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1. Introduction 
This section outlines the objectives and the motivations for initiating architecture work for the 
Internet routing system by means of a systematic functional and information modeling approach. In 
other terms, this section provides a first level answer to the questions "Why do we need a routing 
system architecture" and "What are the motivations to follow a systematic model-driven approach to 
specify this architecture?"  These questions are important not only from a theoretical perspective but 
also in the context of the experimentally-driven multi-disciplinary research approach promoted by the 
FIRE initiative.  
 
1.1 Objectives 
In distributed routing, each node part of the routing system implements a routing function that 
computes for any reachable destination name a loop-free routing path so that incoming messages 
directed to a given destination can reach it. Routing is an essential function of the Internet at 
networking but also applicative layers. In the former case, it is referred to as packet, datagram or data 
traffic routing and in the latter information routing. 
 
As already foreseen and reported twenty years ago (see for instance RFC 1287), the most 
fundamental issues faced by the Internet are related to its (inter-domain) routing system (which 
comprises about 350k nodes/routers and 35k autonomous systems), in particular in terms of its 
scalability, convergence, and stability properties. These issues result from the Internet topology 
evolution with respect to the design of the addressing system design and the addressing space usage 
together with the intrinsic limitations of the inter-domain routing protocol architecture and 
properties: 
 

o Addressing design and routing scaling: originally, host IP addresses were assigned based on 
network topological location. Adoption in the mid 90's of dedicated mechanisms to perform 
address aggregation (called CIDR in the IETF jargon) was felt sufficient to handle address 
scaling. However, conditions to achieve efficient address aggregation and thus relatively 
small routing tables are not met anymore. This situation is exacerbated by the current 
Regional Internet Registry (RIR) policy that allocates Provider-Independent (PI) addresses to 
sites whereas PI addresses are not topologically aggregatable; thus, making CIDR ineffective 
to handle address scaling. The result is that the increase of routing table sizes worsens over 
time as these prefixes are allocated without taking into account effects on the global routing 
system. Indeed, routing on PI address prefixes requires additional routing entries in the 
Internet routing system whereas the "costs" incurred by these additional prefixes, in terms 
of routing table entries and associated processing overhead, are supported by the global 
routing system as a whole, rather than directly charged to the users of the PI space. Coupled 
to the increase of the number of routes —resulting from topology independent address 
prefix allocation that impedes prefix aggregation—, site multi-homing (~25% of sites), ISP 
multi-homing, and inter-domain traffic-engineering  exacerbate the limitations of the 
Internet routing system. Nowadays, the latter must not only scale with increasing network 
size and growth of the Internet but also with a growing set of constraints and functionalities: 
bottom line, routers shall cope with growing routing table size even if the network itself 
would not be growing. 

 
o Border Gateway Protocol (BGP) protocol architecture: BGP, the inter-domain routing 

protocol of the Internet has been designed to compute and maintain Internet routes 
between administrative domains. The algorithm for route computation and maintenance 
selected for BGP is subject to Path Exploration phenomenon: BGP routers may announce as 
valid, routes that are affected by a failure and that will be withdrawn shortly later during 
subsequent routing updates. This phenomenon is (one of) the main reasons for the large 
number of routing update messages received by inter-domain routers. In turn, path 
exploration exacerbates inter-domain routing system instability and processing overhead. 
Both result in delaying BGP convergence time upon topology change/failure or policy 
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change. Several mitigation mechanisms exist but experience has shown that the cure is 
worse than the disease. Indeed, the reactive approach often at the origin of the design of 
these mechanisms does not allow studying their impact on the global routing system. 

 
Solving these problems requires to address multiple challenges altogether  

1. The routing table size scaling (in terms of memory space consumption or memory 
complexity) required to sustain the increasing number of routing table entries resulting from 
the growing number of nodes/routers, networks, and autonomous systems. It is important to 
underline here that even without network size growth in terms of number of nodes/routers, 
networks, and autonomous systems, that the increasing number of peering links observed on 
the Internet topology, induces an increase in memory space consumption to store routing 
information. Indeed, according to the best available data (see, e.g., Caida) as the Internet 
topology grows in terms of links, the number of links connecting nodes of similar degrees 
(tangential links, i.e., the so-called peering links between AS) increases faster than the 
number of links connecting low-degree to high-degree nodes (radial links, i.e., the so-called 
customer-to-provider links).  In turn, this excess of tangential links is responsible for the 
increase of the number of BGP routing paths per destination -even if the network size itself 
does not increase. 

2. The communication complexity (measured as the rate of exchange between nodes of routing 
messages in order for the routing function to properly operate) as the dynamics of the 
routing information exchanges between routers increasingly impacts the routing system 
convergence, and stability properties. 

3. The increasing architectural complexity (measure of the complexity of a given architecture 
proportionally to its number of components and the number of interactions among 
components) of the Border Gateway Protocol (BGP), underlying the Internet routing system. 

 
Prominent research efforts have been conducted over last decade to overcome the limitations of BGP 
including trials to 1) Shorten routing update interval (to accelerate convergence), 2) Route flap 
damping (to prevent instabilities), 3) Inclusion of AS-Path dependency and failure root cause/location 
information (to mitigate path exploration effects), or 4) Multiple AS-Path per destination (to improve 
fault-tolerance). Over time, some of these ad-hoc improvements have permitted to limit the 
performance degradation of the Internet routing system but none of them improves the intrinsic 
limitations of the path-vector routing algorithm impacting the scalability (stretch-1 routing paths) and 
the convergence (due to path exploration) properties of the routing system.  
 
Consequently, there is a growing consensus among the research community that the current practice 
of incrementally improving the routing protocol of the Internet will not be able to sustain its 
continuous growth at an acceptable cost and speed. This observation led research on distributed 
routing algorithmic to look at disruptive paradigms to address the above mentioned challenges 
altogether.  
 
1.2 Approach 
One of the main root causes resides also in the lack of architectural modeling of the global routing 
system. Indeed, the main driver for a routing protocol design is the selection of the algorithm and 
associated mechanisms for the route computation. But as the routing system is not properly 
modeled, the impacts of these design choices on the global routing system are almost impossible to 
evaluate (hence, the cure is sometimes worse than the disease).  
 
Therefore, in order to address these challenges altogether, we model in the context of the WP2/Task 
2.1 the routing system by identifying its functional (architectural) components, their relationships, 
and their spatio-temporal distribution (functional model) together with the information properties, 
operations and relationships (information model).  
 
In the context of WP2/Task 2.2, the next step will then be dedicated to i) the specification of the 
routing algorithms together with their validation, ii) their functional analysis together with their 
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impact on the global routing system architecture, and iii) their performance evaluation and analysis in 
the context of WP3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 Motivations 
The main motivations for taking a systematic approach in specifying the architecture of the routing 
system can be summarized as follows: 

o To determine a common architectural baseline and answer whether a common architecture 
can cover all/part of the routing models/schemes initially considered in the context of this 
project, e.g., compact routing, greedy routing, etc.? and where do we need to introduce per-
routing scheme customization and/or specialization and at which level of the routing system 
specification?   

o To identify open routing research areas by determining which routing (sub-)functions are 
currently under-specified or even badly specified but also which routing (sub-)functions can 
be replaced, added or removed; 

o To define a common "language"; thus, prevents misinterpretations among different 
dimensions and actors involved in the design of the routing system; 

o To provide a structuring and cohesive role (pending on the commonality level between the 
different routing model components); 

o To detail the model views up to the level appropriate for further routing systems engineering 
(establish routing system engineering controls over the allocations and interfaces); 

o To provide executable models of the interaction. Note that in distributed or multi-agent 
systems like the Internet routing, the choice/decision is locally performed by each agent 
independently of the others using the exchanged information (i.e., discovered information) 
but individual agents' choice/decision affects other agent's choice/decision); 

o To enable concurrent design of routing protocols (and associated operations), control 
systems, and components and to facilitate comparison between the different routing 
schemes that will be designed in context of Task 2.2.  

 
Additionally, by following such systematic modeling approach, we expect that: 

o In the computer communication context, this approach leads to modular software 
development (and prevents duplicates); 

o By starting from a top-level view down to the design of the routing protocol (and their 
components), it results into a holistic approach to the problem space that is complementary 
to experimental/bottom-up approach; 

o Past experience shows that without well defined system architecture, adding or removing 
functionality leads to further complexity (see IP control plane design today); in practice, 
finding the suitable tradeoff between evolutivity, flexibility/adaptivity, and performance is 
critical to ensure longevity of the architecture. 
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2. Terminology 
The terms defined in this section are structured in accordance to the sequence of the WP2 (sub-
)tasks. As its title indicates, this document focuses on the architecture of the routing system. Hence, 
defining the architecture is the starting point of this section. 
 
Architecture: Many definitions of (system) architecture have been formulated over time. We borrow 
the terms of our definition from D.E.Perry and A.L.Wolf (in "Foundations for the Study of Software 
Architecture", ACM SIGSOFT Software Engineering Notes, Vol.17, No.4, October 1992), Garlan and 
D.E.Perry (in their Editorial to the IEEE Transactions on Software Engineering, April 1995) and Booch 
(from his presentation at the Software Developers Conference in 1999). We define as "system 
architecture" a set of functions, states, and objects/information (referred to as "elements") together 
with their behavior, structure (relationships and interactions), composition and spatio-temporal 
distribution. The specification of these elements is referred to as the functional model architecture, 
the information/object model architecture and the state model architecture, respectively. Structure 
and behavior define two different level of the architecture: structural description and behavioral 
description. 
 
2.1 Functional and Procedural Model 
Function: characteristic action (verb) a system performs to transform available inputs to the desired 
outputs.  
 
Functional model: determines a systematic decomposition of the (routing) system by defining the 
routing system functional design, its inputs/outputs, and its various interfaces. This modeling 
technique (or methodology) enables thus to systematically describe the automated processing that a 
complex system must perform to transform available inputs to the desired outputs. The fundamental 
underlying idea is the following: the system is viewed as a distributed computing function (or, more 
generally, as solving an information processing problem). The processing performed by the system 
can be explained by iteratively decomposing the more complex top-level functions or functional areas 
into a set of simpler functions (sub-functions). Each sub-function is computed by an organized sub-
system. This decomposition is performed up to the level of atomic functions, i.e., as their name 
indicates atomic functions are functions that can't by definition be further decomposed. The overall 
objective of performing such functional decomposition stems from the assumption that each sub-
function taken individually will be simpler than the original functions. 
  
Procedure: method to perform a given task/action specified as a sequence of discrete steps (each 
step being a finite instruction or operation, finite meaning represented by a finite number of symbols) 
which have to be executed in a regular definite order in order to always obtain the same result under 
the same conditions. Note that in the routing system modeling context, procedures are devised as 
computational models of sequences of operations that the routing function is conjectured to perform 
as it processes routing information. 
 
Procedural model: a procedural model refers to the formal description of the procedures. In the 
context of this document, a routing model refers to the procedural model together with its associated 
data model, state machine model, and the data communication model which characterizes the 
interactions and interfaces (i.e. messages, calls, events, etc.) between the elements of the model (i.e. 
procedures, data structures, state machines).  
 
Algorithm: consists of sequences of steps (operations, instructions, statements) for transforming 
inputs (preconditions of the algorithm: description of the inputs, including their types as well as any 
relationships or properties that they must satisfy before execution) to outputs (post-conditions of the 
algorithm:  description of the outputs, including all relationships and properties that must be satisfied 
after execution). It provides the description of the effective computational procedures composing the 
procedural model. Note that an algorithmic scheme provides the description of class of effective 
computational procedures (that are based on the same "principles") composing the procedural 
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model. Termination of the algorithm refers to the situation such that whenever the preconditions are 
satisfied, the algorithm will stop running after a finite number of steps (e.g., no infinite loops). 
Correctness of the algorithm refers to the situation such that whenever the pre-condition are satisfied 
before the algorithm executes, the post-conditions will be satisfied after it executes. Note: 
correctness without termination is called partial correctness whereas total correctness refers to 
partial correctness with termination. 
 
2.2 Information and Data Model 
Information/object model: representation of the concepts, relationships, properties, constraints, 
rules, and operations to specify the information semantics for a given application domain/area. 
Hence, such model is also referred to as semantic data model or conceptual data model. There are 
different methods for developing an information model. Among them, the entity-relationship (E-R) 
model expresses in terms of entities, the relationships (or associations) among those entities, and the 
attributes (properties) of both the entities and their relationships. The ultimate goal of applying such 
model is to capture as much of the meaning of the data (semantic) as possible so as to obtain a better 
design that is scalable and easier to maintain. The E-R model in its original form does not support 
specialization/generalization abstractions (also termed hierarchies). Hence, the E-R model has been 
extended to include all modeling concepts of basic E-R with additional concepts: set-subset 
relationships (sub-classes/super-classes), specialization/generalization, categories, and attribute 
inheritance. The resulting model is called the Enhanced E-R or Extended ER (E2R or EER) model. It is 
used to model applications more completely and accurately if needed.  
 
Data model: formal description of data structures (organization) and their relationships together with 
data operators (manipulation) applied to data structures. 
 
2.3 Other terms commonly used in this document 
Scheme (also referred to as pattern) refers to a set/class of models that are based on the same 
"principles" and thereby sharing the same essential and global characteristics as well as 
structuring/cohesive elements.  
 
Routing Scheme: refers to a set/class of routing models that are based on the same "principles" and 
thereby sharing the same essential and global characteristics as well as structuring/cohesive 
elements.  
 
Identifier: identifiers are unambiguously assigned from a value space to nodes. Identifiers can either 
follow the topology, thus be topology-dependent (in this case, they are referred to as locators and 
can be used directly by the routing and the forwarding function without requiring resolution) or not, 
thus be topology-independent (in this case, they are referred to as names or simply identifiers). 
 
Locator: identifies a location in an internetwork. Nodes and endpoints are assigned locators. A node is 
assigned only one locator. Locators identify nodes by specifying “where” the node is positioned in the 
network. Locators do not specify a path to the node. An endpoint can be assigned more than one 
locator so that a locator might appear in more than one location of an internetwork. A locator can 
take the form of a topology dependent label (flat and unstructured), a topologically assigned address 
(structured), or a coordinate (structure determined by the geometric space). 
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3. Functional Model 
In the early design phase, functional modeling refers to a methodology (part of the architectural 
specification process) aiming to systematically identifying, describing, and relating the functions a 
system must perform (thus the functions that need to be included in the system) in order to meet its 
objectives. Functional modeling does not address how these functions will be performed but instead 
deals with i) identification: the specification of the top-level functions that need to be performed by 
the system and their decomposition into sub-functions together with the definition of their 
inputs/outputs, and their various interfaces, ii) spatial distribution: where theses functions need to 
be performed (space); iii) temporal distribution: how often they need to be performed (time); iv) 
under what operational context and environmental conditions. 
     
The basic idea underlying functional modeling is the following: the system is viewed as computing a 
function or, more generally, as solving an information processing problem. For what concerns the 
decomposition, functional modeling proceeds by systematically describing the automated processing 
that a complex system must perform to transform available inputs to the desired outputs. Indeed, 
functional modeling assumes that such processing can be explained by iteratively decomposing the 
corresponding complex function into a set of simpler functions (sub-functions) that are computed by 
an organized sub-system up to the level of atomic functions. The expectation is that when this type of 
decomposition is performed, the sub-functions that are defined will be simpler than the original 
functions.  
 
There are four elements to be addressed by functional modeling approach: i) hierarchical 
decomposition of the functions in which there is a top-level function (or top-level functional area) for 
the system. The top-level function is partitioned into a set of sub-functions that use the same inputs 
and produce the same outputs as the top-level function. Each of these sub-functions can then be 
partitioned further, with the decomposition process continuing as often as it is useful, ii) functional 
block diagrams can represent the information flow among the functions within any portion of the 
functional decomposition. As the first and subsequent functional decompositions are examined, it is 
common for one function to produce outputs that are not useful outside the boundaries of the 
system. These outputs are needed by other functions in order to produce the needed and expected 
external outputs, iii) processing instructions that contain the needed information for the functions to 
transform the inputs to the outputs, and iv) control flow that sequences the termination and 
activation of the functions so that the process is both efficient and effective. 
 
3.1 Hierarchical Decomposition of the Routing Functional Area 
Following the definition provided by [Buede00], a function is a transformation process that changes 
inputs into outputs, the Routing or Route functional area is defined as the local process of 
determining (computing) and deciding (selecting) for any destination node, the next node along a 
loop-free routing path such that the traffic directed to each destination will follow to reach their 
respective destination. From this definition, the routing function of a system can be modeled by a 
single, top-level area or top-level function that can be decomposed into a hierarchy of sub-areas or 
sub-functions. The following sub-sections provide an outline of the routing functional sub-functions 
description following the hierarchical decomposition of the routing functional area (see Fig.1).  
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Fig.1 Hierarchical decomposition of the routing functional area 
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3.1.1 Discover Function 
A common approach for decomposing the ''Discover'' (D) function (also referred to as knowledge or 
information acquisition function) is to segment this function with respect to specialization following 
the processing and exchange of two main class of information, i.e., topology and routing information: 
 

o Routing information discovery where routing information refers to (non-local) distances (or 
information to derive these distances) and/or routes (or route segments) together with their 
attributes. Note that routing information can also be derived from spatio-temporal 
properties of traffic flows. 

 
o Topology information discovery where topology information refers to all information 

related to local and remote interfaces (and their properties), incident links (and their 
properties), nodes adjacent to incident links (and their properties) as well as non-local 
environment including remote links and (abstract) nodes. 

