
Development and experimentation towards a multicast-enabled Internet

Davide Careglio1, Dimitri Papadimitriou2, Fernando Agraz1, Sahel Sahhaf3, Jordi Perelló1,

Wouter Tavernier3, Salvatore Spadaro1, Didier Colle3

1 Universitat Politècnica de Catalunya, Barcelona, Spain

2 Alcatel-Lucent, Antwerp, Belgium
3 iMinds, Ghent, Belgium

Abstract.

Today, the Internet is a large distributed and dynamic system consisting of more than 50,000

Autonomous Systems and 500,000 IPv4 address prefixes. To convince industry and regulators, any new

protocol/scheme/mechanism needs to be executed in a large-scale experimental platform before its

deployment. In this paper, we report our development experience and experimentation studies of two

multicast routing schemes for the Internet, namely, PIM-SSM and GCMR. We detail their

implementation over the Quagga open source routing suite, as well as their experimentation tests over a

large-scale topology that reproduces the Internet characteristics.

1. Introduction and motivation

The Internet is a large, dynamic, heterogeneous collection of interconnected systems that can be used for

communicating between any interested parties connected to it, no matter their location. The Internet

architecture relies on a few design principles: modularization by layering, connectionless forwarding (no

virtual circuit), the internetworking principle (gateways), and the end-to-end principle. It results in a

transparent network that ensures for applications to survive partial network failures, and provides for a

general connectivity capable of supporting many different applications. It shall be mentioned that the

Internet was not optimized for any single application, but aiming at generality and evolvability. The

network merely forwards packets, whereas knowledge of the application is localized at the edges, where

hosts are attached. This functional decomposition facilitates innovation and the deployment of new

applications.

Although the current Internet does work and is still capable of fulfilling its current missions, it suffers

from a relative ossification [1], a condition where any technological innovation meets natural resistance,

as exemplified by the lack of wide-scale deployment of technologies such as multicast or IPv6. Recent

initiatives, like the Global Environment for Network Innovations1 (GENI), a project sponsored by the

National Science Foundation (NSF), and the Future Internet Research and Experimentation2 (FIRE) in

Europe, try to overcome this ossification problem by bridging the gap between visionary research and

technology deployment. The rationale behind them is to promote the experimental validation of new

proposals in large-scale realistic network environments, as a way to convince both industry and

regulators that a new technology deserves to be adopted and thus enable a possible migration path for

technological developments.

Multicast becomes an excellent example of the Internet ossification. Originally defined in the 90’s, its

potential benefits have been verified by studies several times since then. However, only intra-domain

multicast has been partially adopted in the context of IPTV in some Internet Service Provider (ISP)

networks, while inter-domain multicast is still pending to date. Among other reasons, this failure could

be attributed to the scaling limitations and relative complexity of the standard multicast protocol

architecture, based on overlaying multicast routing on top of the unicast routing topology [2]. For this

very reason, we recently proposed the Greedy Compact Multicast Routing (GCMR) scheme [3]. GMCR

is characterized by its independence from any underlying unicast routing topology; more specifically, the

local knowledge of the cost to direct neighbor nodes is enough for the GCMR scheme to properly

operate.

In this paper, we present a prototype of the GCMR multicast scheme and evaluate its functionality and

performance on the iLab.t virtual wall3 platform, which is a large-scale experimental Linux machine-

based emulation testbed. The prototype of a GCMR routing engine has been developed using the

libraries of the Quagga open source routing suite4. The success in our endeavor, which was presented

during the Hands-on-FIRE! Demonstration (collocated in the 2013 FIA Week in Dublin, Ireland),

suggests a feasible multicast-enabled Internet.

The rest of the paper is organized as follows. Section 2 presents a brief overview of the main issues of

the current Internet routing system and explains the state of the art in multicast routing. Section 3

introduces the details of the routing software implementation while Section 4 describes the testbed

platform. In Section 5, we provide and discuss the results. Finally, Section 6 concludes the paper.

