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Abstract—This paper provides a theoretical performance 
analysis of different classes of multicast routing algorithms, 
namely the Shortest Path Tree, the Steiner Tree, compact routing 
and greedy routing. Our motivation is to determine the routing 
scheme which would yield the best trade-off between the stretch 
of the multicast routing paths, the memory space required to 
store the routing information and routing table as well as the 
communication cost. For this purpose, we also confront these 
results to those obtained by simulation on the CAIDA map of the 
Internet topology comprising 32k nodes. 
 

Index Terms—multicast, routing, algorithm, performance,  

I. INTRODUCTION 

ith the increase of multimedia streaming/content traffic, 
multicast distribution from a source to a set of 
destination nodes is (re-)gaining interest as a bandwidth 

saving technique competing with or complementing cached 
content distribution. Nevertheless, the scaling problems faced 
in the 90's when multicast routing received main attention 
from the research community remain mostly unaddressed 
since so far. Indeed, unicast routing dependent schemes (either 
distance vector-based such as the Distance-Vector Multicast 
Routing Protocol (DVMRP), or link state-based such as 
Multicast Open Shortest Path First (MOSPF)) have been 
supplanted by schemes performing independently from the 
underlying unicast routing, e.g., Protocol Independent 
Multicast (PIM) [1]. During the last decade, the single-source 
variant of PIM, referred to as PIM-SSM, has been deployed in 
the context of IPTV within Internet Service Provider’s (ISP) 
network (intra-domain multicast). However inter-domain 
multicast has failed to be widely adopted by most ISPs. The 
main reasons stem from i) memory scaling when overlaying 
multicast routing on top of unicast (shortest-path) routing with 
the addition of a level of indirection, ii) the inter-domain 
discovery process which prevents shared trees between 
different domains (thus, defeats the objectives of PIM), and 
iii) its address space structure (Class-D IP addresses) which 
requires both hardware and software routers upgrade whereas 
the corresponding cost cannot be compensated by multicast 
service revenues when the ISP does not itself provide access 
to multicast receivers (or sources). Further analysis on current 
IP multicast routing limits and reasons for its lack of wide-
scale deployment in the Internet can be found in [2].  

In this context, research efforts dedicated to new multicast 
routing algorithms have been conducted to move beyond the 
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trade-offs between shared trees and shortest path trees. The 
objective of this paper is to determine the performance bounds 
and the best trade-offs one could potentially achieve between 
the stretch of the routing scheme, the memory space consumed 
to locally store the routing information (including routing 
tables) and the communication cost of dynamic multicast 
routing schemes. The comparative performance analysis is 
performed against i) two well-known reference algorithms (the 
Shortest Path Tree and the Steiner Tree), ii) compact multicast 
routing as developed in the seminal paper of Abraham et al. 
[3] and the greedy multicast routing scheme recently proposed 
in [4].   

This paper is organized as follows. Section II documents 
prior work in terms of performance evaluation of multicast 
routing algorithm and the contribution of this paper. In Section 
III, we provide an overview of the multicast routing 
algorithms considered in our study. Section IV details the 
results of our performance analysis and comparative study in 
terms of the stretch of multicast routing paths they produce, 
the memory space they consume, and their communication 
cost. Finally, Section V concludes this paper. 

 
II. PRIOR WORK AND OUR CONTRIBUTION 

A. Preliminaries 

Consider a network topology modeled by an undirected 
weighted graph � � ��, �, �� where, the set �, |�| � 
, 
represents the finite set of vertices or nodes (all being 
multicast capable), the set �, |�| � �, represents the finite set 
of edges or links, and � is a non-negative function  �: � → �� 
which associates a non-negative weight or cost  ���, �� to 
each edge ��, �� ∈ �. For �, � �  �, the path  ���, �� from 
vertex � to � is defined as the vertex sequence �����
��, ��, . . . , ����, �� , . . . , ���� ��� such that the vertices �� are 
all distinct and vertex ���� is adjacent to ��, ������, ������,…,�∈ �. Distinction is made between the cost 
 ��, �� of a path ���, �� defined as the sum of the weights of 
the edges on the path from � to � and the length ℓ��, �� of a 
path ���, �� which denotes the number of edges the path 
traverses from � to �. The distance "��, �� between two 
vertices �, � of the graph � denotes the length/cost of a 
shortest/minimum cost path ���, �� from � to �. The diameter 
#��� of the graph G is defined as the largest distance between 
any two vertices �, � ∈ �, i.e., #��� � �$�%,&�'("��, ��). 

Let *, * ⊂ �, be the finite set of multicast source nodes and 
+ ∈ * denote a multicast source node. Let ,, , ⊆ �\*, denote 
the finite set of all possible destination nodes that can join a 
multicast source + and let " ∈ , denote a destination (or leaf) 
node. A multicast distribution tree ./,0 � ��1, �1�  is defined 
as an acyclic connected sub-graph 2 of �, i.e., a tree rooted at 
the multicast source node + ∈ * with leaf node set 3, 3 ⊆  ��,. 
The tree ./,0 is also referred to as the multicast routing path. 
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The set M corresponds to the current set of nodes at a given 
construction step of the multicast distribution tree (MDT). The 
size of the tree ./,0 is defined as the size of the connected sub-
graph of G, i.e., |./,0|  � 4 5  
. 