 
Following this decomposition, one could then decompose both the Discover Routing Information and 
the Discovery Topology Information into Operate Discovered Information and Exchanged Discovered 
Information. 

3.1.1.1 Discover Routing Information Function 
The Discover Routing Information function is then structured as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: Discover Routing Information functional decomposition 
 
i) Operate routing information sub-function sub-divides into: 

o Create routing information entries in Routing Information Base (RIB) 
o Update routing information entries in Routing Information Base (RIB) 
o Control routing information entries of Routing Information Base (RIB) 

 
ii) Exchange routing information sub-function sub-divides into:  

o Push routing information which includes disseminate routing information to neighbors 
(local), disseminate routing information network-wide (non-local) but also filtering/selection 
of the disseminated/acquired routing information 

o Pull routing information which includes query/request from neighbors (local), query/request 
from network (non-local) but also filtering/selection of the pulled/acquired information 

o Trigger and control exchanges (push/pull) of routing information 
o Structure routing information exchanged or to be exchanged (syntax function) 

 
Note that the distinction between local (or neighbor) and network (or non-local) discovery is 
commonly performed and applies to routing information:  
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o Local discovery (also referred to as neighbor discovery): functionality enabling the 
acquisition/dissemination of knowledge about the local environment (neighborhood) to local 
entities including local and remote interfaces (and their properties), incident links (and their 
properties), and nodes adjacent to incident links (and their properties). 

o Remote/non-local discovery (also referred to as network discovery): functionality enabling 
the acquisition/dissemination of knowledge about the non-local environment from/to 
remote entities including remote links/nodes, paths and/or distances to reachable 
destinations. 

3.1.1.2 Discover Topology Information Function 
The Discover Topology Information function is then structured as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Discover Topology Information functional decomposition 
 
i) Operate topology information sub-function sub-divides into: 

o Create topology information entries in Topology Information Base (TIB) 
o Update topology information entries in Topology Information Base (TIB) 
o Control topology information entries of Topology Information Base (TIB) 

 
ii) Exchange topology information sub-function sub-divides into:  

o Push topology information which includes disseminate topology information to neighbors 
(local), disseminate topology information network-wide (non-local) but also filtering/ 
selection of the disseminated/acquired topology information 

o Pull topology information which includes query/request from neighbors (local), 
query/request from network (non-local) but also filtering/selection of the pulled/acquired 
topology information 

o Trigger and control exchanges (push/pull) of topology information 
o Structure topology information exchanged or to be exchanged (syntax function) 

 
As for the Discover Routing Information, the distinction between local (or neighbor) and network (or 
non-local) discovery is commonly performed and applies also to topology information:  

o Local discovery (also referred to as neighbor discovery): functionality enabling the 
acquisition/dissemination of knowledge about the local environment (neighborhood) to local 
entities including local and remote interfaces (and their properties), incident links (and their 
properties), and nodes adjacent to incident links (and their properties). 

o Remote discovery (also referred to as network discovery): functionality enabling the 
acquisition/dissemination of knowledge about the non-local environment from/to remote 
entities including remote links/nodes, paths and/or distances to reachable destinations. 

3.1.2 Pre-Process Function 
Pre-processing consists in structuring and/or analyzing the topology information and/or routing 
information using a combination of the following operations: 
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o Embedding/mapping: given metric spaces (X,dX) and (Y,dY), where X and Y are spaces, and dX 

and dY are distance functions, a mapping function f: X → Y, x → y=f(x) is called an 
embedding. An embedding is called distance-preserving if ∀ x, y  ∈ X, dX(x,y) = dY(f(x),f(y)) 

 
o Composition: this function combines topology and/or routing information so as to build 

more complex topology and/or routing information (called structures). 
 

o Mining: includes all functions enabling to find i) (hidden) relationships between routing 
information, between topology information as well as between routing and topology 
information, ii) features/properties characterizing routing and topology information, and iii) 
classes in this information. 

3.1.3 Resolve Routing Path function 
The Resolve Routing Path function determines (hence it is also referred to as Determine Routing Path 
function) the method to actually obtain the routing path by means of: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Resolve Routing Paths and Produce Routing Table Entries functional decomposition 
 

o Computation: function applied to (structured) routing information units and/or (structured) 
topology information units and that produces routing paths from which routing table entries 
can be derived. Computation can be seen as the operation of finding the routing path that 
minimizes/maximizes a (multi-)constrained (multi-)objective function. The computation 
function can be further sub-divided as follows: 

• Compute Global-Full function: computation is based on global knowledge of the 
graph; upon routing information update the full routing table is recomputed. 

• Compute Global-Incremental function: computation is based on global knowledge of 
the graph; upon routing information update only the affected routing table entries are 
recomputed. 

• Compute Local function: computation is based on local knowledge (neighbors related 
information) possibly complemented by a partial knowledge of remote/non-local parts 
of the network graph properties.  

• Compute Sequential function: computation is based on hop-by-hop/serial information 
propagated by local neighbors along either a given spatial trajectory. 

 
o Selection: either by enforcing selection rules, by applying filters, and/or by multi-criteria 

decision on a set of routing information units (typically routing paths with associated 
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attributes). By means of this processing, a limited number of routing paths is selected from 
which routing table entries can be derived.  

• Select/Filter Paths per destination function: routing paths are selected per 
destination, e.g., path-vector based routing protocols.  

• Select/Filter (logical) Ports per destination function: (logical) ports are selected per 
destination, e.g., spanning-tree based routing protocols.      

3.1.4 Produce Routing Table Entry Function 
The Produce Routing Table Entry function derives a route from the computed and/or selected routing 
paths and generates the corresponding routing table entry from the (selected) route, together with 
the creation of a new entry or the update of an existing routing table entry in the Routing Table (RT). 
Each forwarding table entry is then subsequently derived from a sub-set of one or more routing table 
entries. 

3.1.5 Associated Functions 
The set of associated functions include i) all FCAPS associated to the routing functionality (system 
configuration, administration, protection, etc.), ii) the transfer of routing table entries: a mechanism 
allowing to export the routing table entries towards the forwarding engine component and iii) trigger 
or poll for renewal/update control/routing behavior of a node based on external or internal events.  
 
Moreover, "addressing and reachability" information can be derived by means of 
distribution/discovery function part of the "routing" itself or by means of an associated resolution 
system dictionary (white boxes). Indeed, we assume that the routing functional area operates on 
locators (see definition in Section 2). Henceforth, a resolution function is associated to it that can 
operate on reachability information only (e.g., Host Identity Protocol where IP addresses function as 
pure locators; the applications use Host Identifiers to name peer hosts instead of using IP addresses) 
or on the topology/routing information itself (name-independent compact routing is an example of 
locator/label-based routing augmented with a identifier-to-locator function). 
 

o Identification function: assigns identifiers to nodes. These names can be either topology-
dependent (locators) or topology-independent (names); a locator can take the form of a 
label, a topology-dependent address or a coordinate. 

 
o Resolution function: performs translation, conversion, or mapping from the name of the 

destination to its associated locator. 
 
o Location function: the functionality allowing destinations to be located by means of the 

resolution function. 
 
3.2 Functional Block Diagrams 
This section makes use of the (Enhanced) Functional Flow Block Diagram (FFBD) to specify the routing 
functional model of the routing system architecture. For this purpose, we consider that each network 
node implements the routing functionality, which we call the Route function. Following the 
hierarchical decomposition of the Route functional area depicted in Fig.1, this function is decomposed 
iteratively in a set of (sub-)functions, which have a sequential relationship between them. In the 
following sections we provide a definition of each of these functions, and then we describe its 
sequential relationship using EFFBD diagrams.   

3.2.1 FFBD and EFFBD Overview 
A Functional Flow Block Diagram (FFBD) provides a multi-level decomposition of the system's function 
with a control structure that dictates the order in which the (sub-)function can be executed at each 
level of the decomposition. The FFBD presents thus the logical sequencing of the same (sub-)functions 
as those identified through functional decomposition by displaying them in their logical, sequential 
relationship. The decomposition of the function into the sequence of activities is carried out by asking 
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the question "WHAT" needs to be done to perform the particular function (but does not assume a 
particular on how the function shall be performed). FFBD is a commonly used tool in functional 
modeling to define the functional level and the sequences of activities. The purpose of the FFBD is 
thus to show the (sub-)functions that a system is to perform, the order in which they are to be 
performed (logical sequence), and their relationships. The order of execution is specified from the set 
of available control constructs. The basic FFBD syntax includes four types of control structure: series, 
concurrent/parallel (AND), selection (OR), and multi-exit function together with the completion 
criterion (IF-THEN-ELSE). Note that in order to include iteration (IT symbol), loop (LP symbol), and 
replication (RP symbol), the extended version of FFDB shall be used because basic FFDB syntax only 
allows to depict 4 types of control structures being series, concurrency, selection and multi-exit). The 
FFBD does not contain any semantics relating to the flow of information between functions, and 
therefore does not distinguish between triggering and non-triggering inputs.  
 
Enhanced FFBD (EFFBD) displays the control dimension of the functional model in an FFBD format 
with an information flow overlay to effectively capture information dependencies. Thus, Enhanced 
FFBD represents: (1) functions, (2) control flows, and (3) data flows. The logic constructs allow 
indicating the control structure and sequencing relationships of all functions accomplished by the 
system being analyzed and specified. When displaying the information flow as an overlay on the 
control flow, the EFFBD graphically distinguishes between triggering and non-triggering inputs. 
Triggering input is required before a function can begin execution. Therefore, triggers are actually 
information with control implications. The Enhanced FFBD specification of a system is complete 
enough that it is executable as a discrete event model, providing the capability of dynamic, as well as 
static, validation. A fundamental rule in the interpretation of an EFFBD specification is that a function 
must be enabled (by completion of the function(s) preceding it in the control construct) and triggered 
(if any information input to it is identified as a trigger) before it can execute. This provides maximum 
flexibility to use either control constructs or data triggers (or a combination of both) to specify 
execution conditions for individual system functions. Moreover, by augmenting the EFFBD with 
function duration estimates/budgets and resource constraints and utilization, trade studies can be 
performed using dynamic simulation outputs.   
 
Table 1 summarizes the main symbols used in EFFBD (throughout this document). Annex 1 provides 
more details on functional FFBD and EFFBD diagramic modeling techniques. It is important to 
underline that the lack of formal function definition makes specification errors to remain possibly 
undetected. Formalization can be used to detect and correct subtle system errors during the 
specification phase. 
 

Table 1: EFFBD symbols and description 
Name Symbol Description 

Function 
 

A function is a unit of actions or activities to be performed. 
The symbol contains the function’s name (an action verb plus a 
noun phrase) and the function’s number (a unique decimal 
number). 
Separate from the symbol, a function has also associated a text 
(the function’s definition) describing what the function does. 

Control 
(Enabling) Line  

A control (enabling) line connecting two functions indicates that 
the function at the right is enabled by control by the function at 
the left, i.e., only when the function at the left has completed 
the execution, the function at the right will be allowed to begin 
the execution. 

Data Triggering 
Line *  

A data triggering line connecting two functions indicates that the 
function at the right is triggered by a data produced by the 
function at the left, i.e., only when the function at the left has 
produced the data, the function at the right will be allowed to 
begin the execution. 
Note that the data triggering line has to be used together with 
the control (enabling) line, i.e., there is a function at the left (the 
same or another) that enables by control the function at the 
right. 
The symbol contains the name of the triggering data item. 

Data (Non-
Triggering) Line  

A data (non-triggering) line connecting two functions indicates 
that the function at the right uses a data produced by the 
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* function at the left but without triggering it, i.e., the function at 
the left produces a data before the function at the right be 
allowed to begin the execution. 
Note that the data (non-triggering) line has to be used together 
with the control (enabling) line, i.e., there is a function at the left 
(the same or another) that enables by control the function at the 
right. 
The symbol contains the name of the data item. 

AND  

The “AND” constructor is a condition in which all preceding or 
succeeding paths are required: it may contain one input with 
multiple outputs (i.e., the input enables in parallel all the 
outputs) or multiple inputs with one output (i.e., the output is 
enabled when all inputs enable it). It cannot contain multiple 
inputs and outputs combined. 

Exclusive OR 
 

The “Exclusive OR” constructor is a condition in which one of 
multiple preceding or succeeding paths is required, but not all: it 
may contain one input with multiple outputs (i.e., the input 
enables only a single output) or multiple inputs with one output 
(i.e., the output is enabled when one of the inputs enable it). It 
cannot contain multiple inputs and outputs combined. 

Multi-Exit 
Constructor 

1.2

Function

 

A multi-exit constructor indicates that a function may enable 
multiple (one, two, etc.) functions according to some exit 
conditions. 

(*Note that for practical reasons we are using a slightly different symbols than in traditional EFFBD) 

3.2.2 Route (R) function 
We consider that each network node implements the routing functionality, which we call the Route 
function. The Route (R) function (applied at each node belonging to the routing system) is defined as 
the process of determining (computing) and deciding (selecting) for any destination node, the next 
node along a routing path that the traffic directed to each destination will follow to reach their 
destination. For this purpose, routing includes the discovery of information about the network 
topology, the distance, and/or the routing paths as received from other nodes through queries (pull) 
or dissemination (push), the processing of this information, the computation and/or the selection of 
routing paths as well as the derivation of the next-hop node. The results are stored in the Routing 
Table (RT).  
 
Following the hierarchical decomposition depicted in Fig.1, the Route (R) function comprises the 
following sub-functions: 
 
Discover (D): this function that plays a fundamental role in distributed routing comprises:  

o Discover Topology Information (DTI) function (box_1), where topology information includes 
all information related to local and remote interfaces (and their properties), incident links 
(and their properties), nodes adjacent to incident links (and their properties) as well as non-
local environment including remote links and (abstract) nodes. The topology information 
exchanged is structured in units, referred to as topology information units (TIU). 

o Discover Routing Information (DRI) function (box_2), where routing information includes 
non-local distances (or information to derive these distances) and/or paths (segments) 
together with their attributes. The routing information exchanged is structured in units, 
referred to as routing information units (RIU). 

 
Pre-process Discovered and Associated Information (PDAI) (box_3): this function structures and 
analyzes the discovered information about topology and routing (e.g., distance to destination, paths 
to destination) by means of advanced techniques that permit: to obtain patterns, features, properties 
and hidden relationships in the information; to derive complex information from simple information; 
to transform a coordinate space to another space with new properties. 
 
Determine Routing Path (DRP) also referred to as "Resolve Routing Path" function (box_4):  
computes routing paths from topology and/or routing information (possibly pre-processed by means 
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of the pre-processing function) or selects routing paths based on some rules, filters, and/or selection 
criteria applied on the received routing information or selects routing paths based on some criteria 
applied on a sub-set of computed routing paths. 
 
Produce Routing Table Entry (PRTE) (box_5): generates or derives the Routing Table Entries (RTEs), 
i.e., routes from the computed and/or selected routing paths. Each Forwarding Table Entry (FTE) is in 
turn generated or derived from a sub-set of one or more RTEs. 
 
Resolve Name to Locator / Coordinate (RNLC) (box_6): performs association of node locators to node 
identifiers (also referred to as names) and the resolution of node identifiers to its associated locators. 
The information about node identifiers is structured in Identifier Information Units (IIUs), the 
information about node locators is structured in Locator Information Units (LIUs), and the information 
about identifier-locator(s) bindings is structured in Identifier-Locator Bindings (ILBs). This function is 
mainly seen as “external” to the routing functional area performing at each node since the association 
of locators to identifiers and the maintenance of the identifier-locator(s) binding information is 
performed by a dedicated resolving entity. At each node, this function is responsible for issuing the 
resolution requests with an external resolving entity and/or with an internal database where the 
identifier-locator(s) binding information is stored (“cached”), processing the responses and storing 
the identifier-to-locator binding information. The ILB Information Base (IIB) is the database where ILBs 
are maintained.  
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The sequential relationship between these functions using an EFFBD diagram is shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: Sequential relationship between sub-functions of the routing (R) function 
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3.2.3 Discover (D) function 
Following the definition provided in Section 3.2.2, the Discover (D) function can be decomposed into: 
 

o Discover Topology Information (DTI) (box_1): the acquisition, dissemination and 
maintenance of information about the topology, i.e., states and properties of interfaces, links 
and nodes. The information about topology, structured in Topology Information Units (TIUs), 
is obtained through the exchange of information with other (neighbor and remote) nodes, 
after possible filtering/selection of the information to be disseminated or the information 
being acquired. The Topology Information Base (TIB) is the database where TIUs are 
maintained. 

 
o Discover Routing Information (DRI) (box_2): the acquisition, dissemination and maintenance 

of information about the routing paths and/or distances to reachable destinations. The 
information about routing, structured in Routing Information Units (RIUs), is obtained 
through the exchange of information with other (neighbor and remote) nodes, after possible 
filtering/selection of the information to be disseminated or the information being acquired. 
The Routing Information Base (RIB) is the database where RIUs are maintained.  