1 http://www.geni.net
2 http://www.ict-fire.eu/
3 http://www.iminds.be/en/develop-test/ilab-t/virtual-wall
4 http://www.nongnu.org/quagga/

2. Brief overview of routing and multicast routing in Internet

The most fundamental issues faced by the Internet architecture are the scalability, convergence, and

stability properties of its inter-domain routing system [4]. Solving them requires to address multiple

dimensions together: i) the routing table size growth resulting from a larger number of routing entries,

and ii) the routing system dynamics characterized by the routing information exchanges resulting from

topological or policy changes. Worst-case projections predict that routing engines could have to process

and maintain in the order of 1 million active routes within the next 5 years5. Thus, while the Internet

routing system prevents from any host specific routing information processing and maintenance (routing

state), storing an increasingly large amount of network states in the routing system is expensive and

places undue cost burdens on network administrative units. For example, realizing the vision of the

Internet of Things, with its corresponding increase on the number of routes, would require significantly

more efficient and scalable routing schemes. Furthermore, those impacts on the routing system dynamics

(robustness/stability and convergence) resulting from inconsistencies (software implementation errors,

router misconfigurations, etc.), instabilities (interactions between routing policies), and topological

changes/failures are progressively becoming key concerns for the Internet operational community.

These issues are even more evident if we consider multicast routing system. By multicast routing, we

refer to a distributed algorithm that, given a group identifier, allows any node to route multicast traffic to

a group of destination nodes, usually called multicast group. To enable one-to-many traffic distribution,

the multicast routing protocol configures the involved routers to build a (logical) delivery tree between

the source and the multicast group, commonly referred to as the Multicast Distribution Tree (MDT).

Multicast is (re-)gaining interest given the increasing popularity of multimedia streaming/content traffic

and the explosion of cloud services, since it yields bandwidth savings competing with or complementing

cached content distribution techniques. Nevertheless, the scaling problems faced in the 90's still remain

mostly unaddressed. Although routing protocol independent routing schemes such as Protocol

Independent Multicast Sparse Mode (PIM-SM) [5] and Core Base Trees (CBT) [6] have been

standardized during last decade, only the Single Source Multicast (SSM) variant of PIM (PIM-SSM) [7]

has been deployed in the context of IPTV systems for routing multicast streams between VLANs,

subnets or access networks (intra-domain multicast). However, the adoption of inter-domain multicast

has failed, as it relies on an overlay routing executing on top of the unicast routing topology, which

suffers from the same scaling limits as unicast routing plus the following issues: i) the level of

indirection added by the multicast routing as routers forward multicast datagrams to multicast group, and

hosts have to subscribe to that multicast group; ii) the limits of shared trees between domains; iii) its

5 http://bgp.potaroo.net/index-bgp.html

address space structure as firewalls have to be upgraded to recognize multicast addresses. A complete

analysis of the deployment issues for the IP multicast routing architecture can be found in [2].

In this paper, we experimentally evaluate and compare the performance of the PIM-SSM protocol and

the GCMR protocol initially proposed in [3] in the context of inter-domain multicast routing. In the

following subsections, we describe PIM-SSM and highlight its limitations, which help us to motivate the

proposal of GCMR.

2.1 The protocol independent multicast (PIM) scheme

PIM [5] is nowadays the most common multicast routing protocols for IP networks that provide one-to-

many and many-to-many traffic data distribution. Its protocol-independence comes from the fact that

PIM does not perform any network-wide topology discovery mechanism but instead uses routes learned

from any unicast routing protocol to build the Multicast Routing Information Base (MRIB), perform the

Reverse Path Forwarding (RPF) check, and forward the multicast packets that a router receives from a

source. In the context of inter-domain routing, Border Gateway Protocol (BGP) has been enhanced with

the Multiprotocol BGP (MBGP) extensions [8] to support and distribute IPv6 and multicast addresses.

In PIM-SSM [7], the delivery of traffic data is supported on (S,G) channels. A (S,G) channel supports

data from the IP unicast source address S to the multicast group address G as the IP destination address.

