Experimental performance evaluation of sensor-based networking for energy efficiency in smart buildings

Prof. Sotiris Nikoletseas

University of Patras and CTI, Greece

FIRE Workshop on Measurement and Measurement Tools, FI week, Aalborg, Denmark, May 2012

1 The HOBNET Project on Green, Smart Buildings

2 Experimental Evaluation of Sensor Network Protocols (energy balance)

HOBNET

2/36

(日) (同) (三) (三)

- 3 Critical Components for Experimental Research
- 4 Specialized Application Commissioning (garden watering)
- 5 The HOBNET REST Architecture
- 6 Conclusions

STREP Research Project HOBNET (FP7-ICT-257466, 2010-2013)

HOlistic Platform Design for Smart Buildings of the Future InterNET

(www.hobnet-project.eu)

(FIRE - Future Internet Research & Experimentation)

OBNET

3/36

イロト イポト イヨト イヨト

Participants

1. Computer Technology Institute (Coordinator), Greece Leader: Sotiris Nikoletseas

・ロン ・四 と ・ ヨン ・ ヨン

- 2. Ericsson Serbia, Serbia Leader: Srdjan Krco
- 3. Mandat International, Switzerland Leader: Sebastien Ziegler
- 4. Sensinode, Finland Leader: Zach Shelby
- 5. University College Dublin, Ireland Leader: Antonio Ruzzelli
- 6. University of Edinburgh, Scotland Leader: DK Arvind
- 7. University of Geneva, Switzerland Leader: Jose Rolim

Main Objectives/Expected Results

- a an **all IPv6/6LoWPAN infrastructure of buildings** and how IPv6 can integrate heterogeneous technology (sensors, actuators, mobile devices etc)
- **b 6lowApp standardization** towards a new embedded application protocol for building automation
- c novel **algorithmic models and scalable solutions** for energy efficiency and radiation-awareness, data dissemination, localization and mobility
- d rapid development and integration of **building management applications**, and their deployment and monitoring on **FIRE test beds**

We take a **holistic approach addressing critical aspects at different layers** (networks, algorithms, applications/tools) in an integrated way, including the following hierarchy:

- At the low level, **network protocols and architectures, mainly based on IPv6**, are studied, with an emphasis on heterogeneity and interoperability.
- At a second layer, we provide **algorithmic models and solutions** for smart buildings, with a special care for scalability.
- An interface layer for the rapid development and the evaluation of **building management applications** is provided at a third level.
- Finally, proposed research solutions and key innovations are organically evaluated in the context of the **platform integration**.

1. The HOBNET Project on Green. Smart Buildings

The three main test-beds

CTI - Patras test-bed

A (10) > A (10) > A

University of Geneva test-bed Mandat International test-bed
High diversity of deployed devices (sensors, actuators, etc.)
Different thematic emphasis (energy, tracking, visualization, etc.)

List of consolidated scenarios we implement

- Local adaptation to presence
- Emergency management
- Electric device monitoring
- CO2 monitoring
- Maintenance control
- Customization
- Building 3D visualization & monitoring
- Mobile phone ID
- User awareness
- Oil tank monitoring
- Garden watering
- Resources tracking and monitoring

The energy balance property

Guarantees that:

- the average energy spent per sensor *is the same for all sensors* in the network at any time during the network operation
- *prolongs the network lifetime* by avoiding early energy depletion of sensors and the non-utilization of available energy on sensors

イロト 不同下 イヨト イヨト

Protocols implemented and measured

We implement and experimentally evaluate in our SenseWall test-bed *two* energy balancing protocols:

(日) (同) (三) (三)

10/36

- P_i Protocol
- E_i Protocol

and compare them to two pure data propagation schemes:

- Multi-hop routing protocol
- Direct transmissions protocol

The Distance-based P_i Protocol (designed in HOBNET)

Let *i* the distance (in hops) to the sink. In each step the algorithm *decides probabilistically and locally* whether to propagate data:

- one-hop closer to the Sink with probability P_i
- or send it *directly to the Sink* with probability 1 P_i

The right probability P_i is rigorously computed to:

$$P_i = 1 - \frac{1}{(i+1)(i-1)}$$

Intuition:

• The closer to the Sink data is, the more probable it is to send data directly to the *Sink* via fast jumps, by bypassing the bottleneck region.