3.2.3.1 Discover Topology Information (DTI) function 
The Discover Topology Information (DTI) function is decomposed into the following functions (Fig.1): 
 

o Exchange Topology Information function (box_1.1): Activation (trigger) and control of the 
operations for the acquisition, dissemination and maintenance of discovered Topology 
Information Units (TIUs), i.e., this function initiates the sending of TIUs to other nodes, the 
processing of received TIUs and related operations in the Topology Information Base (TIB), 
for the processing of TIUs in order to structure (syntax) the topology information. This 
function can be activated by changes in the TIB, by internal timers (e.g., aging of TIB entries) 
or others. The Exchange Topology Information function is further decomposed as follows: 

 
• Push Topology information function (box_1.1.1): includes the dissemination to 

neighbors (local), the network-wide (non-local) dissemination but also filtering/selection 
of the disseminated/acquired information. The Push Topology Information function 
comprises a communication function and a communication control function. The 
communication function comprises Send and Receive sub-functions. Sending and 
receiving messages comprising the Topology Information Units (TUIs) to/from other 
nodes through the external interfaces. This function also includes the operations related 
to message scheduling and management of input and output queues (storage, sending 
priorities, discarding rules, etc.) as well as the classification of the received messages. 

 
• Pull topology information function (box_1.1.2): includes query/request from neighbors 

(local), query/request from network (non-local) but also filtering/selection of the 
pulled/acquired information. The Push Topology Information comprises a 
communication function and a communication control function. The communication 
function comprises Send and Receive sub-functions. Sending and reception of messages 
comprising the Topology Information Units (TIUs) to/from other nodes through the 
external interfaces. This function also includes the operations related to message 
scheduling and management of input and output queues (storage, sending priorities, 
discarding rules, etc.) as well as the classification of the received messages. 

 
• Trigger and control exchanges (push/pull) function (box_1.1.3): the purpose of this 

function is to initiate and/or activate the exchange (push/pull) of topology information 
units. The exchange control regulates the rate of exchanges of topology information 
units and the associated rate adaptation. 
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• Structure topology information function (box_1.1.4): the role of this syntax function is 
to structure the received topology information units (acquisition) or the topology 
information units to be exchanged (dissemination). For instance, include multiple 
topology information units as part of single message, and segment a given topology 
information unit into multiple messages, etc.  

 
o Operate Topology Information Base (TIB) function (box 1.2): creation, maintenance (update) 

and use of the topology information entries stored in the Topology Information Base (TIB). 
This function also includes the control to access the data entries, the enforcement of data 
integrity, the management of concurrency, the recovery and restoration of the database 
after failures, and the maintenance of the database security. The Operate TIB function is 
further sub-divided into the following sub-functions: 
• Create Topology Information Entry in TIB (box 1.2.1): this function creates entry in the 

TIB when no prior entry in the database exists for the corresponding topology 
information. 

• Update Topology Information Entry in TIB (box 1.2.2): this function updates entry of the 
TIB (resulting from a change of information stored as part of an existing entry. 

• Control Topology Information Entry of TIB (box 1.2.3): this function controls access to 
the database entries, the enforcement of the integrity of the database entries, the 
management of concurrent access to database entries, the recovery and restoration of 
the database entries after database failures, and the maintenance of the database 
security.  

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig. 5.1, 5.2 
and 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1: EFFBD of the Discover Topology Information function. 
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Fig. 5.2: EFFBD of the Operate Topology Information Base Function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.3: EFFBD of the Exchange Topology Information Function 
 
The DTI function is activated/triggered by the following functions (Fig. 5 and 5.1): 

o The DTI function of other nodes, when topology information units are received from other 
nodes through the external interfaces. 

o By the PDAI function, when the result of its processing (composition) is be stored in the TIB, 
or when this function requests processing of topology information stored in the TIB. 

o By certain changes in the TIB, internal timers (aging of TIB entries) or other maintenance 
operations applied to the TIB entries. 

 
The DTI function activates/triggers the following functions (Fig. 5 and 5.1): 

o The DTI function of other nodes, when topology information units are sent to other nodes 
through the external interfaces. 
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o The PDAI function in order to process routing information units for structuring and analyzing 
topology information. 

o The DRP function in order to compute and/or select routing paths using the topology 
information stored in the TIB. 

3.2.3.2 Discover Routing Information (DRI) function 
 
The Discover Routing Information (DRI) function (box 2) defined in Section 1.3.1 is decomposed into 
the following functions (Fig.1): 
 

o Exchange Routing Information (box_2.1): performs activation (trigger) and control of the 
operations for the acquisition, dissemination and maintenance of Routing Information Units 
(RIUs), i.e., this function initiates the sending of RIUs to other nodes, the processing of 
received RIUs and the related operations in the Routing Information Base (RIB), for the 
processing of RIUs in order to structure (syntax) routing information. This function can be 
activated by changes in the RIB, by internal timers (e.g., aging of RIB entries) or others. The 
Exchange Routing Information function is further decomposed as follows: 

 
• Push Routing Information function (box_2.1.1): includes the dissemination to neighbors 

(local), the network-wide (non-local) dissemination but also filtering/selection of the 
disseminated/acquired routing information. The Push Topology Information comprises a 
communication function and a communication control function. The communication 
function comprises Send and Receive sub-functions. Sending and receiving messages 
comprising the Routing Information Units (RUIs) to/from other nodes through the 
external interfaces. This function also includes the operations related to message 
scheduling and management of input and output queues (storage, sending priorities, 
discarding rules, etc.) as well as the classification of the received messages. 

 
• Pull Routing Information function (box_2.1.2): includes query/request from neighbors 

(local), query/request from network (non-local) but also filtering/selection of the 
pulled/acquired information. The Push Topology Information comprises a 
communication function and a communication control function. The communication 
function comprises Send and Receive sub-functions. Sending and receiving messages 
comprising the Routing Information Units (RIUs) to/from other nodes through the 
external interfaces. This function also includes the operations related to message 
scheduling and management of input and output queues (storage, sending priorities, 
discarding rules, etc.) as well as the classification of the received messages. 

 
• Trigger and control exchanges (push/pull) function (box_2.1.3): the purpose of this 

function is to initiate and/or activate the exchange (push/pull) of routing information 
units. The exchange control regulates the rate of exchanges of routing information units 
and the associated rate adaptation. 

 
• Structure routing information function (box_2.1.4): the role of this syntax function is to 

structure the received routing information units (acquisition) or the routing information 
units to be exchanged (dissemination). For instance, include multiple routing 
information units as part of single message, and segment a given routing information 
unit into multiple messages, etc.  

 
o Operate Routing Information Base (RIB) function (box_2.2): creation, maintenance (update) 

and use of the routing information entries stored in the Routing Information Base (RIB). This 
function also includes the control to access the data entries, the enforcement of data 
integrity, the management of concurrency, the recovery and restoration of the database 
after failures, and the maintenance of the database security. The Operate RIB function is 
further sub-divided into the following sub-functions: 
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• Create Routing Information entry in RIB (box_2.2.1): this function creates entry in the 
RIB when no prior entry in the RIB exists for the corresponding topology information. 

• Update Routing Information entry in RIB (box_2.2.2): this function updates entry of the 
RIB (resulting from a change of information stored as part of an existing entry. 

• Control Routing Information entry of RIB (box_2.2.3): this function controls access to 
the RIB entries, the enforcement of the integrity of the database entries, the 
management of concurrent access to database entries, the recovery and restoration of 
the database entries after database failures, and the maintenance of the database 
security.  

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig.6.1, 6.2 
and 6.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1: EFFBD of the Discover Routing Information (DRI) function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2: EFFBD of the Operate Routing Information Base Function 
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Fig.6.3: EFFBD of the Exchange Routing Information Function 
 
The DRI function is activated/triggered by the following functions (Fig. 5 and 6.1): 

o The DRI function of other nodes, when routing information units are received from other 
nodes through the external interfaces. 

o By the PDAI function, when the result of its processing (composition) is be stored in the RIB, 
or when this function requests processing of routing information stored in the RIB. 

o By the DRP function, in order to store in the RIB the route(s) derived from the “computed” 
and “selected” routing path(s).  

o By certain changes in the RIB, internal timers or others. 
 
The DRI function activates/triggers the following functions (Fig. 5 and 6.1): 

o The DRI function of other nodes, when routing information units are sent to other nodes 
through the external interfaces. 

o The PDAI function in order to process routing information units for structuring and analyzing 
routing information. 

o The DRP function in order to compute and/or select routing paths.  

3.2.4 Pre-process Discovered and Associated Information (PDAI) function 
Following the definition provided in Section 3.2.2, the Pre-process Discovered and Associated 
Information (PDAI) function (box_3) is in charge of structuring and analyzing the discovered 
information about topology and routing (e.g., distance to destination, paths to destination) by means 
of combination the following operations: embedding, composition, and mining. The operations 
enable to obtain patterns, features/properties and hidden relationships between discovered 
information; to derive/build complex structures from simple information; to transform a coordinate 
space to another space with new properties. 
 
The PDAI function is decomposed into the following functions (see Fig.1): 
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o Start Pre-Processing (box_3.1): the purpose of this function is to retrieve the topology 
information from the TIB and the routing information from the RIB together with the 
activation and control of the operations for processing this information. This function can be 
activated by timers (time-driven) and/or occurrence of certain events (event-driven). 

o Mine (box_3.2): given a set of topology and routing information units, find (hidden) 
relationships, features/properties, patterns and/or classes between them by applying 
learning and mining methods on this set of information. 

o Compose (box_3.3): given a set of topology and routing information units, this function 
combines this information so as to build more complex topology and/or routing information 
units, called “structured” TIUs or RIUs. 

o Embed (box_3.4): transformation of a given metric space (combination of nodal and distance 
information) into another metric space with new properties, which allow computing better 
paths. The transformation is given by a mapping function.  

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: EFFBD of the Pre-process Discovered and Associated Information (PDAI) function 
 
The PDAI function is enabled/triggered by the following functions (Fig.5 and Fig.7): 

o By means of internal timers and others in order to process information. 
o By the DTI function, when this function requires processing TIUs for structuring and analyzing 

topology information. 
o By the DRI function, when this function requires processing RIUs for structuring and 

analyzing routing path information.  
 
The PDAI function enables/triggers the following functions (Fig.5 and Fig.7): 

o The DTI function for requesting TIUs from the TIB that are to be processed or for storing TIUs 
in the TIB that have been processed. 

o The DRI function for requesting RIUs from the RIB that are to be processed or for storing RIUs 
in the RIB that have been processed. 

o The DRP function in order to process “structured” RIUs or TIUs for obtaining new 
(“computed”) routing paths. 
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3.2.5 Determine Routing Path (DRP) function 
The "Determine Routing Path" (DRP) function (box_4) also referred to as "Resolve Routing Path" 
function is in charge of i) the computation of routing paths (called "computed" RIU) from the 
discovered and/or pre-processed topology information and/or routing information, and ii) the 
selection of routing paths (referred to as "selected" RIUs) based on some criteria applied on the 
received routing paths and its associated attributes (referred to as "received" RIUs) or the selection 
based on some criteria applied on a sub-set of computed routing paths (referred to as "computed" 
RIUs). 
 
Note that these functions refer to a distributed/decentralized computation and to an adaptive 
routing, i.e., the routing function is capable to compute and/or select routes for any sequence of 
information updates arriving at given rate (in contrast to not-adaptive/static routing where routing 
paths are computed at provisioning time). 
 
The task of routing path calculation can be classified from the point of view of time, space and 
processing. From the time perspective, the calculation can be either incremental (given an update, re-
computing of only the affected routing table entries) or full/complete (all the paths are recomputed). 
From the spatial perspective, the calculation can be either local (paths are computed without a global 
network knowledge, using only information from neighbors) or global (paths are calculated using a 
global network knowledge). From the processing perspective, the calculation can be performed 
sequentially (paths are calculated one after the other) or in parallel. Remember also that the 
computation or selection/filtering is performed per "destination" (where destination here is to be 
considered as the "identifier" or the "locator" carried as part of the information unit). 
 
The DRP function is decomposed into the following functions (see Fig.1):  
 

o Computation (box_4.1): function applied to (structured) routing information units and/or 
(structure) topology information units so as to produce (new) routing paths from which 
routing table entries can be derived. Computation can be seen as the operation of finding 
the routing path that minimizes/maximizes a (multi-)constrained (multi-)objective function. 
This function can be further sub-divided as follows: 

• Compute Global-Full function (box_4.1.1): computation is based on global knowledge 
of the graph; upon routing information update the full routing table is recomputed. 

• Compute Global-Incremental function (box_4.1.2): computation is based on global 
knowledge of the graph; upon routing information update only the affected routing 
table entries are recomputed. 

• Compute Local function (box_4.1.3): computation is based on local knowledge 
(neighbors related information) possibly complemented by a partial knowledge of 
remote/non-local parts of the network graph properties.   

• Compute Sequential function (not represented): computation is based on hop-by-
hop/serial information propagated by local neighbors along either a given spatial 
trajectory. 

 
o Selection (box_4.2): this function performs either by enforcing selection rules, by applying 

filters, and/or by multi-criteria decision on a set of routing information units (typically 
routing paths with associated attributes). By means of this processing, a limited number of 
routing paths is selected from which routing table entries can be derived.  

• Select/Filter Paths per Destination function (box_4.2.1): routing paths are selected 
per destination, e.g., path-vector based routing protocols.  

• Select/Filter (logical) Ports per Destination function (box_4.2.2): (logical) ports are 
selected per destination, e.g., spanning-tree based routing protocols.      

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig. 8.1 and 
8.2. 
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Fig.8.1: EFFBD of the Determine Routing Path (DRP) function 
 

 
The DRP function is activated/triggered by the following functions (Fig.5 and Fig.8.1): 

o The DTI function in order to process topology information units and to subsequently obtain 
new (“computed”) routing paths. 

o The DRI function in order to compute and/or select routing paths. 
o The PDAI function in order to process “structured” topology and/or routing information units 

and to subsequently obtain new (“computed”) routing paths.  
 
The DRP function activates/triggers the following functions (Fig.5 and Fig.8.1): 

o The DRI function in order to store “computed” and “selected” routing paths in the RIB. 
o The RNLC function in order to resolve a node identifier to its associated locator 
o The PRTE in order to generate routing and forwarding tables entries based on stored 

“computed” and “selected” routing paths.  
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Fig.8.2: EFFBD of the Compute Routing Path and the Select/Filter Path Functions 
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3.2.6 Produce Routing Table Entry (PRTE) function 
The "Produce Routing Table Entry (PRTE)" function (box_5) is in charge of the derivation of a route 
from the computed and/or selected routing paths and the generation of the Routing Table Entries 
(RTEs) from the (selected) route, together with the creation of an RTE or the update of an existing RTE 
in the Routing Table (RT). Each Forwarding Table Entry (FTE) is subsequently generated or derived 
from a sub-set of one or more RTEs. 
 
The PRTE function can thus be decomposed into the following functions (Fig.1): 

o Derive Route (DE) (box_5.1): Derivation of a route from the computed and/or selected 
routing path(s) and selection of the route (if multiple routes are produced). Note that 
selected routes are also transferred in the Routing Information Base (RIB) for subsequent 
exchange as part of the discovery process. 

o Generate the Routing Table Entry (RTE) from the computed and/or selected route. Note that 
this function is often combined with the Derive route function. 

o Create Routing Table Entry (RTE) (box_5.2): create routing table entries in the routing table 
(when no prior entry exists in the Routing Table) 

o Update Routing Table Entry (RTE) (box_5.3): update of an existing routing table entry of the 
routing table (resulting from a change in routing path or its attributes) 

o Transfer to Forwarding Table (box 5.4): derive a forwarding entry from a set of/one routing 
table entries and the store the resulting entry in the forwarding table.  

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9: EFFBD of the Produce Routing Table Entry (PRTE) function 
 
The PTRE is enabled/triggered by the DRP function (see Fig. 5 and 9): in order to generate the Routing 
and forwarding table entries based on the “computed” and “selected” routing paths..  

3.2.7 Resolve Name to Locator / Coordinate (RNLC) function 
It is important in the context of this document, and more generally in the context of the specification 
of a routing system architecture to make a clear distinction between identifier and locator. Identifiers 
are unambiguously assigned from a value space to nodes. Identifiers can either follow the topology, 
thus be topology-dependent (in this case, they are referred to as locators and can be used directly by 
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the routing and the forwarding function without requiring resolution) or not, thus be topology-
independent (in this case, they are referred to as names or simply identifiers). On the other hand, a 
locator identifies a location in an internetwork. Nodes and endpoints are assigned locators. A node is 
assigned only one locator. Locators identify nodes by specifying “where” the node is positioned in the 
network. Locators do not specify a path to the node. An endpoint can be assigned more than one 
locator so that a locator might appear in more than one location of an internetwork. A locator can 
take the form of a topology dependent label (flat and unstructured), a topologically assigned address 
(structured), or a coordinate (structure determined by the geometric space). 
 