B. Prior Work 

Prior work on compact multicast routing is, as far as our 
knowledge goes, mainly concentrated around the routing 
schemes proposed in the seminal paper authored by Abraham 
et al. in 2009 [3]. The (universal) compact multicast routing 
schemes developed in this paper follows an extensive theoretic 
performance justification and analysis. However, Abraham et 
al. do not report any numerical analysis whereas upper bounds 
do not necessarily translate actual performance that can be 
obtained on graphs underlying large-scale networks such as 
the Internet. The latter shows properties associated to scale-
free graphs (small diameter, high-clustering, and power-law 
degree distribution) as reported by many studies [8], [9], [10], 
[11]. 

On the other hand, the greedy compact multicast routing 
scheme recently proposed in [4] includes extensive simulation 
on 16k node topologies. However, this paper provides limited 
theoretical analysis for the performance bounds of the 
multicast routing scheme it introduces. In particular, since so 
far, there was no formal proof that the scheme developed in 
[4] actually meets the conditions for being qualified as a 
compact scheme. These conditions are the following i) the 
stretch of the routing scheme is ideally bound by a constant (it 
does not grow with the network size), ii) the memory space (in 
terms of number of bits) required to locally store the routing 
information scales sub-linearly in the number of nodes n, and 
iii) node names/labels and header sizes scales (poly-
)logarithmically. 

Hence, on one hand, we have a detailed theoretical 
performance analysis and on the other hand, a numerical 
performance analysis obtained by numerical simulation. In 
these conditions, theoretic performance comparison limits to 
worst case analysis whereas numeric results do not easily 
compare to worst case conditions and provide little theoretic 
foundation. 

C. Our Contribution 

In this paper, we close this gap by theoretically analyzing 
and comparing the performance of two reference multicast 
routing algorithms (the shortest-path tree and the Steiner tree), 
compact multicast routing as proposed in the seminal paper of 
Abraham et al. [3] and the greedy multicast routing scheme 
recently proposed in [4]. We compare the obtained results in 
order to determine the routing scheme which would yield the 
best trade-off between the stretch of the multicast routing 
paths, the memory space required to store the routing 
information and routing table as well as the communication 
cost. We also confront these results to those obtained by 
simulation on the CAIDA map of the Internet topology 
comprising 32k nodes as of Jan.2011 [12]. 

For this purpose, our performance analysis includes the 
following metrics: 
• The stretch of the multicast routing scheme is defined as 

the total cost of the edges of the MDT (as produced by the 
routing algorithm) to reach a given set of leaf nodes 
divided by the cost of the minimum Steiner tree for the 
same leaf set. Note that this definition differs from the one 
used for (unicast) routing schemes. For the latter, the 

stretch is defined as the maximum cost of the produced 
routing path ���, �� over all node pairs �, � ∈ � divided by 
the cost of the corresponding shortest (topological) path.  

• The memory space (in bits) required at each node to locally 
store i) the information locally processed by the routing 
scheme to produce the routing table (RT) entries and ii) the 
produced RT entries. 

• The communication cost (also referred to as the message 
cost) is defined as the number of messages exchanged to 
build the MDT. This metric is directly related to the leaf 
join time, i.e., the higher the message cost the longer the 
time needed for a leaf to join the tree. 

We also define the adaptation cost as the number of 
multicast routing states changes resulting from MDT changes 
due to arbitrary join-leave sequences or topology changes.  

III.  MULTICAST ROUTING SCHEMES 

To conduct our performance analysis and comparative 
study, we consider the following routing schemes:   

A. Shortest Path Tree  

The multicast routing path is constructed as a Shortest Path 
Tree (SPT) from the information exchanges by means of a 
loop-avoidance path-vector routing protocol carrying the 
identifier of the multicast source + and the information of the 
routing path to reach that source. Without routing policy, this 
routing path is the shortest path from each receiver to the 
source +. The SPT algorithm provides the lower bound for the 
(join) communication cost. Each node keeps the following 
entries in its local routing table i) an entry per neighbor node 
to exchange routing messages, ii) an entry per selected path to 
the multicast source s (derived from the unicast routing table), 
and iii) a multicast routing entry per source +. This multicast 
routing scheme corresponds to the currently deployed PIM 
routing performing on top of a unicast routing protocol such as 
Border Gateway Protocol (BGP). 