Receivers must subscribe to the (S,G) channel to receive traffic from the specific source S. In other

terms, a (S,G) channel is the term used in PIM to indicate a MDT. However, applications are responsible

of channel discovery. As the PIM scope is limited to routers, the Internet Group Management Protocol

(IGMP) in IPv4 or Multicast Listener Discovery (MLD) in IPv6 needs to be used by hosts (receivers and

source) to convey channel subscriptions to local routers. Once a router receives a subscription request

from a receiver, it configures the local forwarding table accordingly, and sends the request upstream

towards the source address based on its knowledge of the unicast topology. At each hop, routers

configure the multicast forwarding table (usually referred as Tree Information Base, TIB) and become

members of the MDT (i.e., configuring an entry in the MRIB). At the end of this process, the MDT is

built from hosts towards the source, which is considered a shortest-path tree (SPT) from the perspective

of the unicast routing tables.

2.2 The Greedy Compact Multicast Routing (GCMR) scheme

As part of the work conducted in the EULER FP7-project6, we designed the GCMR scheme [3]. Its main

objective is to minimize (i.e., to compact) the routing table size at each router by taking local (i.e.,

greedy) decisions at expenses of i) routing packets on paths with relative small deviation compared to the

optimal tree; ii) increasing the number of messages required to create the MDT. In this way, GCMR can

reduce the local storage of routing information by keeping only (direct) neighbor-related entries, rather

than tree structures or network graph entries. In other terms, the novelty of this algorithm is on

maintaining local topology information instead of global one, thus only providing the least cost to next

hop during the MDT construction.

In the GCMR context, the information needed to reach a given multicast source S is acquired by means

of a search mechanism that returns the upstream node along the least cost branching path to the MDT

sourced at S. The algorithm search process is segmented in two different stages, namely, an initial local

search covering the receiver neighborhood (defined by a path budget), and, if unsuccessful, a subsequent

global search over the remaining topology. The rationale behind this approach is to put tighter limits and

search locally first. Indeed, the likelihood of finding any router that belongs to the targeted MDT within

a few hops distance from the joining receiver is high in large topologies (whose diameter is

logarithmically proportional to its number of nodes) while also increasing with the size of the MDT.

Such a search mechanism is triggered whenever a node decides to join a given multicast source address S

as part of a multicast group G. Once a node becomes member of an MDT, a multicast routing entry is

dynamically created and stored in the local MRIB. From these routing table entries, multicast forwarding

entries are also derived and stored in the local TIB. Only two types of messages are needed to execute

the search process, namely, request (R) and answer (A), whereas a couple of additional messages deal

with the logical join (J) and detach (D) of the nodes to/from the MDT. A detailed description of the

GCMR algorithm can be found in [9], theoretical performance analysis and simulation comparison with

other major multicast routing paradigms are documented in [10].

As GCMR does not rely on any unicast routing protocol, it can work together with any addressing

scheme like IPv4, IPv6 or even geometric coordinates over a Euclidian plane or hyperbolic plane [11]. In

addition, GCMR can be implemented directly in any host, as its scope is not limited to routers, not

requiring any host-router protocol like IGMP. Therefore, to the authors’ knowledge, it is the first name-

independent, receiver-initiated, dynamic, distributed, end-to-end multicast routing algorithm.

6 http://www.euler-fire-project.eu

Figure 1a shows the different protocols involved in a typical PIM-SSM scenario and their scope, that is,

MBGP for addresses discovery and IGMP for multicast membership subscription between hosts and

local routers. In contrast, Figure 1.b highlights GCMR as a real end-to-end multicast protocol over the

Internet.

a)

b)

Figure 1. Protocols architecture a) using PIM-SSM, b) using GCMR

3. Routing platform

As the aim of this work is to experimentally validate GCMR against PIM-SSM, both protocols have been

implemented and executed in a prototype. This prototype runs on top of an existing Quagga routing

platform (described in this section) in the iLab.t virtual wall emulation testbed platform (Section 4).