Stricto sensu, routing and forwarding functions act on locators, i.e., identifiers (or names) are not 
used in making routing or forwarding decisions. In this respect, "name-independent" compact routing 
(i.e., the schemes that work with –topology-independent– identifiers) can be seen as name-
dependent compact routing (using locators) operating underneath an identifier-to-locator resolution 
function. This resolution function can operate "locally" (sometimes even by locally equating the 
identifier to its associated locator) and is often customized on per routing scheme basis, thus 
sometimes strongly coupled to the routing functionality itself. A couple of representative examples 
extracted from existing routing schemes will make the semantic and role distinction between 
identifier and locator clearer. Current IP networks do not differentiate between IP addresses used as 
identifiers (Provider Independent addresses) or locators (Provider Allocated addresses). Indeed, 
current routing or forwarding engines (which by definition acts on IP addresses) do not discriminate 
whether these addresses are associated to a PI space or a PA space. In the Host Identity Protocol (HIP) 
IP addresses function as pure locators, and applications use Host Identifiers to name peer hosts 
(instead of IP addresses). In geometric routing, coordinates function as pure locators, and applications 
use Host Identifiers to name peer hosts. In name-independent compact routing (assuming identifiers 
are IP addresses), being either intermediate nodes (edge-to-edge) or hosts (end-to-end) schemes, 
there is an identifier-to-locator resolution function distributed among nodes performing on top of 
name-dependent compact routing using locators.  
 
The "Resolve Name to Locator / Coordinate" (RNLC) function (box_6) is in charge of the association 
of node locators to node identifiers (also referred to as names) and the resolution of node identifiers 
to its associated locators. The information about node identifiers is structured in Identifier 
Information Units (IIUs), the information about node locators is structured in Locator Information 
Units (LIUs), and the information about identifier-locator(s) bindings is structured in Identifier-Locator 
Bindings (ILBs). This function is mainly seen as “external” to the routing functional area of the nodes 
since the association of locators to identifiers and the maintenance of the identifier-locator(s) binding 
information is done by an external resolving entity. Internally, in the nodes, this function is 
responsible of issuing the resolution requests with this external resolving entity and/or with an 
internal database where the identifier-locator(s) binding information is stored (“cached”), processing 
the responses and storing the identifier-to-locator binding information. The ILB Information Base (IIB) 
is the database where ILBs are maintained. 
 
The RNLC function (see the definition in section 1) is decomposed into the following functions (Fig.1): 
 

o Resolve (box 6.1): translation, conversion or mapping from a node identifier to its associated 
locator(s) from the corresponding identifier-locator(s) binding information. Resolution relies 
on a resolving entity that is in charge of the association of node locator(s) to a node identifier 
which results in identifier-locator(s) binding information. The tasks performed by this entity 
are the following 1) determine the location of a node (given the node identifier), bind the 
node identifier to a set of one or more locators, and stores this information in its IIB; 2) upon 
receiving a resolution request from a node, send back the corresponding identifier-locator(s) 
binding information to the requesting node (then the receiving node stores this binding 
information in its IIB). In case the resolving entity does not have the requested identifier-
locator(s) binding information, it shall further determine which other resolving entity can 
store this information (or query an intermediate entity that would perform this action on 
behalf of it). Internally, in the nodes, this function is responsible of issuing the resolution 
requests with the resolving entity and/or with the local ILB where the identifier-locator(s) 
binding information is stored (“cached”), processing the responses and storing the identifier-
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to-locator binding information. The resolving function is an associated (local) routing 
function, i.e., stricto sensu this function is not part of the routing functional area. This 
function may be co-located with the other routing functions or not. When collocated with 
the routing function, an internal interface enables exchanges with the resolution function 
(also referred to as local resolver); when non-collocated an external interface enables these 
exchanges. It is important to notice that even when "external" resolution is performed the 
request/responses are passed via the local resolver also local resolution agent (if that 
function isn't actually present locally a "void" function takes place). Send and Receive 
resolution requests and responses to/from a resolving entity through dedicated interfaces 
(to a local resolving agent or directly to a non-collocated resolving entity). This includes the 
operations related to packet scheduling and management of input and output queues 
(storage, sending priorities, discarding rules, etc.), and the classification of the received ILBs.  

 
o Operate ILB Information Base (box 6.2): creation, maintenance and use of the ILB database. 

This includes the control to access the data, the enforcement of data integrity, the 
management of concurrency, the recovery and restoration of the database after failures, and 
the maintenance of the database security.  

 
The sequential relationship between these functions using an EFFBD diagram is shown in Fig. 10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10: Resolve Name to Locator / Coordinate" (RNLC) function 
 
The RNLC function is enabled/triggered by the following functions (Fig. 2 and 8): 

o By the DRP and PDAI function in order to resolve a node identifier to its associated locator 
o By the external and/or internal resolving entity, when resolution information is received 

from this entity through the external and/or internal interfaces.  
 
The RNLC function enables/triggers the external and/or internal resolving entity, when resolution 
requests are sent to it through the external and/or internal interfaces.  
 
 
 

Local 
Resolution 
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3.3 Control Flow (and Control Interfaces) 
This part of the functional model specification includes: i) activation/termination of (sub-)functions so 
as to specify the temporal relationship between them, their duration, and their sequencing/ordering 
over time and under which internal/external conditions (conditional control), ii) control loops: 
Feedback loops, adaptive loops and model reference loops, iii) and error control. Note that in order to 
include iteration (IT symbol), loop (LP symbol), and replication (RP symbol), the extended version of 
FFDB shall be used because base FFDB only allows to depict 4 types of control structures being series, 
concurrency, selection and multi-exit. 

3.3.1 Error Control 
The following table contains a list of the error situations that may occur in the routing system 
architecture, in terms of the functions that are involved in the error, a description of the error, and 
the mechanisms that could be implemented in the functions to solve the error.  
 

Table 2: Functional Error Description and Potential mitigation 

FUNCTION: SUBFUNCTION ERROR DESCRIPTION POTENTIAL MITIGATION 
Corruption of information units exchanged with 
other nodes that occur during their transmission 
through the network 

Error detection codes and 
retransmission mechanisms 

Loss of information units exchanged with other 
nodes that occur during their transmission through 
the network 

Sequence numbers or similar 
identifiers, timeout and 
retransmission mechanisms 

Duplication of information units exchanged with 
other nodes that occur during their transmission 
through the network 

Sequence numbers or similar 
identifiers, and discarding 

Malformation of messages Check the message structure 
Security attacks, against the confidentiality 
(interception of the information) 

Encryption mechanisms 

Security attacks, against the identity (overriding, 
superseding, repudiation) 

Checksums and encryption 
mechanisms 

DTI, DRI, RNLC: 
Communicate 

Security attacks, against the information integrity 
(alteration) 

Checksums 

Inconsistency of information units exchanged with 
other nodes (unexpected or incoherent 
information) caused by software or hardware 
errors 

Mechanisms to detect the 
inconsistent behavior of other nodes 
and that react according to it 

DTI: Exchange Topology 
Information,  
DRI: Exchange Routing 
Information,  
RNLC: Resolve Bad (too high) update messages rate Setting and checking of negotiated 

and/or configured rate parameters 
Data base unauthorized access Access control mechanisms 

Simultaneous writing operations in data bases 
over related information and data base entry 
corruption 

Concurrency control and verification 
of data base consistence 

Data base failure Data base recovery mechanisms 

DTI: Operate Topology 
Information Base,  
DRI: Operate Routing 
Information Base,  
RNLC: Operation ILB Information 
Base Aged / out-of-date data Setting and checking TTL information 

for the data. Remove out-of-date 
data. 

All: All 
Mis-interpretation of internal timers and/or input 
information units that initiates a sequence of 
functions 

Detection of bad sequences of 
functions and/or loops (through 
counters and others) 
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4. Applications of Generic Functional Model 
This section provides several examples of application of the generic functional model detailed in 
Section 3. For this purpose, we refer to the following routing schemes: BGP path-vector routing 
protocol, greedy routing (on greedy embedding of the observed Internet topology and on a 
constructed Internet topology), and compact routing (both unicast and multicast). These examples 
are provided to demonstrate applicability of the proposed generic functional model (not to delimit a 
subset of routing schemes and algorithms that will be developed in the context of the EULER project). 
 
4.1 Path-vector routing 
Specified in RFC 4271, Border Gateway Protocol (BGP) is a routing protocol relying on the path-vector 
routing algorithm. This routing protocol is used to exchange network reachability information 
between autonomous systems (AS); hence BGP relies on an AS path vector routing algorithm. An AS is 
defined as "a set of routers under the control of a single technical administration entity or unit that 
presents a consistent picture of what destinations are reachable through it." Each AS is identified by 
its AS Number (ASN). Each AS has one or more border routers that connect to routers in neighboring 
AS, and possibly a number of internal BGP routers. The main function of BGP is to exchange network 
reachability information with peering (neighboring) BGP routers. Reachability information includes an 
AS path that lists the sequence of AS numbers traversed by the BGP route advertisement comprising 
reachability information from the originating AS. This information is used by BGP routers for 
constructing AS connectivity graph for this reachability, and so as to detect and avoid routing loops. 
BGP connections between routers belonging to neighboring AS are called eBGP (external BGP), while 
those between routers in the same AS are called iBGP (internal BGP). Note that adjacent AS may have 
more than one eBGP connection.   

4.1.1 BGP Operations  
In BGP, a route is defined as a unit of information that pairs a set of destinations with the attributes of 
a path to those destinations. These routes are advertised between BGP routers in UPDATE messages. 
The set of destinations are systems whose IP addresses are contained in one IP address prefix that is 
carried in the Network Layer Reachability Information (NLRI) field of an UPDATE message. The actual 
path to this set of destinations is the information reported in the AS_PATH attribute field of the same 
UPDATE message. The AS_PATH attribute enumerates the sequence of AS numbers a route in the 
UPDATE message has traversed.    
 
The AS topology of the routing system is described as a graph G = (V,E), where the vertices (nodes) set 
V, |V| = n, represents the AS, and the edges set E, |E| = m, represents the links between AS. At each 
node u ∈ V, a route r per destination d (d ∈ D) is selected and stored as an entry in the local routing 
table (RT) whose total number of entries is denoted by N, i.e., |RT| = N. At node u, a route ri to 
destination d is defined by ri = {d, (ak=u, ak-1,…,a0=v), A} with k > 0 | ∀ j, k ≥ j > 0, {aj, aj−1} ∈ E and i ∈ 
[1,N], where (ak=u, ak-1,…,a0=v) represents the AS_PATH attribute of the route ri, ak-1 the next hop of v 
along this path from node u to v, and A its attribute set. As part of the set of mandatory attributes, we 
can mention the ORIGIN (generated by the BGP speaker that originates the associated routing 
information), the NEXT_HOP (defines the IP address of the router that should be used as the next hop 
to the destinations listed the UPDATE message), and the LOCAL_PREF (used by an iBGP speaker to 
inform its peers within the same AS of the advertising speaker's degree of preference for an 
advertised route). The MULTI_EXIT_DISC (MED) is an optional non-transitive attribute whose value 
may be used by a BGP speaker on external (inter-AS) links to discriminate among multiple exit or 
entry points to the same neighboring AS. In addition to the AS_PATH, the LOCAL_PREF and MED 
attribute are also used in the BGP Route Selection process (see below). 
 
BGP routers (or speakers) advertise network reachability information about destinations by sending 
to their neighbors UPDATE messages containing set of destination address prefix announcements 
(feasible routes) or withdrawals (unfeasible routes) together with attributes associated to a path to 
these destinations.  
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o An announcement informs neighboring BGP routers of a path to a given destination. When a 
local BGP router propagates a route learned from the UPDATE message sent by one of its 
peering BGP routers, it modifies the route's AS_PATH attribute based on the location of the 
BGP router to which the UPDATE message containing that route will be sent. Formally, let 
P(u,v),d denote the set of paths from node u to v towards destination d where each path p(u,v) 
is of the form {(ak=u, ak-1,…,a0=v), A}. A routing UPDATE message leads to a change of the 
AS_PATH attribute (ak, ak-1,…,a0) or an element of its attribute set A.  

o A withdrawal is an update indicating that a previously advertised destination is no longer 
reachable. Route withdrawals only contain the destination and implicitly tell the receiver to 
invalidate (or remove) the route previously announced by the sender. Formally, let P(u,v),d 
denote the set of paths from node u to v towards destination d where each path p(u,v) is of 
the form {(ak=u, ak-1,…,a0=v), A}. A withdrawal is denoted by an empty AS_PATH attribute (ε) 
and A = ∅: {d,ε,∅}. According to the above definition, if there is more than one path per 
destination d, each path will be associated to a distinct route.  

 
When a local BGP router propagates a route learned from the UPDATE message sent by one of its 
peering BGP routers, it modifies the route's AS_PATH attribute based on the location of the BGP 
router to which the UPDATE message containing that route will be sent. In contrast, route 
withdrawals only contain the destination and implicitly tell the receiver to invalidate (or remove) the 
route previously announced by the sender.  
 
A BGP router receives UPDATE messages from its BGP peering neighbors following a time varying 
interval bound by a minimum threshold. As detailed in RFC 4271, there is a minimum amount of time 
(MRAI) between two BGP UPDATE messages sent towards the same BGP router. Thus, a given BGP 
router receives one BGP UPDATE message per MRAI time interval per neighbor (and sometimes per 
destination prefixes d). The output (i.e., the class of the BGP UPDATE message) of the learning process 
is used by the selection process of the local BGP router. This output is not distributed to the router’s 
neighbors or other nodes in the system. However, the router's output (i.e., the BGP update messages 
that are forwarded) will influence the route selection of the BGP router's neighbor; as depicted in 
Fig.7.3, the crossed circles represents selectors acting at the input and output of the "BGP route 
selection" process). 

4.1.2 BGP Routing Information Bases (RIB) 
BGP routes are stored in the Routing Information Bases (RIBs). At each BGP speaker, the RIB consists 
of three distinct parts: 

o Adj-RIB-In: stores routing information (routes) learned from inbound UPDATE messages 
received from other BGP speakers. These routes are available as input to the Decision 
Process after applying Import Policy rules (import filter). 

o Loc-RIB: contains the local routing information the BGP speaker selects by applying its local 
policies to the routing information (routes) contained in its Adj-RIB-In. These are the routes 
that will be used by the local BGP speaker. 

o Adj-RIB-Out: stores routing information (routes) that the local BGP speaker has selected for 
advertisement to its peers. This routing information will be carried in the local BGP speaker's 
UPDATE messages and advertised to its peers by means of the local speaker's UPDATE 
messages after applying Export Policy rules (export filter).  

 
In other terms, the Adj-RIB-In contains unprocessed routing information that has been advertised to 
the local BGP speaker by its peers; the Loc-RIB contains the routes that have been selected by the 
local BGP speaker's Decision Process; and the Adj-RIB-Out organizes the routes for advertisement to 
specific peers (by means of the local speaker's UPDATE messages).  

4.1.3 BGP Route Selection Process 
When a router receives a route advertisement, it first applies inbound filtering process (using some 
import policies) to the received routing information. If accepted, the route is stored in the Adj-RIB-In. 
The collection of routes received from all neighbors (external and internal) and stored in the Adj-RIB-
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In defines the set of candidate routes (for that destination). Subsequently, the BGP router invokes a 
route selection process - guided by locally defined policies - to select from this set a single best route 
for each destination. After this selection is performed, the selected best route is stored in the Loc-RIB 
and is subjected to some outbound filtering process and then announced to all the router's neighbors. 
Importantly, prior to being announced to an external neighbor, but not to an internal neighbor in the 
same AS, the AS path carried in the announcement is prepended with the ASN of the local AS.  

4.1.4 Hierarchical Decomposition of BGP  
The BGP routing functionality can be decomposed into three main functional blocks: i) the discovery 
(push) of routing information, i.e., BGP routes advertized by BGP peers, together with the optional 
inbound filtering of the received BGP routes, ii) the per-node selection of the "best" route by means 
of the so-called BGP route selection process, and iii) the push of the selected route together with 
optional outbound filtering of the selected BGP routes to downstream neighbors/BGP speakers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11: Hierarchical decomposition of BGP routing function 

4.1.5 BGP Flow Block Diagrams  
The BGP routing protocol makes use of the following functional blocks discussed in Section 1.3.1: the 
Discover Routing Information (DRI) function, the Determine Routing Path (DRP) function, and the 
Produce Routing Table Entry (PRTE) function.  

4.1.5.1 Discover Routing Information 
The Discover Routing Information (DRI) function enables the discovery of routing information. This 
information comprises the set of destination IP address prefix that is carried in the Network Layer 
Reachability Information (NLRI) field of an UPDATE message, the actual path to this set of destinations 
in the AS_PATH attribute field of the same UPDATE message together with mandatory and optional 
attributes associated to this path. Optionally, the incoming routing information is filtered by means of 
inbound or import filters before being stored in the Adj-RIB-In.  

4.1.5.2 Determine Routing Path  
The Determine Routing Path (DRP) function performs by means of route selection function which 
applies either by enforcing selection rules on a set of (inbound filtered) routes stored in the Adj-RIB-
In. By means of this selection process, a single route per destination is selected, and stored in the Loc-
RIB. 