B. Steiner Tree  

Following the definition of the multicast routing stretch (see 
Section II), the Steiner Tree (ST) algorithm provides the lower 
bound in terms of stretch. In order to obtain the near optimal 
solution for the ST algorithm, we consider a ST-Integer Linear 
Programming (ILP) formulation. For this purpose, we adapt 
the formulation provided in [5] for bi-directional graphs. The 
communication cost for the ST measures at each step of the 
MDT construction the number of messages originated by the 
nodes part of the MDT. These messages contain the minimal 
information for remote nodes not belonging to the MDT to 
join it. Using this information, each node builds and stores in 
its routing table a routing entry to reach the closest node that 
belongs to the MDT. Thus, although the ST computation is 
processed centrally, the communication cost accounts for the 
total number of messages exchanged during the MDT building 
process as an equivalent distributed scenario would perform. 

C. Compact Multicast Routing  

Compact unicast routing aims at finding the best tradeoff 
between the memory space required to store the routing table 
entries at each node and the stretch factor increase on the 
routing paths it produces. Such routing schemes have been 
extensively studied following the seminal paper of Peleg and 
Upfall [6]. Since the late 1980's, various compact routing 
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schemes have been designed in accordance to the distinction 
between labeled schemes (where nodes are named by 
polylogarithmic size labels encoding topological information) 
and name-independent schemes (where node names are 
topologically independent). Abraham et al. [3] have recently 
introduced a dynamic and name-independent compact 
multicast routing algorithm. This scheme referred in the 
context of this paper to as Abraham Compact Multicast 
Routing (ACMR) enables the construction of multicast routing 
paths from any source to any set of destination nodes (or leaf 
nodes).  

The ACMR scheme is i) name-independent, ii) leaf-initiated 
since join requests are initiated by the leaf nodes but it 
requires the prior local dissemination of the node set already 
part of the MDT or keeping dedicated center nodes informed 
about the nodes that have already joined the MDT, iii) 
dynamic since requests can be processed on-line as they arrive 
without re-computing and/or re-building the MDT, iv) 
(partially) centralized since it requires tree routing information 
processing by the root of the MDT (i.e., the multicast source 
node) for each join request after their processing (i.e., 
mapping) by pre-determined center nodes, and v) dependent of 
an underlying sparse tree cover grown from a set of center 
nodes (which induce node specialization driving the routing 
functionality). It is important to emphasize that the sparse tree 
cover underlying the ACMR scheme is constructed off-line 
and requires global knowledge of the network topology to 
properly operate. 

D. Greedy Multicast Routing  

The Greedy Compact Multicast Routing (GCMR) scheme 
proposed in [4] enables the leaf-initiated construction of 
multicast routing paths from any source to any set of leaf 
nodes. This scheme aims at minimizing the routing table size 
(thus the memory space) of each node at the expense of i) 
multicast routing paths with relative small deviation compared 
to the optimal stretch obtained by the ST algorithm, and ii) 
higher communication cost compared to the SPT algorithm. 
This algorithm minimizes the storage of routing information 
by requiring only direct neighbor-related information obtained 
locally and proportionally to the node degree. Thus, it doesn’t 
rely on the knowledge of non-local topology/path information 
(as it is the case for the SPT) or requiring the construction of 
global structures such as sparse covers (as it is the case for the 
ACMR scheme) or tree structures (as it is the case for the ST). 
In other terms, it only requires maintenance of local routing 
information while providing the next hop along the least cost 
branching path during the MDT construction. The challenge 
consists thus in limiting the communication cost, i.e., the 
number of messages exchanged during the search phase, while 
keeping the best possible stretch-memory space tradeoff.   

During the MDT construction, the routing information 
needed to reach a given multicast source + is acquired by 
means of an incremental two-stage search process. This 
process, triggered when any node � ∈ �, � ∉ ./,0 decides to 
join a given multicast source +, starts with a local search 
covering the leaf node's neighborhood. The latter is also 
referred to as the vicinity ball 6��� of node �. The rationale is 
the following: the probability of finding a node � ≠ �,
� ∈ ./,0 within a few hops distance from the joining node u is 
high in large graphs whose diameter  #��� is logarithmically 
proportional to its number of nodes 
, i.e.,  #��� ~ 89:�
�. 
Moreover, this probability increases with the size of the MDT. 

If the local search performed over the joining node's vicinity 
ball 6��� is unsuccessful, the search process is then continued 
over the remaining unexplored topology without requiring 
global knowledge of the current MDT. For this purpose, a 
variable path budget ; is used to limit the distance travelled by 
leaf initiated requests in order to prevent costly (in terms of 
messaging) global search. In both searching phases, the 
returned information provides the upstream neighbor node 
along the least cost branching path to the MDT rooted at the 
selected multicast source node +. When reaching the joining 
node, this information enables selection of the least cost 
branching to the MDT. The routing table of each node 
� ∈ ./,0 includes consequently the following entries i) one 
entry that indicates the upstream neighbor node to which the 
join message is sent for each multicast source + and ii) one 
entry to enable routing of incoming multicast traffic 
(originated by that source +) from its incoming port to a set of 
outgoing ports. 