3.1 Quagga routing suite

Few open source routing platforms exist that allow rapid introduction of new protocols, features, and

functionality. Most popular ones are Quagga, XORP7 and Bird8, which can run on standard PC hardware.

Among them, we have used Quagga given its widespread adoption and maturity. Quagga benefits from a

large developer community including independent code committers, service provides, and academic

institutions, while Bird still presents limitations regarding the inter-domain routing support and XORP is

7 http://www.xorp.org
8 http://bird.network.cz

neither mature enough nor widely used for research purposes. Moreover, Quagga starts becoming the

common reference platform for software-defined routers running in production environments.

More specifically, Quagga is an open-source routing protocol suite providing implementations of

different IP protocols such as OSPF and BGP. The software is developed in standard C programming

language and is available for UNIX platforms like Linux, Solaris and BSD.

The Quagga architecture consists of a core module (i.e., the Zebra daemon), which acts as an abstraction

layer to the UNIX kernel packet forwarding functionality. The Zebra daemon provides a set of client

modules, called Zserv, implementing each a specific routing protocol. Furthermore, Zebra provides an

Application Programming Interface (API), called ZAPI, through which routing protocol modules can

access and communicate routing updates to the kernel routing table and network interfaces. During

bootstrap, the Zebra daemon must be started first, followed by the routing protocol daemons that should

operate in the network. In this way, Zebra is able to interface the communication between the routing

daemons and the kernel. For configuration, all daemons in Quagga are equipped with a command-line

interface (called VTY), which follows a CISCO OS-like syntax. Alternatively, a pre-defined

configuration file can also be used.

It is worth mentioning that neither Quagga nor Bird or even XORP completely emulate a router. They

only provide the route engine (algorithms and protocols), thus still requiring a forwarding engine to

transmit datagrams. In the following sections, we describe the implementation of GCMR and PIM-SSM

as well as the forwarding engines used in our prototype.

3.2 GCMR implementation

The different modules composing the architecture of a GCMR-capable node are depicted in Figure 2a.

The system architecture can be logically divided into two main parts: the Routing Core (RC) and the

Routing communication Protocol (RP) module. The former aggregates the set of procedures that a

GCMR-capable node must implement in order to carry out its functionalities. The latter module is

composed of a set of objects and messages that enables the communication between GCMR nodes and,

thus, their collaborative operation.

a)

b)

Figure 2. a) GCMR node architecture, b) GMCR state machine

The RC module contains the main objects that are involved in the GCMR operation. The database

contains the information related to the TIB and the MRIB. This module has also two interfaces: one to

the RP module and the other enables the communication between the node and an external client (e.g.,

GCMR%daemon%RC%module%

RP%module%RP%
interface% Msg%

FSM$%
TIB%
MRIB%

RT%entries%

Neighbors%

Zclient% Thread% VTY%
Libraries%

Zebra%

ioctl% sysctl% proc%FS%

Kernel%
netlink%

Main%
Module%

Thread%
Mngmnt%

VTY%
Module%Conf%

Read%/%Write%/%Timers%ZAPI%

GCMR$Router$

MulIcast%
Groups% Server% Client%

SMCRoute%

mrouteKapi%cmdpkt%

Forwarding%
Module%SMC_Client%

idle

exit / create multicast group
exit / send local R message

local search

do / update local R message
do / forward local R message
do / update local A message
do / send local A message
exit / receive global R message
exit / local timer expired
exit / send J message

global search

do / update global R message
do / forward global R message
do / update global A message
do / send global A message
exit / global timer expired
exit / send J message

join

do / send (local/global) A message
do / forward J message
do / join multicast group
exit / detach multicast group

receive local R message

receive global R message

receive local A message

receive global R message

receive global A message

receive J message

receive J message

create MDT

receive D message &
detach MDT

local timer expired or
negative local A message

global timer expired or
negative global A message

receive (local/global) R message

the application) to trigger the GCMR functionalities, namely create a new multicast group, join the node

to a new multicast group and detach the node from an existing multicast group.