4.1.5.3 Produce Routing Table Entry 
The Produce Routing Table Entry (PRTE) function then derives a route from the selected route stored 
in the Loc-RIB and generates a Routing Table Entry (RTEs) from this route, together with the creation 
of an RTE or the update of an existing RTE in the Routing Table (RT).   
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4.2 Compact Unicast Routing 
Compact unicast routing aims to find the best tradeoff between the memory-space required to store 
the routing table (RT) entries at each node and the stretch factor increase on the routing paths it 
produces. Such routing schemes have been extensively studied following the model developed in 
[Peleg89]. Since then, in accordance to the distinction between labeled (nodes are named by 
polylogarithmic size labels encoding topological information) and name-independent (node names 
are named by topologically independent) compact routing schemes have been designed, notably in 
the AGMNT name-independent compact routing scheme [Abraham08]. In the context of this 
document (and more generally in the context of this project), It is important to note that the AGMNT 
name-independent compact routing scheme can not be considered in the framework of the current 
project because this compact routing scheme is centralized and static (instead of distributed and 
dynamic). Such scheme is thus by definition inapplicable for the Internet. The present section 
corresponds to an attempt of an adaptation of the AGMNT compact routing scheme into a distributed 
and dynamic setting. The question remains open if starting from another or even a new foundational 
scheme would provide a more suited answer to the fundamental tradeoff between routing path 
stretch - memory space consumption - computation complexity and adaptation/communication cost. 
 
The key idea of Compact Routing Scheme is to consider shortest paths routing tables for nodes in the 
close neighborhood and a path built with two shortest paths for nodes at a larger scale of distance. In 
the last case, the intermediate node is either called a landmark or corresponds to a node whose color 
is equal to the hash value of the destination (there exists such a node in the close neighborhood for 
every node). Each node has a color chosen among the set {1..k} and is able to use a balanced hash 
function h that assign a color for each node identifier. Note that the color of a node does not 
correspond in general to the color defined by the hash function. In order to built the tables dedicated 
to routing, each node of color X has to know its close neighborhood, the set of landmarks and nodes 
for which the hash value is X. The knowledge of shortest paths between these 3 categories of nodes is 
enough to get a routing with a stretch less than 3.  

4.2.1 Notation 
Throughout this section the following notation and terms are used: 
 

o Colors: we suppose as input a colored graph with k colors. Each node u has i) a color, in the 
set [1,k], denoted by c(u) and ii) a hash value, in the set [1,k], h(u) calculated from its 
identifier.  Note that there is no correlation between c(u) and h(u).  

 
o Landmarks: we consider a random set of nodes called landmarks L, which has size O(n/k) . 

One easy way to choose landmarks is to consider the set L = {u ∈ V | c(u) = 1}. Each node u 
has a closest landmark  L(u) ∈ L , the set of nodes that have chosen a node  l  as landmark is 
denoted  L-1(l) = { u ∈V | L(u) = l } . 

 
o Manager: we say that a node u such that R(u) = {v ∈ V | h(v) = c (u)}  ''manage'' nodes of  R(u) 

. 
o Vicinity Ball: Is the set of nodes B(u) close from u such that every k color is represented in 

B(u)  at least once. Note that a single node could belongs to several Vicinity Balls  B-1(u) = {v 
∈ V | u ∈ B(v)}.  

4.2.2 Hierarchical Decomposition 
The routing functional block can be decomposed in the following way. Each node maintains two 
tables (Topology Information Base (TIB) and Routing Information Base (RIB) of information concerning 
its environment. This two tables are maintained by discovery functions (discover routing information 
and discover topology information). Moreover, this tables are used to take routing 
decisions/selections (resolve, determine routing paths).  
The last functional block, pre-process, consists in functions that perform computations/associations of 
paths (i.e., converts paths to routes). This last function is used after discovering routing information to 
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fill routing tables. The next figures represent the hierarchical decomposition of the functional blocks 
composing a compact routing functional area. Each functional block is described more precisely in the 
following paragraphs and diagrams.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13: Hierarchical decomposition of compact routing 
 
i) Discover Topology Information (DTI) functional decomposition (see Fig.13.1): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13.1: Discover Topology Information (DTI) functional decomposition 
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ii) Discover Routing Information (DRI) functional decomposition (see Fig.13.2): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13.2: Discover Routing Information (DRI) function decomposition 
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iii) Pre-processing (PDAI) functional decomposition (see Fig.13.3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13.3: Pre-processing (PDAI) functional decomposition 
 
iv) Determine Routing Paths (DRP) functional decomposition  (see Fig.13.4): every node u needs to fill 
its topology information base (TIB) with necessary information for these three kind of nodes i) nodes 
in its vicinity ball, ii) landmark nodes, and iii) nodes it manages.  
 
In the following, we assume that the routing information base (RIB) contains lists of routing paths 
towards all the nodes recorded in the topology information stored in the TIB. The information needed 
is, for each of these nodes, at least one path, the distance to node u (length of the shortest known 
path), the node's color and the availability of the node. From this information, nodes can i) detect 
vicinity balls intersections (via some exchange of routing information), and ii) compute valid paths to 
known nodes and mark, as obsolete, paths that contain unavailable node. Then it is possible to order 
all the available (valid) paths by some preferential criteria like the shortest (example: select from 
paths that use landmarks or vicinity balls intersections), the path that uses the larger number of 
nodes of high degree, etc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13.3: Determine Routing Paths (DRP) functional decomposition 
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v) Produce Routing Table Entry (PRTE) functional decomposition: all the routing paths considered as 
valid will be stored as entry in the routing table with respect to the order of selection. Then all 
favorite routing paths will be used to derive entry that will be stored in the forwarding table.  
 
vi) Resolve Name to Locator / Coordinate (RNLC) functional decomposition: for each node v that 
does not fit in one of these three categories (vicinity ball, landmark nodes, nodes managed by node 
v), we need to use the name resolution in order to i) get a node's name that manages the node v (by 
using its hash value h(v)), and ii) get the next intermediate node in the path from a landmark to v (this 
could be sent by the source node in the header of the routing packet). 

4.2.3 Relation between Functional Blocks 
The next diagrams show the main relations between the functional blocks. We decided to focus on 
relations that are specific to AGMNT. In the original routing scheme, the description is static and 
centralized. Our goal is to extend the construction in a distributed and dynamic setting. We start with 
the following assumption: with a given frequency, neighbor nodes exchange their knowledge 
(TIB/RIB).  
 
 
 
 
 
 
 
 
 
 
 

Fig.14: Main relations between the functional blocks  
 
Another event can also change the knowledge of the current node: receiving a demand of routing, the 
node learns from the header of the routed message.  
 
i) Discover Topology Information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14.1: Relations of Discover Topology Information  
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A node u receives topology information from its neighbors:  
 

o After a node v has been detected as failed, a notification is sent to its neighbors; when node 
u receives notification that node v has failed:  

• If node v ∈ B(u), mark this node, and send a notification to Discover Routing 
Information in order to detect failed paths. Find a new node of color c(v)  to add to  
my Vicinity Ball (u need to wait for its neighbors to send their Vicinity Balls to be able 
to determine which v to choose). 

• If node v ∈ L, then all nodes from (R(u) ∩ L-1(v)) may not be reachable (if B(u) and B(v) 
don't intersect) and node u needs to wait for every node w from this set to send their 
new landmark (L(w)).  

• If node v ∈ R(u), mark this node as unreachable (it changes nothing for u) 
 

o Notification from a failed node v (meaning that this node is not down any more): unmark the 
node and send a notification to Discover Routing Information in order to restore failed paths. 

 
o Neighbor Vicinity Ball: Check my Vicinity to determine if there is any node that has to be 

added or removed? If nodes have to be removed, send notifications to Discover Routing 
Information in order to remove paths to these nodes from Routing Information Base. 

 
o Notification of existence from a node v  

• such that h(v) = c(u) : store topology information about this node and add it to R(u) 
call Composing and Compute routing paths in order to compute (composed) paths to 
this node. 

• such that for every node w of B(u) and c(w) = c(v), d(u,v) > d(u,w): add node w to u's 
Vicinity Ball. Then recomputed B(u) (remove potentially useless nodes in B(u)). 

 
o Vicinity Ball of a node v in (R(u) / B(u)): store B(v) and call the Composition/Mining function 

in order to determine if there is any Vicinity Balls intersection (it exists a shortest path from u 
to v, where all nodes are contained in (B(u) ∩ B(v))). 

 
o There is a new Landmarks v: if node u does not know this landmark, then store this new 

landmark and the distance to it. If this landmark is closer to node u than all others known 
since so far, mark it as node u's closest landmark (L(u) = v).  

 
Add to R(u) all nodes w from L-1(v) such that h(w) = c(u). Then call the Composition/Mining function. If 
there is new intersection discovered, then call the Compute routing paths function. 
 
When a node u discovers routing Information about a new path to a node, it checks if this node has to 
be added to node u Vicinity Ball B(u), it then calls the Composition/Mining function in order to 
determine new Vicinity Balls intersections; finally, it recomposes the routing paths (sequential or 
composite computation) by means of the Compute Routing Path function. 
 
ii) Discover Routing Information 
 
When a node u receives routing information from its neighbors:  

o Path to a node of B(u) or L(u): it stores the path and then call the Composition function.  
o Path from any node v of R(u) to L(v): it stores the composed path u → L(v) → v  and then 

calls the Composition function. 
Call the Resolve Routing Paths function for both these points in order to update routing tables for 
nodes u knows.  
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When a node u receives topology information by means of the Discover Topology Information (DTI) 
function, it computes new paths to the new nodes that node u knows from every received notification 
(node that has been added in B(u), R(u) for which node u does not know any path to it).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14.2: Relations of Discover Routing Information function 
 
iii) Composition 
 
After a node u has compute a new Vicinity Ball intersection with B(v) by means of the Mining 
function,  it calls the Compute routing paths function to compute each part of contiguous Vicinity Ball 
path and then composes the full routing path from node u to v (by composition of several simple 
routing paths stored in the Routing Information Base (RIB)). Finally, it stores the full routing path in 
the RIB and derives a route stored as an entry in the routing table. 
 
iv) Compute Routing Paths 
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Fig.14.3: Compute Routing Paths 
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4.3 Compact Multicast Routing 
Running compact multicast routing independently of the underlying unicast routing system would be 
beneficial to efficiently cope with the dynamics of large scale networks. This independence is even the 
fundamental concept underlying multicast routing schemes such as Protocol Independent Multicast 
[Fenner06]. Nevertheless, the scaling problems already faced when multicast routing received main 
attention from the research community, remain largely unaddressed since so far. Indeed, multicast 
currently operates as an addressable IP overlay (Class D group addresses) on top of unicast routing 
topology, leaving up to an order of 100 million of multicast routing table entries. Hence, the need to 
enable point-to-multipoint routing paths (for bandwidth saving purposes) while keeping multicast 
addressing at the edges of the network and build shared but selective trees inside the network.  
 
Recently introduced in [Abraham09], dynamic compact multicast routing algorithms construct point-
to-multipoint routing paths from any source to any set of destinations (or leaves). The tree 
determined by a point-to-multipoint routing path is commonly referred to as a multicast distribution 
tree (MDT) as it enables the distribution of multicast traffic from any source to any set of leaf nodes. 
By means of such dynamic routing scheme, MDTs can dynamically evolve according to the arrival of 
leaf-initiated join/leave requests. The routing algorithm creates and maintains the set of local routing 
states at each node part of the MDT. From this state, each node part of the MDT can derive the 
required entries to forward the multicast traffic received from a given source to its leaves. Two 
compact multicast routing schemes exist in the scientific literature i) the scheme proposed by 
I.Abraham, D.Malkhi, and D.Ratajczak (see [Abraham09]), referred hereafter to as AMR, and ii) the 
scheme proposed by P.Pedroso, P.Papadimitriou, D.Careglio (see [Pedroso11]), referred hereafter to 
as PPC.  
 
Formally, consider a network topology modeled by an undirected graph G = (V,E,c) where the set V, 
|V| = n, represents the finite set of nodes or vertices (all being multicast capable), the set E, |E| = m, 
represents the finite set of links or edges, and c a non-negative cost function c: E → Z+ that associates 
a non-negative cost c(u,v) to each link (u,v) ∈ E. For u, v ∈ V, let c(u,v) denote the cost of the path 
p(u,v) from u to v in G, where the cost of a path is defined as the sum of the costs along its edges. Let 
S, S ⊂ V, be the finite set of source nodes, and s ∈ S denote a source node. Let D, D ⊆ V\{S}, be the 
finite set of all possible destination nodes that can join a multicast source s, and d ∈ D denote a 
destination (or leaf) node. A multicast distribution tree Ts,M is defined as an acyclic connected sub-
graph of G, i.e., a tree rooted at source s ∈ S with leaf node set M, M ⊆  D.   

4.3.1 AMR compact multicast routing 
The authors present three different variants for compact multicast scheme: 1) static label-dependent, 
2) static name-independent, and 3) dynamic label-dependent. In the context of the present 
document, we are interested only in the third scheme.  

4.3.1.1 AMR scheme overview 
The scheme comprises two parts: 1) an off-line construction of a bundle Bk of sparse covers; 2) an on-
line construction of MDT supported by the sparse covers.  
 
The first part consists of the off-line construction of a bundle Bk of sparse covers TCk,2i, defined as Bk  
= {TCk,2i

 (G) | i ∈ I} with k = log(n). Sparse covers are grown from a set of center nodes c(Ti(v)) located 
at distance at most k2i from node v, where Ti(v) denotes the tree in the collection of rooted trees 
TCk,2i(G) that contains the ball B(v,2i). For each i ∈ I and T ∈ TCk,2i

 (G), the center node c(T(v)) of each 
node v ∈ T stores the labels of all nodes1 contained in the ball B(v,2i), the ball centered on node v of 
radius 2i. Further, the SPlabel(v) stores the label λ(T,c(T)) for every tree cover T ∈ B(v), defined as set 

                                                                 
 
 

1 For simplicity, we present here the label-dependent variant of the scheme. In the name-independence version, center 
nodes store label mappings from names to nodes. 
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of all covers T in the bundle Bk such that v ∈ T. In addition, each node v ∈ V stores the tree routing 
information µ(T,v) for all the trees in its own label SPlabel(v).  
 
The second part consists of the on-line construction of a new branch of an MDT. When a leaf node u 
desires to join an MDT, it first determines whether or not one of the MDT nodes is already included in 
its local tree routing information table. 
 

o If this is the case, it sends the join request to the center node c(Ti(v)) with minimum degree 
cover i ∈ I that is associated to that MDT node v. The center node c(Ti(v)) then passes the 
label µ(Ti(v),u) so that the selected MDT node v can forward the multicast traffic to the newly 
joining leaf node u (without further propagating this label to the source node s). 

 
o Otherwise (some the leaf node covers define an empty intersection with the MDT), the leaf 

node u with SPLabel(u) queries the source node s to obtain the set of MDT nodes it currently 
includes. Among all index i ∈ I, it then selects the tree Ti*(v) whose intersection with its 
bundle B(u) is minimum. Once the node, say v, part of this intersection is selected (Ti*(v) ∈ 
B(u)), leaf node u directs the join request to the associated center node c(Ti*(v)). The latter 
passes a label µ(Ti*(v),u) so that the selected node v can forward the incoming multicast 
traffic to the newly joining leaf node u.  

 
In both cases, in order for the source node s to reach node u, node v has to propagate the tuple 
[v,c(Ti*(v)),µ(Ti*(v),u)] to the source s. The leaf node u updates all nodes covered by its balls B(u,2i) to 
allow them joining the MDT at node u.  

4.3.1.2 Hierarchical decomposition 
The construction of the sparse covers requires the knowledge of the network topology. Sparse covers 
can be computed off-line and configured statically or discovered by means of the DTI and DRI function 
and further composed by means of the PDAI function. In addition, any change of the topology may 
require recomputing the sparse covers. It also requires the DRP function to compute the tree covers 
for each node which means that each node stores the tree routing information and creates RT entries 
accordingly (PRTE function). Moreover, center nodes must store the labels of all nodes contained in 
their balls (PRTE function). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15: Hierarchical decomposition for the AMR compact multicast routing scheme 
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The on-line construction of a new branch of an MDT requires thus the discovery and the selection of 
the path (DRP function) from the joining node u to the most appropriate center node which in turn 
selects an appropriate label for the source node. Such join event requires the updates of all nodes in 
the ball of the joining node (PRTE function) and source node updates its forwarding table. 