The GCMR scheme is i) name-independent, ii) leaf-
initiated; however, compared to the ACMR scheme it operates 
without requiring prior local dissemination of the node set 
already part of the MDT or keeping specialized nodes 
informed about nodes that have joined the MDT, iii) dynamic, 
iv) distributed since transit nodes process homogeneously the 
incoming requests to derive the least cost branching path to 
the MDT without requiring any centralized or specialized 
processing by pre-determined or dedicated nodes, and v) 
independent of any underlying topology construction, and 
performing in absence of an underlying unicast routing 
topology since the local knowledge of the cost to direct 
neighbor nodes is sufficient for the GCMR scheme to properly 
operate. 

IV. PERFORMANCE ANALYSIS 

In this section, we analyze and compare the performance of 
the multicast routing schemes introduced in Section III for join 
only events to the multicast source (but no leave events). This 
case is appropriate for settings where once a node joins an 
MDT it will not leave it until the multicast session ends. 

A. Stretch 

1) ACMR 
The stretch of the ACMR scheme as determined by the 

Lemma.7 of [3] is <��=
(89:�
�, 89:�Δ�). 89:�
�� 
competitive compared to the stretch of the ST algorithm. The 
quantity ∆ called the aspect ratio of the graph � is defined as 
the ratio between the maximum distance �$� "��, �� and the 
maximum distance min "� �, �� for any node pair �, � ∈ � 
(see [3]). Note that when the minimum distance is equal to 1, 
then the aspect ratio ∆ corresponds to the diameter #��� of the 
graph �. 

Using the CAIDA maps of the Internet topology comprising 
16k (Jan.2004) and 32k nodes (Jan.2011), the measured ratio 
Δ �  #��� B 10. These results are confirmed by the systematic 
routing path length measurements documented in [7]. 
Consequently the stretch of the ACMR scheme is <�89:�
��. 
Note here that compared to other studies, the present paper 
makes a clear distinction between the average path length and 
the diameter of the graph (i.e., the maximum path length). 
Moreover, since the diameter of the unweighted graph 
underlying the Internet topology is of the order of  89:�
�, the 
stretch upper bound of the ACMR scheme is <�#����.   
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2) GCMR 
For unweighted (weighted) graphs, the stretch of the GCMR 

scheme is determined by Lemma 1 (respectively, Lemma 2). 

Lemma_1: The stretch upper bound of the GCMR scheme is 

<�C �D� �  �
E �. 

Proof: Assume that nodes �, F ∈ ./,0 and are respectively at 
distance "�+, �� and "�+, F� from the multicast source + such 
that "�+, ��  G  "�+, F�. Assume also that node � decides to 
join the multicast tree ./,0 by appropriate setting of its path 
budget  ;���. 

If the following inequality is verified 

�=
�("��, ��� | "��, ��� H ;��� I  ��  ∈ ./,0  I  ��  ∈ ��+, ��) H
 �=
J("K�, FJL | "K�, FJL H ;��� I FJ  ∈ ./,0 I FJ  ∈ ��+, F�)  

then, node � will subsequently select the shortest branching 
path to the node ��M � �=
�("��, ��� | "��, ��� H ;���  I
��  ∈ ./,0  I  �� ∈ ��+, ��). From this routing decision, the 
increase of the multicast routing path stretch is given by the 
formula "��, ��M�  N  "���M, +�. Moreover, resulting from the 
path budget constraint ("��, ��M�  H  ;���), the upper bound of 
the stretch increase is determined by "��, ��M�  N  "���M, +� H
 ;��� N  "���M, +�. Since "���M, +�  H  "��, +� (otherwise node 
��M could not be selected at all), we obtain the following upper 
bound to the stretch increase:   ;���  N  "��, +�. Moreover, by 
replacing the source + by any node � ∈ ./,0 we can generalize 
this upper bound to ;���  N  "��, �� G  ;���  N  "���M, �� G
 "��, ��M� N  "���M, ��. 

On the other hand, assume that there exists a node FJM∈ ./,0 
and FJM ∈ ��+, F� such that i) "�FJM, +�  H   "���M, +� and ii) 
"��, FJM�  N "�FJM, +�  H   "��, ��M�  N  "���M, +� whilst node FJM 
is not reachable by node � due to the path budget constraint, 
i.e., "��, FJM� G ;���. Then the routing path stretch would 
increase by  "��, FJM�  N "�FJM, +� . This increase is minimum 
when "�FJM, +� is minimum, i.e., when FJM  �  �=
J("�FJ, +�). 
Since by construction "��, FJM�  G ;���, we could have 
obtained as result of the selection of node FJM the following 
lower bound to the stretch increase: ;��� N �=
JO"�FJM, +�P. 
Moreover, by replacing the source + by any node Q ∈ ./,0 we 
can generalize this lower bound to "��, ��M� N  "���M, Q� G
 "��, FJM� N "�FJM, Q� G  ;��� N  �=
JO"�FJM, Q�P. 