The RP module implements the GCMR protocol primitives enabling communication with neighboring

nodes and routing operation. Specifically, the protocol relies on two search message types (request R and

answer A), which enable the collaborative MDT computation. It also implements two other messages (J

and D) aimed at the physical join/detach of the nodes to/from the MDT. Through the ZAPI interface, RP

communicates with the Zebra daemon in order to configure the interfaces when the node is added or

removed to/from a multicast group.

As previously documented, Quagga does not provide any native forwarding engine. For this reason, we

have developed an SMCRouteClient that automatically generates multicast route add/remove commands

to the SMCRoute daemon9. SMCRoute is a command line tool that manipulates dynamic multicast routes

directly in the Linux kernel.

Finally, the Finite State Machine (FSM) implementation defines the sequence of actions to be followed

by the GCMR engine during each MDT computation. Its structure is depicted in Figure 2b. Four states

are defined:

1. idle where GCMR initializes all resources and structures;

2. local search when a node sends a local R message to its neighbors or receives it from a neighbor;

3. global search when local search fails, a node moves to the global search;

4. join when a node receives a J message and remains in this state as long as a D message is

received. In this case, the detach procedure is executed and the node is removed from MDT and

returns to the idle state.

3.3 PIM-SSM implementation

An implementation of the PIM-SSM routing protocol, called qPIM10, is available as an external daemon

for Quagga routing suite. The architectural view of this PIM-capable node is depicted in Figure 3. The

qPIM daemon consists of two modules, namely the Objects module that constructs and maintains the set

of data structures and the objects and the Protocols module that implements the communication

protocols.

9 http://www.cschill.de/smcroute/
10 http://www.nongnu.org/qpimd/

Figure 3. qPIM node architecture

As described in Section 2.1, PIM-SSM requires two additional protocols to operate. BGP daemon (with

multiprotocol extensions) of Quagga is used as unicast routing protocol to populate the routing table,

from which PIM-SSM derives the MRIB entries during the MDT construction. The IGMP protocol is

used to interact hosts with routers. As a forwarding engine, qPIM uses the conventional ipmroute

daemon of the Linux kernel to derive the TIB entries from the MRIB and generate the add/remove

commands to configure the network interfaces accordingly.

4. iLab.t virtual wall platform

4.1 Overview

The iLab.t virtual wall is a generic test environment, which provides computing hardware and different

software and hardware tools to researchers to validate and evaluate the performance of innovative

network software prototypes. Each of the 3 virtual wall facilities of iLab.t consists of 100 server blades

interconnected by a non-blocking 1.5 Tb/s VLAN Ethernet switch (Force 10 E1200). The specification

of each node is as follows: dual processor, dual core server with 4GB RAM and 4x 80GB hard disk with

6x1 Gb/s or 4x1 Gb/s interfaces. Moreover, a control interface is provided in each node, which enables

researchers to login.

qPIM%
daemon%

Objects%

Protocols%

Neighbor%

Zclient% Thread% VTY%
Libraries%

Zebra%

ioctl% sysctl% proc%FS%

Kernel%
netlink%

Main%
Thread%
Mngmnt%

VTY%

Conf%

Read%/%Write%/%Timers%ZAPI%

qPIM%Router%

MulJcast%
Group%RPF%Upstream%

PIM% IGMP%MROUTE%
%
RIB%

BGP%daemon%

Zclient%

ZAPI%

BGP%Protocols%
interface% Msg%

%
TIB%
MRIB%

FSM%

The Emulab11 control software is run on the virtual wall facilities and enables researchers to create

arbitrary network topologies where each network node can be configured with a custom operating system

and network software prototype. Realistic network scenarios can be evaluated using network traffic

generator software such as iperf12 or D-ITG13.