4.3.1.3 Functional Block diagrams 
Regarding the block diagram, the AMR makes use of all general block diagrams discussed in Section 
1.3.1. As commented above, the bundle of sparse covers can be uploaded in the nodes off-line or DTI, 
DRI and PDAI functions may be required as well as the DRP function to determine the tree covers for 
each nodes. In addition, if a change occurs in the network topology, the DTI and DRI functions require 
rediscovering the topological change and, in turn, recomputing the sparse covers and trees routing 
information. It means that each node stores the tree routing information and creates RT entries 
accordingly (PRTE). Moreover, center nodes must store the labels of all nodes contained in their balls 
(PRTE). The joining node u selects or computes (using the DRP function) the routing path from u to 
the center node c(Ti*(v)) associated to the selected node v (either directly or after query the source 
node s and find the set of nodes in MDT). The latter then sends a label µ(Ti*(v),u) to the node v 
belonging to MDT in order to forward multicast traffic to node u. Finally, in the name-independent 
version of the AMR scheme, application of the RNLC function is required to perform the node name to 
locator (label) resolution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16: Functional blocks for the AMR compact multicast routing scheme 
 
i) Discover Topology Information (DTI) function (see Fig.16.1): the construction of the sparse covers 
requires the global knowledge of the topology. It can be done off-line or by a DTI function. Moreover, 
the DTI function is required each time a topology change occurs. 
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Fig.16.1: Discover Topology Information (DTI) function for the AMR compact multicast routing scheme 
 
ii) Discover Routing Information (DRI) function (see Fig.16.2):  the construction of the tree routing 
information for all the trees in each node and the creation of the new branch for the joining node 
require the DRI function which implies both the exchange of the routing information and the 
operation of the routing information base. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16.2: Discover Routing Information (DRI) function for the AMR compact multicast routing scheme 
 
iii) Pre-process Discovered and Associated Information (PDAI) function (see Fig.16.3): the PDAI 
function requires the composition of topology and routing information to create the bundle of sparse 
covers, to define the center nodes, and the construction the tree routing information. 
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Fig.16.3: Pre-process Discovered and Associated Information (PDAI) function for the AMR compact multicast routing scheme 
 
iv) Determine Routing Path (DRP) function (see Fig.16.4):  the DRP function is required to compute 
the tree routing information for the trees of the sparse covers and to compute the best tree cover 
that include a node of the MDT. Moreover, using the DRP function, the joining node u selects or 
computes the routing path from u to the center node c(Ti*(v)) associated to the selected node v. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16.4: Determine Routing Path (DRP) function for the AMR compact multicast routing scheme 
 
v) Produce Routing Table Entry (PRTE) function (see Fig.16.5):  once node u selects the node v that 
belongs to the multicast distribution tree, relative MRIB entries are created so as to propagate the 
join message from node u to its associated center node c(Ti*(v)). Upon reception of the label 
µ(Ti*(v),u) node v belonging to MDT creates a routing table entry so as to direct incoming multicast 
traffic to the newly joining leaf node u. Moreover, a routing table entry is created by each node 
belonging to the balls B(u,2i) of joining node u and at source node s. 
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Fig.16.5: Produce Routing Table Entry (PRTE) function for the AMR compact multicast routing scheme 
 
vi) Resolve Name to Locator / Coordinate Resolve (RNLC) function: in the name-independent version 
of the compact multicast routing node a resolution function is required to translate node name to 
locator (i.e., topology dependent label). 

4.3.2 PPC compact multicast routing 
PPC is a name-independent compact multicast routing algorithm for leaf-initiated, distributed and 
dynamic construction of MDT. The objective of this scheme is to minimize the routing table (RT) size 
at each node v ∈ V, |V| = n, at the expense of i) routing multicast packets on point-to-multipoint 
paths with relative small deviation compared to the optimal stretch obtained with the Steiner Tree 
(ST), and ii) higher communication cost compared to the shortest path tree (SPT). For this purpose, 
the PPC algorithm reduces the storage of routing information by maintaining during the MDT 
construction the direct neighbor-related entries per node v, i.e., only the local routing information 
(degree(v) entries) instead of global routing information (|n-1| entries). 

4.3.2.1 PPC scheme overview 
Let consider a node u joins the multicast distribution tree Ts,M, where M ⊆ D corresponds to the 
current set of nodes part of the MDT, and D the possible set of destination nodes. If node u is already 
part of Ts,M  (u ∈ VT) then it is either a transit or a branching node of the MDT. Otherwise, node u is 
not part of Ts,M  (u ∈ D \ VT) and it must search for the least cost branching path from node u to node v 
∈ Ts,M. Among the set Pu,v of possible paths p(u,v) from node u ∉ Ts,M to node v ∈ Ts,M, the least cost 
branching path p(u,v)* is defined as follows: p(u,v)* = min{c(u,v) | p(u,v) ∈ Pu,v}. In this equation, the 
cost c(u,v) of the path p(u,v) is defined as the sum of the cost c(u,w) of the edge (u,w), where 
w=succ(u) refers to the upstream neighbor node of u, and the cost c(w,v) of the path p(w,v). When 
each node along the least-cost branching path p(u,v)* from leaf node u to v ∈ Ts,M determines its 
upstream neighbor node along that path, leaf node u can send to its selected upstream neighbor 
node a request message to join Ts,M. The join message is relayed along the selected least-cost 
branching path p(u,v)* until it reaches node v ∈ Ts,M. Once node u has joined Ts,M, u ∈ VT, the set M 
comprises node u.  
 
To reduce the number of messages (and thus the communication cost), the discovery process is 
divided into two parts: 

o Local search: consists in a limited search within a certain perimeter around the joining leaf 
node u. The contiguous set of nodes covered by the local search is called the vicinity ball B of 
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node u, B(u). If node u declares the multicast source s unreachable at the end of this local 
search (i.e., none of the MDT nodes belongs to B(u)), it then starts the global search. 

o Global search: consists in searching of an MDT's branching node outside the vicinity of the 
joining leaf node. 

 
In addition, as the most costly searches are resulting from the initial set of leaf nodes joining the MDT, 
each source constructs a source ball B(s) such that when a message reaches the boundary of that 
domain it is directly routed to the source. The size shall be at least as big as the average leaf node 
size. Each node in the vicinity ball of the source node s, must now maintain an additional MRIB entry 
to relay discovery messages towards the source node s. 
 
At the end of this process, routing table of each node v ∈ Ts,M  (v ∈VT) includes i) one routing table 
entry (stored in the multicast routing information base or MRIB) that indicates the upstream neighbor 
node to which the join message is/to be sent for each source node s; this locally stored information 
enables performing Reverse Path Forwarding check so as to ensure loop-free forwarding of the 
incoming multicast packets, and ii) one multicast traffic routing entry (stored in the tree information 
base or TIB) to enable forwarding of incoming multicast traffic (generated from that source s) from its 
incoming port to a set of outgoing ports.  

4.3.2.2 Hierarchical decomposition 
The information needed by the joining node u to reach the multicast distribution tree Ts,M  sourced at 
node s is acquired by means of a search mechanism (DRI) that returns the upstream neighbor node 
along the least cost branching path (DRP function) to the MDT. Consequently, no off-line construction 
is required. After a node becomes member of the MDT, nodes involved in the least cost branching 
path stores i) one routing table entry (stored in the multicast routing information base or MRIB) that 
indicates the upstream neighbor node to which the join message is sent for each source node s (PRTE 
function); 2) one multicast traffic route then derived and the corresponding entry generated that is 
stored in the tree information base (PRTE function); a forwarding entry is then derived that allows to 
forward the incoming multicast traffic (generated from that source s) from its incoming port to a set 
of outgoing port directed toward the leaf nodes of the multicast distribution tree. Finally, as 
commented above, the source node constructs a vicinity ball (PDAI and DRI function).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.17: Hierarchical decomposition for the PPC compact multicast routing scheme 
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4.3.2.3 Functional Block diagrams 
Regarding the block diagram, the PPC makes use of the DRI and PDAI functions to create the vicinity 
ball of source node s and create the RT entries (PRTE) in the nodes in this ball. Also, it uses the DRI 
function to discover and compute the least cost branching path (DRP) from joining node u to the node 
v belonging to the MDT and creates the RT entries (PRTE) accordingly in the path between u and v. As 
commented above, the discovery process is divided into two parts, local and, if it fails, global search. 
To start the global search from the border of the vicinity ball of the local search, temporary paths are 
computed from u to vicinity edge nodes. Finally, PPC is a name-independent routing scheme, so RNLC 
is required to perform the node name to locator resolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18: Functional blocks for the PPC compact multicast routing scheme 
 
i) Discover Routing Information (DRI) function: the PPC routing scheme is based on a discovery 
process that collects the needed routing information to subsequently enable the computation of the 
least cost branching path from joining node u to a node v which belongs to the MDT. Moreover, 
during the pre-process, source node s determines the source ball through the exchange of routing 
information which also entails the operation in the MRIB and the computation of the routing path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18.1: Discover Topology Information (DTI) function for the PPC compact multicast routing scheme 
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ii) Pre-process Discovered and Associated Information (PDAI) function: according to the hierarchical 
decomposition shown previously, the PPC routing scheme uses the PDAI function to determine the 
source ball of source node s. This operation is performed through a discovery process initiated at the 
when a given node decides to join the multicast distribution tree for the source s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.18.2: Pre-process Discovered and Associated Information (PDAI) function for the PPC compact multicast routing scheme 

 
iii) Determine Routing Path (DRP) function: the computation of the routing path from node u to node 
v is performed sequentially together with a selection process: each node selects as next hop the 
neighboring node along the least cost branching path (sum of the cost received from the neighbor to 
the node v belonging to the multicast distribution tree and the cost to reach that neighbor). After this 
selection an MRIB entry is created along the least cost branching path from allowing node u to initiate 
a join message towards node v. Moreover, there is an execution of the DRP function during the 
determination of the source ball. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Fig.18.3: Determine Routing Path (DRP) function for the PPC compact multicast routing scheme 
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iv) Produce Routing Table Entry (PRTE) function: after the least cost branching path selection process 
completes, an MRIB entry is created allowing the join message initiated by node u to reach node v 
(that belongs to the multicast distribution tree). At each node along this path, after reception of the 
join message initiated by node u, a multicast traffic routing entry (stored in the tree information base 
or TIB) is created to enable forwarding of incoming multicast traffic (generated from that source s) 
from its incoming port to a set of outgoing ports.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.18.4: Produce Routing Table Entry (PRTE) function for the PPC compact multicast routing scheme 
 
4.4 Geometric Routing 
In geometric routing, nodes are assigned coordinates in a metric space, and these coordinates are 
used as addresses to perform point-to-point routing in this space.  Geometric routing finds its roots in 
the research efforts directed towards the specification of lightweight routing protocols for wireless 
meshed environments. However, topologies of wireless networks comprises of the order of 10 to 100 
nodes and show exponential node degree distribution compared to the Internet which comprises of 
the order of 10k autonomous systems (and of the order of 100k nodes) with a power-law degree 
distribution. Moreover, the Internet size and scope render the deployment of new network 
technologies, and in particular, new routing schemes, extremely challenging. Henceforth, applicability 
of geometric for Internet routing is still an open research area for which many variants have been 
proposed over last decade. 

4.4.1 Geometric Routing on Greedy Embedding  
A greedy embedding of an undirected graph G=(V,E) in a metric space (X,d) is a mapping function f: 
V(G) → X with the following property: for every pair of distinct vertices s, t ∈ V(G) there exists a 
vertex u adjacent to s such that d(f(u),f(t)) < d(f(s),f(t)). The embedding and thus the mapping function 
f is distance preserving if ∀ x, y ∈ V(G), dG(x,y) → dX(f(x),f(y)).  
 
Following this definition, a greedy embedding of a graph G in a metric space (X,d) is a mapping of G in 
(X,d) such that a distance decreasing path exists between every pair of vertices in G (a distance 
decreasing path from s to t in a greedy embedding of G is a path (s = v1, v2, .., t=vk) such that d(vi,t) > 
d(vi+1,t), for i = 1, 2, .., k-1, see [Papadimitriou05]. Greedy routing can thus be seen as a natural 
abstraction of geometric routing in which nodes are assigned virtual coordinates in a metric space, 
and these coordinates are used as addresses to perform point-to-point routing in this space (along 
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the most distance-decreasing path). The main challenge in greedy routing consists in finding the 
appropriate mapping function f together with a polynomial-time algorithm for embedding V(G) in the 
space X so as to allow for greedy routing using the metric d associated to that space.  

4.4.1.1 Geometric Routing on Greedy Embedding in the Hyperbolic Plane 
Introduced by R.Kleinberg in 2005 [Kleinberg05], greedy embedding in hyperbolic metric space was a 
crucial step in search of means to overcome known limitations of geometric routing on undirected 
graph G = (V,E) embedded in the Euclidean space. Advancing his work on Internet topology 
embedding in hyperbolic spaces, R.Kleinberg further demonstrated in 2007 that every connected 
finite graph has a greedy embedding in the hyperbolic plane [Kleinberg07]; however, the 
reconstruction such embedding upon topology modification (link and/or node joining or leaving the 
topology) still requires O(n) operations per update. Indeed, the main challenge in greedy routing does 
not only consists in finding the appropriate mapping function f together with a polynomial-time 
algorithm for embedding V(G) in the space X but also updating this embedding over time so as to 
prevent performance degradation of greedy routing. 
 
In this greedy routing scheme, referred to as Kleinberg greedy routing, every node is assigned a 
coordinate in Hyperbolic Plane and the routing is performed with respect to the coordinates of the 
destination and neighbors of a node. Using the coordinates, a node decides to forward the packet to a 
neighbor which is closer to the destination than others. Using greedy embedding for coordinate 
determination, avoids the situation that a packet gets stuck in a local minimum. Robert Kleinberg 
proved that every connected finite graph has a greedy embedding in Hyperbolic Plane. In order to 
apply the Kleinberg’s approach in a network and calculate the coordinates of nodes next steps should 
be followed. 

1- First a spanning tree of the network should be constructed 
2- Then the maximum degree (d) of this tree is determined 
3- Finally infinite d-regular tree in hyperbolic plane is generated and every node in the spanning 

tree is labeled with the corresponding coordinate of the d-regular tree node. 
 
The functional process of this greedy routing can be decomposed to the following processes. Fig.19.1 
depicts the hierarchical decomposition of the greedy routing functional area. 
 
 
 
In the following figures, the first and second level of functional block diagram for the explained greedy 
routing function is depicted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.19.1: Hierarchical decomposition of the Kleinberg greedy routing scheme 
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In its base version, this variant of greedy routing makes sequentially use the following functional 
blocks: i) the Discovery Topology Information (DTI) function, the ii) the Pre-process function, the iii) 
the Discover Routing Information (DRI) function, and the Produce Routing Table Entry (PRTE) function. 
The Determine Routing Path (DRP) function is not used by this routing scheme. Indeed, incoming 
traffic forwarding relies at each node on the locally stored coordinates of its neighbors obtained by 
means of the Discover Routing Information (DRI) function. This information is required to compute 
the distance of every neighbor to the destination node and select the neighbor node along the most 
distance-decreasing path to the destination.  
 
The Discover Topology information (DTI) functional block is composed of two blocks (see Fig.19.2): 
the Link connectivity monitoring and (block 1.1) and the Neighbor discovery (blocks 1.2). Topology 
Information of this block is the input for Pre-process block. This information is used for construction 
of the spanning tree which is needed for coordinate determination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.19.2: Discover Topology Information (DTI) block of the Kleinberg greedy routing scheme 
 
The Pre-process function receives information about the topology of the network and uses this 
information to generate a spanning tree of that network used for coordinate calculation. Therefore, 
the Pre-process functional block (blocks 3) comprises three functional blocks (see Fig.19.2):  

i) The Spanning tree interaction and determination (block 3.1): a distributed method used to 
construct the required spanning tree. As some studies showed that low depth and high 
degree in spanning tree result in a higher quality greedy routing in terms of stretch and 
robustness, the goal of the spanning tree generation algorithm is to construct such a 
spanning tree. In this method some local spanning trees are generated which means that at 
some point of the time we have a spanning forest of the network, then based on some rules 
these spanning trees merge together. The algorithm works in such a way that the final 
spanning tree is rooted at the node with maximum degree and the tree has minimum depth 
from this root; 

ii) Knowing the root node of the spanning tree, the Coordinate system bootstrapping (block 
3.2) starts the calculation of the coordinates; 

iii) Upon spanning tree construction, every node knows its parent and its children in the tree. 
Receiving some coefficients from the parent, every node is able to calculate its coordinate 
and the required coefficients for its children by means of the Coordinate computation block 
(block 3.3).  
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Fig.19.2: Pre-process block of the Kleinberg greedy routing scheme 
 
A distributed method is used to construct the required spanning tree (block 3.1). As some studies 
showed that low depth and high degree in spanning tree result in a higher quality greedy routing in 
terms of stretch and robustness, the goal of the spanning tree generation algorithm is to construct 
such a spanning tree. In this method, depicted in Fig.19.3, some local spanning trees are generated 
(block 3.1.1) which means that at some point of the time we have a spanning forest of the network, 
then based on some rules these spanning trees merge together (block 3.1.3). The algorithm works in 
such a way that the final spanning tree is rooted at the node with maximum degree and the tree has 
minimum depth from this root. 
 
In greedy routing, Routing Tables are not required any more to enable traffic forwarding. Instead of 
producing Routing Table entries, every node locally stores the coordinates of its neighbors in order to 
calculate the distance of every neighbor to the destination node. For this purpose, after coordinate 
determination (block 3), each node exchanges the coordinates of its neighbors coordinates by means 
of local discovery of routing information (block 2). As depicted in Fig.19.4, this block is composed of 
two functional blocks. Using this local information, each node can populate its neighbor (coordinate) 
table by means of the Produce Routing Table entry (PRTE) function (block 4).  
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Fig.19.3: Pre-process sub-blocks of the Kleinberg greedy routing scheme 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.19.2: Discover Routing Information (DRI) block of the Kleinberg greedy routing scheme 
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5. Information Model 
Information model enables to represent the properties, relationships, constraints, rules, and 
operations in order to formally specify the information semantics for a given application domain/area. 
Hence, an information model is also referred to as semantic information/data model or conceptual 
data model.  
 
Different methods exist for developing an information model. Among these methods, the entity-
relationship (E-R) approach that expresses in terms of entities, the relationships (or associations) 
among these entities, and the attributes (properties) of both the entities and their relationships 
[Chen76]. The ultimate goal of applying such model is to capture as much of the meaning of the 
information (semantic) as possible so as to obtain a better design that is scalable and easier to 
maintain.   
 