As the maximum (minimum) distance is given by # ��� (1, 
respectively) and the maximum (minimum) path budget is set 
to # ��� (1, respectively), the stretch of the GCMR scheme is 

< Rmax (C �D� �  �
E , EC �D�

C �D� �  �)U � <�C �D� �  �
E �. □ 

Lemma_2: the stretch increase of the GCMR scheme is 
dominated by the sum (over all join events) of the ratio 
between the minimum distances �=
&("��� , ��|� ∈ 6���� I
� ∈ ./,0) and �=
V("��� , F�|F ∉ 6���� I F ∈ ./,0) such 
that  �=
V("��� , F�) H �=
&("��� , ��). 
Proof: Let � � ��, �, � � be a weighted undirected graph; two 
cases can occur when considering a joining node �� depending 
on whether the multicast source + belongs or not to the 
vicinity ball of the joining node ��: 
i) If the multicast source + ∈ 6����, then local search initiated 
by node ��  will find the least cost branching path to the tree 

./,0. This condition is verified when the path budget ;���� 
value is sufficient for the request message to reach the source 
node + from the joining node ��. It is obvious to see that when 
this condition is met, the resulting stretch increase is minimal. 

ii) If the multicast source + ∉ 6����, then the following 
alternative can occur: 
ii.a) If ∃ node v such that � ∈ ./,0 and � ∈ 6����, then the 
local search process initiated by the joining node �� will find 
the actual least cost branching path if and only if there no 
other node F ∈ ./,0 and F ∉ 6���� that can be found at 
shorter distance, i.e., "��� , F� H  "��� , ��. Indeed, the 
distance limit set by the joining node �� on the local search 
process by means of the path budget ;����, allows (if it exists) 
to reach a node � such that � ∈ ./,0 and � ∈ 6����; thus, 
before triggering the global search process. However, due to 
the finite size of the ball 6���� H √
 (see [4]), when 
decrementing the path budget ;���� such node � can be found 
during the local search phase even though ∃ node F ∈ ./,0 
and F ∉ 6���� such that "��� , F� H  �=
&("��� , ��) over all 
node � such that � ∈ 6���� and � ∈ ./,0. Hence, the stretch 
increase is bound by the fraction of such nodes conditioned by 
the current number of nodes already belonging to the tree ./,0. 
The stretch increase can thus be derived from the following 
formula: 

X �=
Y("��� , �J� | �J  ∈ 6����  I �J  ∈ ./,0)
�=
Z("��� , F[� | F[  \  6����  I F[ ∈ ./,0)

]^_]

`��
 (1) 

ii.b) If a node � such that � ∈ 6���� and � ∈ ./,0, then the 
global search process initiated by node ��  will find the least 
cost branching path. This condition is verified if the path 
budget ;���� value is sufficient for the request message to 
reach node � ∈ ./,0 from the joining node ��. When this 
condition is met, the resulting stretch increase is minimal. □ 

3) Comparative Analysis 
The stretch upper bound of the multicast routing paths 

produced by the ACMR scheme even if universal (i.e., 
applicable to any graph) is 2 times higher than the one 
produced by the GCMR scheme. It also important to note that 
the stretch of the GCMR scheme has a second order 
dependence on the network size (due to its dependence on the 
diameter #���). On the other hand, the ACMR scheme shows 
a first and a second order dependence on the network size (due 
to its dependence on the number of nodes n and the diameter 
#��� and the number of nodes 
). 

Fig.1 depicts the routing scheme stretch obtained by 
simulation of the ST, the SPT, the GCMR and the ACMR 
scheme (for different values of the parameter k). The 
simulations are performed on the CAIDA map of the Internet 
topology comprising 32k nodes. The scenario executed 
simulates the construction of multicast routing paths for leaf 
node set of increasing size from 500 to 4000 nodes with 
increment of 500 nodes. Each execution is performed 10 times 
by considering 10 different multicast sources. From this 
figure, we can observe that the upper bound for the ACMR 
scheme is not reached (its maximum value reaches 2.15 for 
b � 1.5). Moreover, the stretch of the GCMR scheme is in 
average still twice better than the stretch of the ACMR scheme 
with a maximum value of 1.08 (for 500 leaf nodes) and a 
minimum value of 1.03 (for 4000 leaf nodes). Note also that 
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the comparative gain is weakly influenced by the value of the 
parameter b. This parameter characterizes the sparse tree 
cover construction: the higher the value of b, the lesser the 
number of trees in the sparse tree cover (TC).  

 
Fig.1: Stretch in function of the leaf node set size 

B. Memory 

1) ACMR 
The memory space consumed by the ACMR scheme as 

documented in Section 6.1 of [3] comprises the space required 
to store the following routing information:  

1) Each node � ∈ � stores the tree routing information 
c �., �� for all the trees . in its own label *de$fg8���1, 
which yields a total memory of <�89:h�
�. 89:�Δ�/
 89:�89:�
���. 

2) For each radius j ∈ k � (0,1, … , 89:�Δ�) and tree . 
belonging to the sparse tree cover .n[,Eo���, the center 
node  �.����� of node � ∈ . stores the label of all 
nodes contained in the ball 6��, 2q�, which leads to a 
total memory over all |k| radii of <�b
���/[89:�Δ�� 
bits. 