11/36

• The larger is the distance to the *Sink*, the more probable multihop data propagation is.

The Energy-based E_i Protocol (developed in HOBNET)

Let n be the current sensor and m be the sensor in the next hop towards the *Sink* with the lowest energy spent. When n holds data it makes the following decision:

- If node *n* has spent more energy than *m*, then *n* sends the message to *m* (spending one energy unit).
- Otherwise, *n* sends the message directly to the Sink spending d^2 energy units, where *d* is the distance from *n* to the *Sink*.

The SenseWall experimental test-bed

- a set of 28 TelosB motes
- a control Base Station PC
- USB cables and hubs
 - + easy control (mass flushing, reseting, etc.)
 - $+ \,$ receive packet-statistics through the wired USB backbone
 - $+ \,$ leave the wireless medium free for the routing algorithms

イロン イヨン イヨン イヨン

SenseWall: hardware and networking

itus: 🖻	ogramming node	s d	onel			
леа мо	tes:		Conn	ected Motes	51	
27	VPCDSpk1	1.1	10	VPSG1UR	USB	14
26	VPCDSNID	-	1	VESGING	116836	
25	VPCDSMKT		2	VECOSEUC	116927	
24	VECUSI 2E		2	VPCOMCNM	11006	
23	X8507856		4	XBSONDCU	USB4	
22	XRSDSNN		5	X850508P	US87	
21	38505101		6	X8SG1MV	LISB28	
20	XRSD63H		7	X8561100	USB17	
19	XRSDS8RS		8	XBSD5KV0	LISB9	
18	XBSD4VKS		2	XBSD786T	USBB	
17	XBSD4VKH		10	XBSD4W49	USB10	
16	XBSD5KTW		11	XBSD5L00	USB13	
15	XBSD5LSV		12	XBSD5N6N	USB12	
14	XBSD5KZ9		13	XBSDMDCE	USB11	
13	XBSDMDCE		14	XBSD5KZ9	USB15	
12	XBSD5N6N		15	XBSD5LSV	US818	
11	XBSD5L00		16	XBSD5KTW	USBO	
10	XBSD4W49		17	X8504V0H	USB14	
9	XBSD786T		18	XBSD4VKS	USB2	
8	XBSD5KY0	×	19	XBSO5RRS	U\$81	
Refresh (onnected Mot	25		Select	All	
nk Node: 0:385G188			Reset Selection			
			0	Brogram Selected Motor		

- We deployed the motes in a sector-shaped topology as shown in the above figure to approximate the theoretical model.
- The *Sink* sends the received messages to the PC using the serial UART interface and then the Java application stores them in a MySQL database.

SenseWall software architecture

The general overview of the architecture is depicted in the following figure:

The MeasurementsLogger Component

Further to implementing in TinyOS 2.1.0 the four routing protocols, we also implemented a MeasurementsLogger Component.

- The **MeasurementsLogger Component** is a binding interface between the desktop software control application and the routing protocols we evaluate in SenseWALL
- The role of this component is:
 - 1. to setup the parameters of the experiments (i.e. event generation rate, energy sampling rate, experiment duration, etc.) and

イロン イヨン イヨン イヨン 三日

16/36

2. to monitor the evolution of the routing protocol by enabling the logging of the performance measurements

Software to control SenseWall

The Desktop application:

- automatically detects the motes that are connected to the desktop PC
- allows the administrator of the network to interact with the motes (event generation rate, reset, etc.)
- provides an interface for computing the following performance evaluation metrics:
 - data delivery latency
 - average energy consumption
 - success ratio

Experimental Setup and Metrics

- Each node generates a total of 1.000 events/messages with a rate of 0.2 events/second.
- Every 50 events (or 250 seconds) a node sends its current energy to the *Sink*.