The E-R model in its original form does not support specialization/generalization abstractions (also 
termed hierarchies). The E-R model has been extended to include all modeling concepts of basic ER 
with additional concepts: set-subset relationships (sub-classes/super-classes), specialization/ 
generalization, categories, and attribute inheritance. The resulting model is called the enhanced-ER or 
Extended ER (E2R or EER) model. It is used to model applications more completely and accurately if 
needed. 
 
The E-R model is the most commonly used information model. Hence, we will also make use of this 
model following the objectives of this document in terms of modeling the routing system information; 
this will requiring that following conditions are met by the information modeling technique: 
 

o The information model should be encompass most of existing routing protocols (e.g., path 
vector routing, distance-vector routing, link-state routing) but also routing protocols that will 
be developed in the EULER project context (e.g., compact routing, greedy routing and their 
variants). 

 
o The information model should be flexible enough to facilitate different interfaces and 

accommodate other data models that may have a different logic. Different relationships 
between the entities may determine different interfaces.   

 
o The information model should be easy to be implemented in real world. We talk here 

generically about any implementation, whether on the Internet or other kinds of networks 
where a routing scheme is needed, although the Internet is the primary target for us. By 
easiness of implementation, we mean in terms of technicalities than in terms of economic 
concerns or compatibility with previous protocols. By definition, the architectural complexity 
measures the complexity of architecture proportionally to its number of components (in the 
present case objects/entities) and the interactions (relationships) among these components. 

 
5.1 Information Model for Routing 

5.1.1 Information Model: Entity-Relationship Diagram 
We represent the different kinds of information manipulated by the routing scheme and how they 
relate to each other by an entity-relationship diagram.  
 

o The orange boxes represent the entities, which are the various kinds of information 
 

o The green diamonds represent the relationships between the entities 
 

o The ellipses represent the attributes of entities or relationships. Every entity has a key 
attribute: we may see the information type as a database of some sort, where one of the 
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attributes serves as a key. A piece of information is requested through its key attribute, and 
the other attributes are then delivered. For instance, given a destination, one may request 
the corresponding entry of the routing table and get the next hop, etc.  

 
Note: Some relations may themselves have attributes. For instance, the 'Select' relation may 
be based on several selection criteria: smallest cost, smallest number of hops, or various 
policies of administrative nature.  

 
o When the relationship between two entities is directed (non symmetric), an arrow indicates 

the direction on the line between the entity boxes and the relationship diamond. 
 

o The relationships are possibly not just binary. The arrow indicates the directionality, and a 
number on the arrow indicate the arity: m and n on the extremities mean m-to-n arity for 
the corresponding information entities based on specified relationship, etc.  

 
Let us consider what occurs, generically, when a routing scheme seeks to locally construct or update 
the routing table at each node. Note that the nodes in the routing system are distinguished by their 
IDs. Information exchanged with the rest of the system through Exchanged Information Units (EIUs) 
gives the node a (partial) view on how the rest of the system is constituted or has been recently 
modified. These Discovered Information Units fall into two categories: Routing Information or 
Topological Information. The former is typically composed of pieces of the other nodes' routing tables 
that contain the necessary information how a message at current node can be routed to others. The 
latter provides information on how the nodes are connected to each other. Topological information 
may be of two types: either local (what happens in a neighborhood of the node) or global (which 
involves transit of information from far away in the network). Note that topological information may 
contain proper topological attributes (existence or not of links, etc.) but also traffic-related attributes, 
indicating how traffic is handled on specific links. The messages used to construct and compute the 
corresponding information could be a combination from several different information units. The 
Routing Information Base input (RIB in) is the place used to store all routing information which does 
not specify any particular routing algorithm or protocol. Similarly, Topology Information Base (TIB) 
stores all topology information without respect to any particular routing protocol. Based on the 
employed routing protocol, the routing information in RIB, the topology information in TIB and the 
structured information, a routing path can be produced. Consequently, it also derives the routes 
which are the transmissions of output from the employed routing protocol. In order to optimize the 
system performance, a subset of routes (Selected Route) will be selected (e.g., based on some 
metrics) to generate the routing table entries that are part of the routing table. The raw information 
collected on the topology and routing tables of the rest of the network is now treated and structured 
into Structured Information Units (e.g., existence of specific shortest paths, trees, etc.), which are 
used  to compute the entries of the routing table.  
 
Depending on the routing scheme, the raw discovered information units may be mined (i.e., only 
features are extracted and dominant features selected) or embedded (into a space where the 
information appears in a more usable way, see for instance, greedy routing on a hyperbolic space), to 
compose Supplementary Information, helping to compute the routing table entries. The information 
obtained by the node may also be transferred to other nodes, of course, in order to help them 
manage their own routing table. Information exchanged with the routing system may also be a packet 
to be transferred, of course. Then, essentially, the destination is read and the routing table is 
consulted to find the next hop.  
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Fig.20: Generic Entity-Relationship Model 
 
After this general description, we now detail more systematically the entities and relationships 
composing the entity-relationship model. 

5.1.1.1 Entities 
The following entities are comprised in the entity-relationship model: 
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o Exchanged Information: information exchanged and communicated between routers part of 

the routing system. The exchanged topology information is structured in units, referred to as 
exchanged information units (EIU). 

o Discovered Information: a crucial entity of the information model; this information is used to 
compute and/or select routing paths. 
• Topology Information: includes pattern of interconnections of the various network 

components (e.g., node and links) which can be either physical or logical, i.e., the 
information related to local and remote interfaces (and their properties), incident links 
(and their properties), nodes adjacent to incident links (and their properties) as well as 
non-local environment information including remote links and (abstract) nodes. The 
discovered topology information is structured in units, referred to as topology 
information units (TIU). Topology information attributes are detailed in Fig.20.1. 
Moreover, topology information can be further sub-divided into. 

o Local (Neighbor) Information: entity denoting the information about the 
topology of the network is the immediate neighborhood of the local router. 

o Global (Network) Information: entity denoting the non-local information about 
the topology of the network for the corresponding router.  

• Routing Information: includes non-local distances (or information to derive these 
distances) and/or paths (segments) together with their attributes. The discovered 
routing information is structured in units, referred to as routing information units (RIU). 
Topology information attributes are detailed in Fig.20.2. 

o Topology Information Base (TIB) Entry: entity comprising a given topology information unit. 
o Topology Information Base (TIB): structured entity comprising the collection of the locally 

stored TIB entries.    
o Routing Information Base (RIB) input: structured entity comprising all input (discovered or 

configured) routing information; in case of BGP, this information includes routing paths and 
associated attributes). 

o Structured Information: information resulting from the application of a combination of the 
following operations to the topology information and/or routing information: composition 
(combination of topology and/or routing information so as to build more complex topology 
and/or routing information (called structures), embedding/mapping, and mining 

o Routing Path: the path resulting from local computation (output of the computation 
algorithm which is in most cases is routing protocol dependent) or filtering. The attributes of 
this entity are protocol dependent. Generically, we have a key navigation attribute, which 
contains the information about the direction to follow in order to reach the desired 
destination(s), a list of metric attributes, which quantify the different possible paths to 
follow, and an optional temporal attribute. The navigation attribute is typically composed of 
a vector (e.g. path vector or distance vector) characterizing a set of possible destination, and 
a data structure composed of nodes (e.g., tree, list, etc.) containing enough information to 
retrieve a way to reach the destination. The metric attributes can of topological (number of 
nodes/routers, autonomous system, etc.), traffic engineering (bandwidth, delay, failure 
probability, etc.) or administrative (cost, color, etc.) nature. 

o Route: entity resulting from the routing path(s) output of the computation algorithm 
(route(s) are derived from routing paths) that is used to route the traffic/messages from the 
source to the destination. Among its attributes, the metric values constituting quantitative 
criteria on which the selection of particular routes is based. For example this may be the 
number of hops to destination. The destination attribute may itself have attributes (not 
shown on the diagram), such as the nature of the destination: is the destination referred to 
by a locator or an identifier? Depending on the protocol, other attributes may also be added. 

o Selected Route: a subset of routes resulting from the application of route selection criteria 
(metric-selection, qualitative-selection, etc.). The attributes are of the same type as Routes. 
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o Routing Information Base (RIB) entry: structured entity derived from the (selected) route; its 
attribute include the destination, the local outgoing interface identifier together with other 
optional attributes such as the routing protocol (that generated the entry), the age of the 
entry, the route attributes and metrics, etc. 

o Routing Information Base (RIB): the indexed collection of RIB entries  
o Routing Information Base (RIB) output: structured entity comprising all locally computed 

and/or selected routing information (i.e., routing paths). 
o Routing Table Entry: a structured entry part of the Routing Table that lists the route(s) to 

particular destination and the metrics associated with those routes. The routing table 
contains information about the topology of the network immediately around it. The routing 
table is used to determine that the forwarding or next-hop router according to specific 
routing protocols. We may find such entries as constructed by the protocol, or entries 
computed according to other protocols (obtained from the past, or exchanged with the rest 
of the system, etc.) 

o Routing Table:  the indexed collection of routing table entries.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.20.1: Routing and Topology Information Attributes 
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5.1.1.2 Relationships 
The meaning of most relationships is self-explanatory. It should be noted that the meaning of some 
relationships overlap to some extent. For instance Filter or Select both refer to the fact that the 
destination of the relationship is a carefully chosen part of the origin of the relationship. 
 
The 'Compose', 'Map/embed' and 'Mine' relationships can be seen as particular cases where the 
destination of the relationship has an intricate dependency on the origin, showing that the 
destination has been obtained from the origin after a computation. 'Compose' bundles several pieces 
of information into one new piece, 'Mine' extracts a partial but particularly relevant information from 
a mass of raw information (example: extract an optimal spanning tree from a graph), and 
'Map/embed' represents an information as another kind of information (example: in greedy routing, 
we embed the graph into a geometric space, thus nodes become geometric points, cost become 
lengths, etc.). 
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5.2 Application of the Generic Information Model  
This section provides several examples of application of the generic information model detailed in 
Section 5.1. For this purpose, we refer to the following routing schemes: BGP path-vector routing 
protocol, compact unicast routing greedy routing (on greedy embedding of the observed Internet 
topology and on a constructed Internet topology), and information routing. These examples are 
provided to demonstrate applicability of the proposed generic information model (and not to delimit 
a subset of routing schemes and algorithms that will be developed in the context of the EULER 
project). 

5.2.1 BGP Routing Protocol 
We consider here the base BGP routing protocol as specified in RFC 4271 and outlined in Section 
4.2.1.  Using the generic information model, the BGP specific information model is depicted in Fig.21.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.21: Generic Entity-Relationship Model applied to BGP 

5.2.2 Compact Routing  
The generic information model depicted in Fig.20, can be used to model the properties, and 
relationships between the different entities involved in compact routing. The examples provided in 
this section includes a distributed version AGMNT Compact Routing Scheme   
 
For this purpose, the general information model we develop in this section does not assume 
centralized computation step (of the routes or other structures required by the routing scheme), and 
implies distributed manipulation of information. It must be underlined here that the AGMNT compact 
routing scheme as such is not distributed (but centralized and static). Indeed, this routing scheme 
provides no distributed way to compute tree-routes as the scheme heavily relies on both local tree 
routing (in vicinity ball) and global tree routing (landmark trees) but also vicinity balls, etc.. The 
present section describes what a distributed version of AGMNT would or should look like, leaving 
unspecified the exact way topology and/routing information is gathered. 
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5.2.2.1 Preliminaries 
To clarify the presentation, we introduce key concepts and terminologies from the AGMNT compact 
routing scheme. 
 

o Vicinity Balls: for any integer k ≥ 1, and for a node u ∈ V, the vicinity of u, denoted by Bk(u) is 
the set consisting of u and the k closest nodes to u. An essential property of vicinities is that 
if v ∈ Bk(u) and w is on a minimum cost path from u to v, then v ∈ Bk(w). In other words, the 
vicinity ball for a node contains a bounded size of the nodes around itself.   

 
o Coloring: the nodes are participated into different color-sets properly such that each color-

set has a bounded size and every node has in its vicinity at least one node from each color-
set. We also assume a mapping h from node names to colors. Each node u should be able to 
compute h(t) for any destination node t. 

 
o Landmarks: designate one color to be special and call it the landmark color. A landmark node 

refers to a node colored by the landmark color.  
 
Note that the vicinity ball for each node has a bounded size and contains at least one landmark node.   

5.2.2.2 Outline of AGMNT Compact Routing 
 
The AGMNT compact routing scheme consists of two phases: pre-processing phase and routing 
phase.  
 

i) In the pre-processing phase, each node will compute and store the necessary information on 
how to route the message to the nodes within its vicinity ball (e.g., minimum spanning trees) 
and the nodes with exactly same color (e.g., labeled routing schemes) in a minimum cost 
path. Consequently, the landmark nodes have the knowledge how to route the message 
between them in a minimum cost path. 

 
ii) In routing phase, the source node will route the message to the destination node based on 

the information stored in its header, corresponding landmarks and the inter-media nodes on 
the selected routing path. There are three cases to select the routing path. 

 
The AGMNT compact routing scheme operates as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.21: Routing paths in AGMNT compact routing scheme 
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i) If destination t ∈ B(u) or t  ∈ L (t is a landmark node) or c(s) = h(t) (informally this means that nodes 
s and t are assigned the same color), then node s routes to t using its own routing information: 
 

(1) If the destination node t is inside of the source vicinity ball (intra-vicinity ball routing) 
 Then source s routes on a minimum cost path directly to the destination node t. 
 

(2) If the distance of the vicinity balls between source and destination nodes is far apart (inter-
vicinity ball routing), i.e., On every minimum cost path from s to t there is a node y such that 
y ∉ B(s) and y ∉ B(t). 
Then the source s routes along a minimum cost path the message to the landmark node lt 
included in the vicinity ball of the destination t. Then, the message will be delivered on a 
minimum cost path directly to t from lt. (s → z → lt → t). Note that source node s can directly 
route the message to destination node t along a minimum cost path based on its own 
information if both nodes s and t are in the exactly same color-set. 

 
(3) If source and destination nodes vicinities are close but their vicinity balls do not intersect but 

are contiguous (inter-vicinity ball routing between contiguous balls) 
Then the source s routes the message to a node x along a minimum cost path such that x is 
within node s vicinity ball and there exists a node y such that y belongs to the destination t 
vicinity ball and node x can directly communicate with node y, e.g., (x,y) ∈ E. Then the 
message is forwarded to node y. Finally, the message is delivered on a minimum cost path 
from node y to t (s → x → y → t). 

 
ii) Otherwise, node u forwards the packet to node w ∈ B(u) such that c(w) = h(t). Then from node w 
the packet goes to node v using node w’s routing information. 

5.2.2.3 Information model for AGMNT compact routing 
 
Fig.22 illustrates the E-R information model for the AGMNT compact routing scheme. The entities 
comprised in this model are the following: 
 

o Exchanged Information: entity denoting the units of information that are communicated 
between nodes. 

 
o Discovered Information: comprises both topology and routing information 

• Topology Information:  
o Local (Neighbor) Information: set of neighbors in node's u vicinity ball B(u)  
o Global (Network) Information: set of nodes in node's u vicinity ball B(u), the 

nodes with the same color as node u, and landmark nodes 
• Routing Information Unit: shortest path to corresponding nodes (e.g., all nodes in B(u) 

and landmark nodes) 
 

o Structured Information (also referred to as supplemental information): resulting from the 
application of mining and composition 

• Mine: color of each node (and all nodes with the same color as node u), but also 
doubling dimension and other network topology properties 

• Compose: vicinity ball B(u) 
 

o Routing Table Entry: each node u stores the following routing information  
• ∀ v ∈ B(u), minimum cost routing path to the destination node v (this implies storing  

at node u, ∀ w ∈ B(u), the name w and the port name u → y, where node y is the next 
hop on a minimum cost path from u to w) 

• ∀  lv  ∈ L (t is a landmark node): routing path from u to lv ∈ B(v) along the tree T(lv) 
and from lv  to v along the same tree T(lv): s → lv → v. 

• ∀ v ∉ B(u), ∀ u ∈ B(w), and there exists an edge (x, y) along the minimum cost path 
from w to v such that x ∈ B(w) and y ∈ B(v), the lowest cost path u → w → x → y → v. 
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Fig.22: E-R Information model for distributed version of AGMNT compact routing 

5.2.2.4 Distributed AGMNT Compact Routing Scheme 
One of potential solutions to build the distributed fashion in the traditional AGMNT compact routing 
scheme is to combine the pre-processing stage for information collection and routing stage together. 
The distributed information collection can be performed by the distributed gossiping (ALL-to-ALL) 
approaches described in the literature. Consequently, the routing strategy will be made according to 
the collected information at each node. However, the complexity on information exchange in the 
gossiping schemes may not be affordable in practice. Note also that the global information will be 
necessary if we really want to guarantee a proper performance for the routing scheme in terms of the 
stretch in the worse case scenario. Whether the AGMNT compact routing scheme can be made purely 
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distributed in a more efficient way (e.g., combining with a time-efficient randomized gossiping 
scheme) is an important question for the future of this scheme. 
 
Let us now comment on complexity measures for distributed routing schemes. The information model 
provides a natural complexity measure of a distributed routing scheme: the amount of information 
(number of bits or messages) exchanged in the system in order to converge to the construction of a 
routing table in all nodes. This communication complexity complements the usual trade-off 
stretch/size of the tables.  