3) Each node � ∈ � stores <�89:�Δ�� labels of size 
<r�b
�/[� to reach the center nodes  �.�����  for all 
radii j ∈ k � (0,1, … , 89:�Δ�), which leads to a total 
memory of <�b
���/[89:�Δ��.  

Thus, the ACMR scheme consumes in total <r�b
���/[� 
bits. As the value of the parameter b ranges in the interval 
[1, 89:�
�], we obtain respectively as upper bounds <r�
E� 
and <r�
���/stu �v��. Note that the memory consumption of the 
ACMR scheme is independent of the MDT size. 

2) GCMR 
Per multicast source +, each node � ∈ ./,0 stores in its local 

routing table one entry to the selected upstream node and one 
multicast routing entry. The memory-bit space consumed by 
the multicast routing entry, which indicates the outgoing ports 
for the incoming multicast traffic is proportional to the local 
tree out-degree "[. Assuming an optimal port identifier 

 
1 The label SPLabel(v) stores the label λ(T,c(T)) given by Lemma 9 of [3] 

for each tree T part of the sparse tree covers containing node v. 

encoding proportional to 89:�
� at each node, the total 
memory space consumed by the MDT constructed by means 
of the GCMR scheme is <�4 89:�
��, where 4 is the size of 
the MDT. The latter equals 
 when the MDT covers the entire 
network. 

3) Comparative Analysis 
Depending on the value of the parameter b, the GCMR 

scheme (for 4 � 
) is <r�
� competitive for b � 1 and 
<r�
�/wxy�v�� competitive for b � 89:�
� compared to the 
ACMR scheme. The main difference between them consists in 
that the GCMR scheme depends explicitly on the MDT size 
whereas the ACMR scheme depends on the network size. 

 
Fig.2: Memory space consumption ratio in function of the leaf node set size 
 
Fig.2 depicts the memory consumption ratio of the ST, the 

SPT and the ACMR scheme (for different values of the 
parameter b) against the GCMR scheme. This ratio provides a 
good indication of the achievable reduction in terms of the 
memory space required to store the routing information and 
routing table entries produced by these algorithms. The results 
are obtained by means of simulation on the CAIDA map of the 
Internet topology comprising 32k nodes. The scenario 
executed simulates the construction of multicast routing paths 
for leaf node set of increasing size from 500 to 4000 nodes 
with increment of 500 nodes. Each execution is performed 10 
times by considering 10 different multicast sources. 

From Fig.2, we can observe that for a leaf set of 500 nodes 
the memory space consumption ratio between the ACMR and 
the GCMR scheme decreases from 56,40 (for b � 2) to 8,43 
(for b � 4). This ratio decreases as the size of the leaf node set 
increases. When the size of the leaf set reaches 4000 nodes, 
this ratio drops to 9.09 (for b � 2) and 1.36 (for b � 4). These 
results confirm that the gain in memory space consumption 
obtained with the GCMR scheme decreases against the 
ACMR scheme as the size of the MDT increases. The 
dependency of this gain with respect to the parameter b finds 
its origin in the underlying sparse tree cover construction that 
the ACMR scheme requires: the higher the value of the 
parameter b, the sparser the tree cover. As the value of this 
parameter increases to its maximal value 89:�
� ~ #�:� and 
the size of the leaf node set increases to 
, the gain in memory 
space consumption tends to 1. However, this situation is 
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unlikely to occur in practice as it would imply that the MDT 
comprises all network nodes.  

C. Communication Cost 

In order to analyze the communication cost it is important 
to distinguish between adaptive and oblivious routing. A main 
property of the ACMR scheme variant documented in Section 
6.2 of [3] is the construction of MDTs that are oblivious, i.e., 
the multicast routing path from the source s to a given leaf 
node is irrespective of the other leaves. Due to obliviousness, 
when other nodes join and leave the MDT, this does not affect 
the multicast routing path to that leaf. In contrast, the GCMR 
scheme is adaptive, i.e., routing decisions may be modified 
once there is a change in the information that has lead to that 
decision. This implies that even if the GCMR scheme is 
competitive compared to the ACMR scheme, interleaved 
sequences of join and leave events may increase the message 
cost. For this purpose, we distinguish between the “join” 
communication cost from the adaptation cost, i.e., the 
additional message cost to restore the optimal multicast 
routing path when nodes that previously joined the tree leave 
the MDT before the multicast session ends.  

1) Join Communication Cost 
a) ACMR 

The total communication cost of the ACMR scheme can be 
derived from the Lemma.7 of [3]. In case of join-only events, 
the communication cost is <�2z�E. 2|3|. 89:�Δ�. 89:�
��, 
where |M| is the size of the leaf node set.  