4.2 Tools

Traditional mapping between Linux machines and nodes is one-to-one thus the emulation of network

topologies is limited to the number of physical machines. On the iLab.t virtual wall, virtualization

technique using OpenVZ14 Linux containers allows for multiple virtual nodes to run on one machine

enabling large-scale experiments (10-20 times the number of physical machines in the iLab.t). These

virtual nodes run on Fedora15 Linux distribution. Using OpenVZ, isolation of the filesystem, process,

network, and account namespaces are provided which result in to separate filesystem, process hierarchy,

network interfaces and IP addresses for each virtual node. In addition, arbitrary number of virtual

network links is provided by using virtual network interfaces. These links may be individually shaped

and may be multiplexed over physical links or can be used to connect to virtual nodes within one

physical node.

The virtual nodes behave like normal physical nodes in Emulab, and therefore can act as: end node,

router or traffic generator. Virtual nodes can be accessed using ssh. The remote access through the

control system enables building large dedicated experimental setup very fast. These setups are repeatable

and different experimental parameters can be controlled and evaluated. Many performance metrics such

computational complexity and convergence time of the routing algorithm can be measured and compared

with the resulting values of a reference routing scheme. Arbitrary topologies can be generated and even a

mixture of virtual and physical nodes is possible. Figure 4 illustrates the virtual wall testbed and

emulation platform setup.

Different factors affect the number of virtual nodes that can be mapped on a physical machine. The two

most important ones are i) the resource requirement of the application and ii) the bandwidth of the links

which are emulated. Although, the Emulab resource mapper maps the virtual nodes onto physical nodes

in a way to have the best overall use of physical resources, it is possible to determine the number of

virtual nodes on a single physical machine and perform the mapping as desired.

11 http://www.emulab.net
12 http://code.google.com/p/iperf/
13 http://traffic.comics.unina.it/software/ITG/
14 http://openvz.org

typhon router
‘Control’ Network (Emulab term.)

E1200

ESD Strap

PEM 0 PEM 1

CC-E1200-FLTR

0 1 2 3 4 5 6 R0 R1 7 8 9 10 11 12 13

PEM

CAUT ION- Use copper conductors onl y

La tc h Re lease Sta tus

CCE1200-PWR-DC

PEM

- +

CC-E-SFM

Active

Status

S
w

itch Fab
ric

PEM

CAUT ION- Use copper conductors only

Latc h Release Status

CCE1200-PWR-DC

PEM

- +

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

CC-E-SFM

Active

Status

S
w

itch Fabric

Force10 E1200

Internet

`

Experiment
operator

Emulab logical
topology

Virtual experimental
network

Experiment
control node

-Trigger virtualization
-Configure experimental nodes
-Trigger events in the experimental
network
-Monitor experiment
-Monitor network status

D-Link Fast Ethernet switches
(DES-3526)

Figure 4. Emulation platform setup on virtual wall testbed

4.3 Implementation

To experimentally validate and compare PIM-SSM and GCMR, we used around 45 server blades of one

of the iLab.t virtual wall facility. Each blade has been virtualized into approximately 5 virtual machines

in order to reach a topology of more than 200 nodes. In each node, we installed a Debian 6 Linux

distribution (kernel 2.6.32) and Quagga 0.99.17. Both PIM-SSM and GCMR were then automatically

deployed in the nodes and properly configured using Phyton and bash scripts. Information of the nodes

status was continuously stored in log files and processed afterward to obtain the performance results.

5. Experimentation and discussion of the results

5.1 Experimentation setup and objectives

The main objective of these tests is to demonstrate the successful operation of GCMR in the context of

inter-domain routing over a large-scale network topology compared to the standard PIM-SSM protocol.

In particular, the following performance metrics are evaluated:

• stretch, defined as the sum of the weights of edges used in multicasting from the source to all

receivers divided by the optimal such tree. Intuitively, the stretch of a routing scheme provides a

quality measure of the path cost increase it produces compared to the optimal tree (which has

clearly a stretch of 1). The optimal MDT (so-called Steiner Tree [3]) is computed offline

knowing the server and all receivers beforehand.

