motivation
	Structured Tree-decomposition

	Towards a Bipartite Graph Modeling of the Internet Topology
	Objectives and Motivation
	Related Work
	Methodology
	Bipartite Graphs and our Model
	Bipartite Graphs
	Model

	Model evaluation
	Projection Evaluation
	Bipartite Evaluation

	Discussion
	Correlation Analysis
	Redundant Networking Patterns
	Next Steps

	Evolution of structural properties of Internet-like networks
	Evolution of structural properties
	Objectives and Motivation
	Experimental Protocol
	Numerical results and Analysis
	Long term evolution of CAIDA maps
	Long term evolution of GLP and comparison with CAIDA measures
	Short-term evolution

	Evolution of the hyperbolicity
	Objectives and Motivation
	Theoretical worst case behavior
	Long term evolution of the hyperbolicity of Internet-like networks
	Short term evolution of the hyperbolicity

	Impact of edge deletions on Routing/Forwarding paths
	Impact of Edge Deletions on shortest path Routing Tables
	Objectives and Motivation
	Related works
	Contributions and Methodology
	General Results
	Relationships between the number of liars and the number of distance changes
	Upper bounds for =1 deleted edge
	Lower bound

	Number of liars after deletions
	Specific Topologies
	Conclusion

	Greedy routing and embeddings
	Objectives and Motivation
	Theoretical investigations
	Experimental results

	Conclusion