Since the exponent { is at maximum equal to 1 (following 
the inequality { 5 log �#���� with #��� B 10), we obtain for 
the total communication cost of the ACMR scheme 
<�16|3|. 89:�Δ�. 89:�
��. Moreover, as the minimum 
distance of the unweighted graph underlying the Internet 
topology is equal to 1, the aspect ratio ∆ corresponds to the 
diameter #��� of the graph �; hence, we obtain for the total 
communication cost <�16|3|. 89:�
��. 

b) GCMR 

In the GCMR scheme, each join event as initiated by a node 
��  ∈ � to reach a node � ∈ ./,0 results in a communication 
cost equal to: 

n���� � 2���� N 2��1 � ��� (2) 

In (2), �� and � are respectively the number of edges in the 
vicinity ball 6���� of the joining node ��  and the total number 
of edges |�| in the graph. The Boolean variable ��  �  1 when 
at least one node � ∈ ./,0 is comprised in the vicinity ball 
6���� of the joining node ��. Thus, when all the multicast 
distribution tree nodes � ∈ ./,0 are outside the vicinity ball 
6����, the communication cost n����  �  2�.  

The total communication cost, i.e., the cost to build the 
entire MDT, is thus determined by the sum of the individual 
communication costs n���� induced by all nodes = �
 1, … , |3| joining the multicast tree ./,0: 

nK./,0L � X �2���� N 2��1 � ����
`

 (3) 

As already shown in [4], defining a vicinity ball size 
proportional to √
/89:�
� minimizes the number of messages 
exchanged during the construction of the MDT and thus the 
communication cost. To further reduce the communication 
cost of the GCMR scheme, each multicast source + constructs 

a vicinity ball 6�+� whose number of edge is given by �/. This 
vicinity ball shall demonstrate the following properties i) its 
size at least as large as the average size of leaf node's vicinity 
ball, and ii) the radius locally computed from its outgoing 
ports is inversely proportional to the neighbor’s node degree. 
Subsequently, when a request message reaches the boundary 
nodes of the ball 6�+� of the multicast source +, the message 
is directly routed along the shortest path to the source +. This 
enhancement prevents searching at the neighborhood of the 
multicast traffic source. The total communication cost is thus 
determined by: 

nK./,0L � X �2���� N 2�� � �/��1 � ����
`

 (4) 

2) Comparative Analysis 
Simulations performed on the CAIDA map of the Internet 

topology comprising 32k nodes show that the communication 
cost ratio of the GCMR scheme is relatively high compared to 
the SPT algorithm. As depicted in Fig.3, the communication 
cost ratio between the GCMR scheme and the SPT algorithm 
increases from 2,69 (for leaf set of 500 nodes) to 8,17 (for leaf 
set of 4000 nodes). The ratio’s slope decreases as the leaf node 
set increases until reaching a saturation level around 10. It is 
worth mentioning that the memory and the capacity required 
to process communication messages are relatively limited.   

 
Fig.3: Communication cost ratio in function of the leaf node set size 

 
When comparing the communication cost of the ACMR 

scheme against the GCMR scheme for the same topology, the 
opposite trend can be observed from Fig.3. Note here that the 
communication cost for the ACMR scheme accounts also for 
the hidden cost associated to the exchange of multicast routing 
information between joined branching points (for each joining 
node ��) and the multicast source node +. The communication 
cost ratio between the GCMR scheme and the ACMR scheme 
decreases from 10,22 (for leaf set of 500 nodes) to 2,33 (for 
leaf set of 4000 nodes). The gain factor observed when 
decreasing the size of the leaf node set plays in favor of the 
ACMR scheme and underlines that improvement(s) should be 
further considered to reduce the join communication cost of 
the GCMR scheme. 

3) Adaptation Cost 

In order to evaluate the adaptation cost of the GCMR 
scheme, we are interested in determining the maximum 
number of re-routing events that this scheme requires to adapt 
the MDT upon occurrence of leave events. Remember that the 
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ACMR scheme is oblivious (when nodes leave the MDT, the 
multicast routing path to the remaining leaf nodes is not 
affected); hence, there is no additional adaptation cost.  

For the GCMR scheme, which is adaptive, the situation 
completely differs; in particular, when the node � ∈ ./,0 
leaves the MDT after an arbitrary sequence of � �1 ≤ � H
|3|� dependent join events, each involving at least one of the 
nodes along the path ���, +� from the leaving node � to the 
multicast source + of the MDT. In this case, a certain number 
of re-routing events are required to restore the optimal 
multicast routing path.  

Theorem_1: the number of events triggered by a node leaving 
the MDT after an arbitrary sequence of � �1 ≤ � H |3|� 
dependent join events is <��. �# ��� � 1��. 

Proof: consider the node � ∈ ./,0. For each leaf node F�, let 
��F� , �J� denote the least cost branching path from node F� to 
�J such that �J  ∈ ���, +�, where + is the source node of the 
MDT. Assume also that node � wants to join the tree ./,0 
knowing that the path ���, �� is such that "��, ��  �
 �=
J("��, �J�)  G  "��, F�� ∀=. It follows that node � selects 
the path ���, F� such that "��, F� � �=
�("��, F��) to join 
the tree ./,0.  