• routing table (RT) size, defined as the maximum number of memory-bits required to locally store

the RT entries. Thus, the RT size is computed using the bit-size of a single entry and the number

of entries it comprises. The storage required by the algorithm is directly related to routing system

scalability because the less memory a router needs to store its entries, the more scalable the

routing system would be.

• recovery time, defined, in this case, as the maximum time needed to receive back a multicast

transmission at the receivers once a failure occurs in a link of the MDT.

The experimentation tests of PIM-SSM and GCMR were performed in a network consisting of 207

Autonomous Systems (ASes). As we were interested in the inter-domain aspects, we represented the

behavior of each AS with a single router with multiple interfaces (Figure 5). This 207 ASes emulates a

portion of the Internet where one AS provides a multicast service to the rest of 206 ASes. In particular,

we executed ten runs of the same experiment: one multicast server located in one AS is firstly selected

and then ten receivers, located in ten different ASes, joined the MDT sequentially. Both the server and

the receivers were randomly chosen.

Figure 5. Topology for the experiments

The considered topology presents a particular structure consisting of AS1-AS6 that interconnects two

blocks of ASes. The reason of this AS1-AS6 connectivity is to enforce the so-called path exploration

problem of BGP [12]. In fact, path exploration suggests that, in response to path failures or routing

policy changes, some BGP routers may try a number of transient paths before selecting a new best path

 n receivers

Multicast
server AS2

AS3

AS4

AS5

AS6 AS1
ASi

102
ASes

101
ASes

10 - n
receivers

or declaring unreachability to a destination. Consequently, a long time period may elapse before the

whole network eventually converges to the final decision, resulting in slow routing convergence. We will

analyze this phenomenon when discussing the results.

5.2 Results and discussions

Figure 6a shows the stretch of GCMR and PIM-SSM in ten different executions. GCMR presents in all

runs lower stretch than PIM-SSM (0.14 better on average) and some deterioration (0.095 on average)

against the optimal MDT (remind that stretch-1 is the reference). Using the information obtained from

BGP, PIM-SSM establishes a shortest path tree (SPT) between the receivers and the source, and it is

known that the SPT is not optimal from the stretch point of view. This result is consistent with the

simulation results provided in [3], where, in much more larger simulation scenarios (32k nodes) and high

number of receivers (500-4000), GCMR obtains approximately 0.1 better stretch than SPT.

In Figure 6b, we show the number of ASes involved in the MDT. As expected from the previous results,

GCMR is much more closer to the optimal MDT than PIM-SSM. This is an important outcome of

GCMR from the cost point of view as providers charge customers based on the proportion of their

resources that are used in multicast. Thus, as GCMR uses less transit ASes, the cost for the customers

should be less using GCMR than PIM-SSM.

The comparison in terms of Routing Table (RT) size is presented in Figure 6c. To determine the size of

the RT (in bits), we only consider the nodes involved in the MDT and use the RT formats defined in [9]:

while GCMR only needs MRIB and TIB information, PIM-SSM, besides MRIB and TIB, also needs

some unicast information from BGP to determine the shortest path towards the multicast source. Figure

6c shows that GCMR requires around 44% less bits than PIM-SSM.

a)

b)

c)

Figure 6. Comparison between GCMR and PIM-SSM in terms of a) Stretch, b) Number of AS in the MDT,

c) Routing Table size (in bits) as GCMR/PIM-SSM ratio obtained in ten different runs

1"

1.1"

1.2"

1.3"

1.4"

1.5"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

St
re
tc
h'

Runs'

GCMR"

PIM3SSM"

25#

30#

35#

40#

45#

50#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

N
um

be
r'o

f'A
Se
s'i
n'
th
e'
M
DT

'

Runs'

GCMR#

PIM2SSM#

Op6mal#MDT#

0.3$

0.35$

0.4$

0.45$

0.5$

0.55$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

Ro
u$

ng
'T
ab

le
'si
ze
'

Runs'

GCMR/PIM4SSM$

Finally, we emulated a failure in the link connecting AS1 and AS6 and counted the maximum time

elapsed to receive back the multicast transmission at the affected receivers.