5.2.3 Geometric Routing on Greedy Embedding  
We consider the particular case of geometric routing on greedy embedding of the Internet topology 
in the hyperbolic plane, following the seminal approach proposed by Kleinberg in 2007 [Kleinberg07]. 
Information model for other geometric routing schemes will be described in the next release of this 
document. 
 
In this context, the information model for this particular greedy routing scheme is centered on the 
deduction of coordinates information for network nodes. All other present information serves this 
result. The information propagation is started with the event of network nodes detecting neighboring 
nodes (adjacencies). Two types of information processes can be initiated using this information: i) a 
direct determination of the spanning tree information, or ii) an intermediate step of topology 
information distribution and subsequently a SPT deduction. In the latter case, the resulting adjacency 
information is captured in topological information messages (e.g. link-state messages), and is 
distributed over the network. Every node stores the resulting topology information received from 
other nodes. The latter (e.g., a database of link entries) forms the basis for deducing a spanning tree 
(SPT) of the resulting graph topology.  
 
The SPT is actually a subset of the initial topological information, as it just marks for every original link 
if it is disabled or not. The SPT information is used to derive some properties such as the depth, 
degree, and root of the tree. This information is used as input for information characterizing structure 
of the resulting coordinate system. The Kleinberg greedy embedding encodes this structure in terms 
of two Mobius transformations. The Mobius transformations are used to determine the network 
coordinates themselves in a distributed way. The resulting coordinates are stored locally and 
distributed towards the neighbors of network nodes. Neighboring nodes store the received 
coordinates in their routing table.  

5.2.4 Information routing systems   
The aim of this section is to provide models for relating the application level (such as the one 
described in peer-to-peer systems) to the induced traffic. This work is directly in relation with WP3 
T3.2 (subtask 4 dedicated to the modeling of diffusion phenomena) and WP4 T4.2 (generation of 
realistic diffusion traces). 
 
Our model is composed of two layers. At the upper layer, peers are identified and have two kinds of 
dynamic attributes: a list of files that they may provide and a list of peers that they may contact 
directly (called neighbors). This relation between peers is called the overlay network. But peers are 
also nodes (end hosts) of the physical topology, connected together through the physical internet 
(wires and routers). Communication between them including control traffic, query routing and file 
exchanges, relies therefore on an underlying routing protocol (defined by other tasks in the project). 
Our model makes it possible to describe different possible strategies at peer-to-peer level (for finding 
files, for routing answers, etc) and their relation with the underlying routing. Depending of the goals 
(for instance, preservation of user privacy or efficiency in terms of induced traffic), one may use 
different variants. Our model provides a simple and rigorous framework for describing such protocols. 
 
Fig. 23 describes the main features of a typical peer, which faces several possible situations:  

o the peer may receive a query (with its attributes) from one of its neighbors. Then, the peer 
searches for the keywords of the query in the file names in its file list. If a matching file is 
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found, it sends an answer to the query, composed of the list of providers it knows for this file 
(in most protocols, only itself). In addition, it may forward the query if its TTL is larger than 0; 
in such cases, it decreases the TTL and simply forward the query to (some of) its neighbors 
(depending on the protocol). 

o the peer may receive an answer to a query. If the query was issued by this peer, then the 
processing of this query is finished. The peer may then download the file from the 
provider(s). In a classical system, the providers directly own the files; in an anonymous 
system like freenet, the providers are neighbors of the peers, which themselves download 
the file from another provider if they did not have it previously. 

o the peer may send a query (not forward it as above) for a file it is interested in. This query is 
composed mainly of a set of keywords to search for and an initial TTL which defines the 
maximal number of hops for the query in the overlay. The query is generally sent to all 
neighbors, but more subtle protocols may be defined.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.23: Information model for Information routing system 
 
This global scheme makes it possible to define a wide variety of protocols. For instance, the peer may 
update its local information (both the list of files it knows of and its neighbor list) when it gets new 
information about this (for instance when it forwards an answer to a query); the peer may choose 
forwarding strategies in different ways (flooding or more selective choices, for instance). Also, each 
peer may identify itself as the source of any query when forwarding it, thus hiding the original sender 
of the query and leading to anonymous networks like freenet. 
 
In the context of the EULER project, the purpose is to determine the impact of such exchanges on the 
routing and load of the network. Therefore, we consider control traffic (routing of queries and 
answers) as negligible; instead, file transfers have significant impact on routing. Such transfers may 
occur directly between an owner of a file and a peer downloading it, but it may also follow links in the 
overlay (which induces much heavier traffic). Our model captures such variants and will be able to 
generate realistic traffic from this regard. The following picture describes how the former scheme 
may be used to induce traffic on real networks.  
 
In Fig.23, the overlay network is represented in green on the right. On the left is the real underlying 
network on which the communication takes place. This figure explicates how the nodes in the overlay 
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network coordinates in order the retrieve the information of which peers are exchanging information. 
Once this is done the actual communication occurs and this triggers traffic on the underlying network. 
This is done by mapping each green node to a real end-host black node of the real network. One can 
see in particular on Fig.24 that the interaction between two neighbors in the overlay network may in 
turn triggers complex traffic demands on the real underlying network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.24: Interaction between the overlay and the underlying network 
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6. Conclusion 
In order to provide the architectural baseline of the Internet routing system, this document proposes 
to follow a systematic modeling approach relying on the specification of a functional and an 
information generic model. Indeed, past experience in designing routing protocols shows that without 
well defined system architecture, extending, adding or removing routing functionality leads to further 
complexity without actually meeting scalability, adaptivity and performance objectives (see IP control 
plane design today). More generally, finding the suitable tradeoff between both short- and long-term 
adaptivity and performance is critical to ensure longevity of the routing system architecture. In this 
context, by starting from a top-level view down to the design of the routing scheme (and their 
components), we initiate our design effort from a holistic approach that is complementary to 
experimental/bottom-up approach.  
 
The proposed generic functional and information models provide a structuring and increase cohesion 
between the different components that the specification of a routing scheme requires; this, by taking 
into account the challenges of adaptivity (resulting from dynamicity of the topology) and distribution 
(resulting from the need to scale to large topologies partitioned into different units of operation). 
Through several representative routing schemes, we show the applicability of these models and that 
they can effectively cover all routing schemes considered in the context of the EULER project 
including, compact routing, geometric/greedy routing, etc. It is indeed interesting to observe that the 
first levels of the functional specification do require limited per-routing scheme customization. More 
precisely, the specialization/customization mostly occurs relates to the exchange mode of routing and 
topology information (and associated control), the pre-processing of exchanged/discovered 
information and obviously the routing path computation algorithm. Further, and corroborating this 
observation, distributed and dynamic routing schemes shows the importance of the discovery 
function (and related information exchanges) which itself leads to reconsider for the some of the 
methods and objects/data structures these routing schemes use to build the (topological) structures 
on which routing path computation relies. At this point, the rationale and the purpose of the 
information model become clearer: the specification of information/entities adapted for distributed 
computation and adaptive/dynamic capability of the routing scheme. Note also that in distributed 
systems like the Internet routing, the choice/decision is locally performed by each (abstract) node 
independently of the others using the exchanged information (i.e., discovered information) but 
individual nodes choice/decision affects other agent's choice/decision. It is therefore fundamental to 
capture these interactions as part of our functional model up to the level appropriate for further 
routing systems engineering (establish routing system engineering controls over the allocations and 
interfaces). 
 
Finally, we have also identified open routing research areas by determining which routing (sub-
)functions are currently under-specified or mis-specified but also which routing (sub-)functions can be 
replaced, added or even removed from their specification as documented in existing scientific 
literature. The comparison between the different routing schemes that will be designed in context of 
Task 2.2, models (and associated operations) will also be facilitated as functional modeling offers at 
the same time a detailed functional analysis grid. In order to reach our goal of routing model 
specification, the present work will be further progressed by the specification of a procedural model 
(formal description of procedures) and a data model (formal description of data structures and their 
relationships together with data operators applied to these structures).    
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Annex 1: FFBD and EFFBD diagramic modeling techniques 

1. Introduction 
 
The FFBD (Functional Flow Block Diagrams) and EFFBD (Enhanced FFBD) are diagramming techniques 
that can be used for modeling the functional behavior of a system. A complete functional model must 
depict both the “control” and “data” aspects of the system. The simple FFBD technique models the 
control (or the logical) environment of a system, while the EFFBD technique models both the data and 
control environment of a system. Note that in this document we bundle the basic FFBD technique 
together with extensions referred in the literature as "extended FFBD". 
 
2. Functional Flow Block Diagrams (FFBD) 
 
The Function Flow Block Diagram (FFBD) was the first to be favored by systems engineers and 
continues to be widely used today (DSMC 1989, Blanchard and Fabrycky 1990). Figure 1 shows a 
sample FFBD. The Functional Flow Block Diagram (FFBD) provides a hierarchical decomposition (multi-
tier) of the system's function with a control structure that dictates the order in which the (sub-) 
function can be executed at each level of the decomposition. The FFBD presents thus the logical 
sequencing of the same (sub-)functions as those identified through functional decomposition by 
displaying them in their logical, sequential relationship. The decomposition of the function into the 
sequence of activities is carried out by asking the question "WHAT" needs to be done to perform the 
particular function (but does not assume a particular on how the function shall be performed). 
 

 
Figure 1. Sample Function Flow Block Diagram 

 
FFBD is a commonly used tool in functional modeling to define the functional level and the sequences 
of activities. The purpose of the FFBD is to show the (sub-)functions that a system is to perform, the 
order in which they are to be performed (logical sequence), and their relationships. The order of 
execution is specified from the set of available control constructs. The basic FFBD syntax includes four 
types of control structure: series, concurrent/parallel (AND), selection (OR), and multi-exit function 
together with the completion criterion (IF-THEN-ELSE). Note that in order to include iteration (IT 
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symbol), loop (LP symbol), and replication (RP symbol), the extended version of FFDB shall be used 
because basic FFDB syntax only allows to depict 4 types of control structures being series, 
concurrency, selection and multi-exit). The FFBD does not contain any semantics relating to the flow 
of information between functions, and therefore does not distinguish between triggering and non-
triggering inputs.  
 
3.  Logic symbols (Constructors) in FFBD  
 
3.1. Contextual and Administrative Data 
 
Each FFBD shall contain the following contextual and administrative data: 

• Date the diagram was created. 
• Name of the engineer, organization, or working group that created the diagram. 
• Unique decimal delimited number of the function being diagrammed. 
• Unique function name of the function being diagrammed. 

 
Figures 2 and 3 present the administrative data in an FFBD. Figure 3 is a decomposition of the 
function F2 contained in Figure 3 and illustrates the context between functions at different levels of 
the model. 

 
Figure 2. FFBD Function 0 Illustration 

 

Figure 3. FFBD Function 2 Illustration 
 

3.2. Function 
 
A function shall be represented by a rectangle containing the name of the function (an action verb 
followed by a noun phrase) and its unique decimal delimited number. A horizontal line shall separate 
this number and the title, as shown in see Figure 4 above (the figure also depicts how to represent the 
so-called reference function, which is a type of function that provides context within a specific FFBD). 
 



FP7-ICT-2009-5 – EULER (258307): Experimental UpdateLess Evolutive Routing 
 
 

Deliverable D2.1                                                                                                                                    Page 76 / 82 
 
 

 
Figure 4. Function Symbol 

3.3. Directed Lines 
 
A line with a single arrowhead shall depict functional flow from left to right. 

 
Figure 5. Directed Lines 

3.4. AND 
 
The “AND” constructor is a condition in which all preceding or succeeding paths are required: it may 
contain one input with multiple outputs (i.e., the input enables in parallel all the outputs) or multiple 
inputs with one output (i.e., the output is enabled when all inputs enable it). It cannot contain 
multiple inputs and outputs combined. See the example in Figure 6: F2 and F3 begin in parallel after 
completion of F1, and F4 begins after completion of F2 and F3. 

 
Figure 6. AND Symbol 

3.5. Exclusive OR 
 
The “Exclusive OR” constructor is a condition in which one of multiple preceding or succeeding paths 
is required, but not all: it may contain one input with multiple outputs (i.e., the input enables only a 
single output) or multiple inputs with one output (i.e., the output is enabled when one of the inputs 
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enable it). It cannot contain multiple inputs and outputs combined. See the example in Figure 7: F2 or 
F3 may begin after completion of F1, and F4 may begin after completion of either F2 or F3. 
 

 
Figure 7. “Exclusive OR” Symbol 

3.6. Inclusive OR 
 
The Inclusive OR constructor is a condition in which one, some, or all of the multiple preceding or 
succeeding paths are required. Figure 9 depicts inclusive OR logic using a combination of the AND 
symbol (Figure 6) and the Exclusive OR symbol (Figure 7). Read Figure 8 as follows: F2 or F3 
(exclusively) may begin after completion of F1, or (again exclusive) F2 AND F3 may begin after 
completion of F1. Likewise, F4 may begin after completion of either F2 or F3 (exclusively), or (again 
exclusive) F4 may begin after completion of both F2 and F3. 

 
 

Figure 8. “Inclusive OR” Symbol 
 

3.7. Multiple Exit 
 
Commonly only a single output line is shown for a function on a flow diagram, but enhanced flow 
diagramming recognizes a multiple output constructor. A multi-exit constructor indicates that the 
function may enable multiple (one, two, etc.) functions according to some exit conditions. In Figure 9, 
whichever output is enabled in function A, the following function B or C is accomplished. 
 

 
Figure 9. Multiple output 
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3.8. Iteration 
 
Iteration allows a repeat of a specific function or “thread” of function over a given “domain set”, 
where a domain set represents i) a certain number of times, ii) a rate, or iii) a set definition. A 
“thread” of functions can be anything from one function within the iteration to a complicated set of 
functions controlled with multiple control constructors. In Figure 10 the execution of Reference 1 
enable function A, function A is executed, and control is returned to the first iteration node which 
then enables the function A again, and this is done as directed by the domain set: if the domain set is 
3, then function A is executed three times. When the iteration has been completed, Reference 2 is 
enabled. 

 
Figure 10. Iteration Symbol 

3.9. Loop 
 
The loop construct permits a repeat of a function or “thread” of functions until a specific loop exit 
condition is achieved. In Figure 11, Reference 1 is executed and enables function A, function A is 
enabled and executed. If loop exit condition is achieved, function B is enabled. If the loop exit 
condition is not satisfied, control is transferred back to the first LP node and function A is enabled 
again. The loop will continue to transfer control and enable function A indefinitely until the loop exit 
condition is achieved. 
 

 
Figure 11. Loop Symbol 

 
4. Enhanced FFBD (EFFBD) 
 
4.1. The data flow 
 
A key concept in modeling functional flow is that for a function to begin, the preceding function or 
functions within the “control” flow must have finished. For example, an “eat food” function logically 
would not begin until a “cook food” function was completed. The logical sequence of functions (i.e., 
the functional flow) describes the “control” environment of the functional model. However, in 
addition to a function being enabled, it may also need to be triggered with an input. So, in the 
example, the “eat food” function is enabled once the “cook food” function is completed, and once it 
receives the “prepared food” as input. This second aspect—triggering a function—speaks to the 
“data” environment, which the Enhanced FFBD (EFFBD) diagram captures. 
 
Enhanced FFBD (EFFBD) displays the control dimension of the functional model in an FFBD format 
(using more logical symbols) with a data flow overlay to effectively capture data dependencies. Thus, 
the Enhanced FFBD represents: (1) functions, (2) control flows, and (3) data flows. The logic 
constructs allow you to indicate the control structure and sequencing relationships of all functions 
accomplished by the system being analyzed and specified. 
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4.2. Data Triggering 
 
When displaying the data flow as an overlay on the control flow, the EFFBD graphically distinguishes 
between triggering and non-triggering data inputs. Triggering data is required before a function can 
begin execution. Therefore, triggers are actually data items with control implications. In Figure 12, 
data triggers are shown with green backgrounds and with the double-headed arrows. Non-triggering 
data inputs are shown with gray backgrounds and with single-headed arrows. 
 

 
Figure 12. Sample Enhanced Function Flow Block Diagram 

 
In EFFBD a function begins execution if it is both enabled by control and triggered by data (if no data 
trigger is specified, it begins execution enabled by control). A function is enabled by control when the 
function(s) that precede it in the control flow have completed their execution. A function is triggered 
by data when the required stimulus data item becomes available to the function. We are not 
concerned here with other execution requirements (such as the availability of necessary resources). 
 
Using EFFBD one has the freedom to use either control constructs or data triggers (or a combination 
of both) to specify execution conditions for individual system functions. Note that the trigger 
constructor offers a more complicate relationship. In Figure 13, function A or B will be enabled only if 
the prior function has been completed and the trigger is applied. In case of the inclusive OR 
arrangement depicted, i) both functions may execute if both are triggered, or ii) one or the other if 
only one is triggered, or iii) neither of them if none is triggered. 
 

 
Figure 13. Trigger Constructor 
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Logic Symbols Summary 

 
The following table summarizes the main symbols used in FFBD and EFFBD. 

 
Name Symbols Used in FFBD Used in EFFBD 

Function 

 

 
 

X X 

Control 
(enabling) line  X X 

Data Triggering 
Line 

 
 X 

Data (Non-
Triggering) Line  

 X 

AND 
 

X X 

Exclusive OR 
 

X X 

Multi-Exit 
Constructor 

 
X X 

Inclusive OR 

 

X X 

Iteration 
 

X X 

Loop 
 

X X 
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