If afterwards node F leaves the tree ./,0, the following 
conditions must be verified to trigger a re-routing event:  

(1) For a node Q along the path ���, ��: "�Q, ��  H
 "�Q, ��  N  "��, F�  N  "�F, ��  
 Note that if node Q ≡ node �, then "��, ��  H
 "��, F�  N  "�F, �� 

(2)  For a node � along the path ���, F�: "��, ��  N
 "��, ��  H  "��, F�  N  "�F, �� 

Moreover, following the triangular inequality, "�F, ��  H
 "�F, ��  N  "��, ��; otherwise, node F wouldn’t have 
selected node v as branching node. Hence, inequality (2) can 
be rewritten as "��, �� N "��, ��  H  "��, F�  N  "�F, ��  N
 "��, ��; thus, "��, ��  H  "��, F�  N  "�F, ��.  

The minimum number of re-routing events is determined by 
the number of nodes along the path ���, Q� when its distance 
"��, Q�  �  "��, F�  N  "�F, ��  N  "��, Q� is minimum. From 
inequality (1), this minimum distance is equal to 3.  

The maximum number of re-routing events is determined 
by the number of nodes along the path ���, Q� when its 
distance "��, ��  N  "��, Q� is maximum. From inequality (2), 
the maximum distance verifies the following "��, ��  N
 "��, Q�  H  "��, F�  N  "�F, ��  �  "�Q, ��.As these distances 
are upper bounded by  #���  �  1, the following inequality 
holds "��, ��  N  "��, Q�  H   #���  �  1. □ 

Since the diameter  #��� of the unweighted graph � 
underlying the Internet topology grows proportionally to 
89:�
�; the number of re-routing events is limited. Derivation 
of the corresponding message exchange depends on the aspect 
ratio of the multicast distribution tree. Further investigation 
would enable determining the total message cost depending on 
the aspect ratio of the multicast tree. 

V. CONCLUSION 

This paper theoretically analyzes and compares the 
performance of two reference multicast routing algorithms 
(the shortest-path tree and the Steiner tree), the compact 
multicast routing scheme as proposed in the seminal paper of 
Abraham et al. [3] and the greedy multicast routing scheme 
recently proposed in [4]. We also confront these results to 
those obtained by simulation on the CAIDA map of the 
Internet topology comprising 32k nodes as of Jan.2011. 
Compared to the ACMR scheme, the GCMR scheme provides 
a better tradeoff between the memory space it requires to 
locally store the routing information (including the routing 
table entries) and the stretch factor increase multicast routing 
paths it produces. On the other hand, the results obtained for 
the join communication cost ratio between the ACMR scheme 
(but also the SPT algorithm) and the GCMR scheme show that 
further improvement are still required for the latter. 

Moreover, the adaptive property of the GCMR scheme 
should induce a limited number of re-routing events in case of 
finite sequences of join and leave events compared to the 
obliviousness property of the ACMR scheme. Future work 
will determine if these theoretical performance results can be 
verified by simulation for interleaved sequences of join and 
leave events but also on non-stationary topologies. 

REFERENCES 
[1] B.Fenner, et al., Protocol Independent Multicast - Sparse Mode (PIM-

SM), Internet Engineering Task Force (IETF), RFC 4601, Aug.2006. 
[2] C.Diot et al., Deployment Issues for the IP Multicast Service and 

Architecture, IEEE Network, vol.4, no.1, pp.78-88, Jan/Feb.2000. 
[3] I.Abraham, D.Malkhi, and D.Ratajczak, Compact multicast routing, 

Proc. of 23rd Int’l Symposium on Distributed Computing DISC'09, 
Elche, Spain, pp.364–378, Sep.2009. 

[4] P.Pedroso, D.Papadimitriou, D.Careglio, Dynamic compact multicast 
routing on power-law graphs, 54th IEEE Globecom, Houston (TX), 
USA, Dec.2011. 

[5] Sage's Graph Library. Available at http://www.sagemath.org/ 
[6] D.Peleg and E.Upfall, A trade-off between space and efficiency for 

routing tables, J.ACM, vol.36, no.3, pp.510–530, Jul.1989. 
[7] B.Huffaker, M.Fomenkov, D.Plummer, D.Moore, and k.claffy, Distance 

Metrics in the Internet, IEEE Int’l Telecommunications Symposium 
(ITS), Brazil, pp.200–202, Sep.2002,  

[8] F.Chung,  L.Lu, The Average Distance in a Random Graph with Given 
Expected Degrees, Internet Mathematics, vol.1, no.1, pp.91–114, 2003.  

[9] D.J.Watts, S.H.Strogatz, Collective dynamics of “small-world” 
networks, Nature 393, pp.440-442, 1998.  

[10] M.Faloutsos, P. Faloutsos, and C.Faloutsos, On power-law relationships 
of the Internet topology, Proc. ACM SIGCOMM 1999 and in ACM 
Computer Communication  Review, vol.29, pp.251-263, 1999.  

[11] M.E.J. Newman, The Structure and Function of Complex Networks, 
SIAM Reviews, vol.45, no.2, pp.167-256, 2003.  

[12] CAIDA Map. Available at http://as-rank.caida.org/data. 
 
 
 
 
 
 
 

 