In the case of PIM-SSM, it equals the number of Minimum Route Advertisement Interval (MRAI) -in

seconds- elapsing between the withdraw of the routing state corresponding to the initial route towards the

multicast source and the next stable state where BGP routing state convergence can be declared [8] plus

the time required for PIM Hello adjacency and Join message exchange with the new next hop router

along the route to the multicast source node [7]. Due to the particular structure of AS-AS6

interconnection, BGP tends to explore all alternatives (problem known as path exploration [12]) before

reaching a stable state and, as a consequence, the obtained traffic interruption result quite high in the

experiments, 2 minutes and half approximately.

In the case of GCMR, recovery time comprises the time for the failure-detecting node to initiate a search

and receive answers from its neighbors that point to the least cost branching path plus the time to initiate

a Join message. In the experiments, the recovery time is of the order of one second.

6. Conclusions

This paper experimentally validates and compares the performance of standardized PIM-SSM multicast

routing algorithm, which uses BGP for path discovery, and the novel GCMR compact multicast routing

scheme recently proposed in [3]. In a large-scale experimental emulation platform, the GCMR scheme

provides a better performance compared to PIM-SSM in terms of the memory space it requires to locally

store the routing information and the stretch factor increase multicast routing paths it produces.

Moreover, the adaptive property of the GCMR scheme induces a limited number of re-routing events in

case of failure compared to the recovery strategy applied by the combination of BGP and PIM-SSM.

Future work aims at validating GCMR in even larger topology (e.g., O(1k) ASes) with multiple

concurrent multicast sessions.

References

[1] J.S.Turner, D.E.Taylor, “Diversifying the Internet”, Globecom 2005, St. Louis, MO, USA,

December 2005.

[2] C.Diot, et al., “Deployment Issues for the IP Multicast Service and Architecture”, IEEE

Network, vol. 4, no. 1, pp. 78-88, January 2000.

[3] P.Pedroso, D.Papadimitriou, D.Careglio “Dynamic compact multicast routing on power-law

graphs”, Globecom 2011, Houston, TX, USA, December 2011.

[4] T.Li (ed.), “Design Goals for Scalable Internet Routing”, IETF RFC 6227, May 2011.

[5] B.Fenner et.al., “Protocol Independent Multicast - Sparse Mode (PIM-SM)”, IETF RFC 4601,

August 2006.

[6] T.Ballardie, P.Francis, J.Crowcroft, “Core Based Trees (CBT): An Architecture for Scalable

Multicast Routing”, ACM Sigcomm 1995, Cambridge, MA, USA, August 1995.

[7] H.Holbrook, B.Cain, “Source-Specific Multicast for IP”, IETF RFC 4607, August 2006.

[8] T.Bates, et al., “Multiprotocol Extensions for BGP-4”, IETF RFC 4760, January 2007.

[9] P.Pedroso, D.Papadimitriou, D.Careglio, “A name-independent compact multicast routing

algorithm”, Technical Report, UPC-DAC-RR-CBA-2011-15, March 2011

[10] D.Papadimitriou, D.Careglio, P.Demeester, “Performance analysis of multicast routing

algorithms”, Technical Report, UPC-DAC-RR-CBA-2013-4, August 2013.

[11] F. Papadopoulos, D. Krioukov, M. Boguñá, A. Vahdat, “Greedy Forwarding in Dynamic Scale-

Free Networks Embedded in Hyperbolic Metric Spaces”, Infocom 2010, San Diego, CA, USA,

March 2010.

[12] R.Oliveira, Beichuan Zhang, Dan Pei, Lixia Zhang, “Quantifying Path Exploration in the

Internet”, IEEE/ACM Trans. Networking, vol. 17, no. 2, pp. 445-458, April 2009.