Performance measures:

- a) **delivery latency** is the average number of hops needed to reach the *Sink*.
- b) **average energy consumption** per node during the network operation.
- c) **success ratio**, of the total number of packets received by the sink to the number of packets generated.

OBNET

18/36

Experimental Results - Data Delivery Latency

- The multi-hop propagation scheme is *severely affected* by the distance, in terms of latency
- The performance of the E_i and P_i protocols *lies between the two* extremes of multi-hop propagation and direct transmissions

Experimental Results - Data Delivery Latency

- The energy balance protocols indeed *achieve a good latency-cost trade-off*
- This is due to the hybrid nature of these two protocols transmissions

イロト イポト イヨト イヨト

Experimental Results - Energy Efficiency

- When using direct transmissions to deliver data to the *Sink*, motes lying in distant sectors consume much more energy
- When using multi-hop propagation, motes closer to the *Sink* consume nearly double the energy compared to the rest of the network

Experimental Results - Energy Efficiency

- The P_i protocol *actually manages* to balance the dissipated energy across the network at all sectors
- The E_i protocol consumes slightly more energy than the P_i protocol. This is due to the fact that E_i is more prone to direct transmissions than the P_i protocol

Critical Components - Reference Deployments Used

- structured topologies (star, grid, mesh) vs randomized deployments (random proximity graphs and nearest neighbour graphs)
- homogeneous deployments (all sensors of the same type) vs heterogeneous deployments (mix of high and low capabilities sensors)
- flat deployment (all sensors at the start) vs incremental deployment (sensors added during network evolution)
- uniform node density vs high density diversity (e.g. hot spots)

OBNE

23/36

• static deployments *vs* mobile deployments (and hybrid combinations)

The Mobility Factor

• Emphasis on highly dynamic, diverse mobility profiles

- Novel patterns of accelerated random Sink mobility needed (inertia random walk, stretched walk, walk with limited memory)
- Exploiting diverse dynamic node mobility (new network parameters, like the mobility level) as a low cost replacement of connectivity and fault-tolerance

Critical Issues and Performance Metrics

- **scalability**: how does performance scale with size? Even correctness may be affected by size
 - \rightarrow need to evaluate very large input sizes
- fault-tolerance: can the network tolerate failures well?
 → diverse fault models needed (temporary/permanent, offline/online, etc.)
- Inherent trade-offs (e.g. energy vs time)
 - Competing goals / various aspects:
 - minimizing total energy spent in the network
 - maximizing the number of "alive" sensors over time

(日) (同) (三) (三)

- combining energy efficiency and fault-tolerance
- balancing the energy dissipation
- Application dependence
- Dynamic changes / heterogeneity

Protocol Properties and Families

- variety of protocols needed/hybrid combinations
- adaptive protocols
- simplicity
- randomization
- distributedness
- locality

Garden Watering - System Description

We have implemented a smart irrigation system that is able to adapt:

- to the specific watering needs of different plants/plantations
- to the specific watering needs of each area inside a garden/field

・ロン ・四 と ・ ヨ と ・ ヨ と

27/36

instantly to diverse weather conditions

The system consists of:

- sensor motes (TelosB & IRIS)
- soil humidity sensors (Decagon EC-5)
- watering electro-valves (Irritol)
- Java app & MySQL database running on a PC

4. Specialized Application Commissioning (garden watering)

System Description

TelosB motes equipped with EC-5 sensors monitor soil humidity. Measurements are sent to the Sink (PC connected) where they are stored to the database by the Java application. If the soil humidity in a given area falls below a predefined threshold then an alert message is sent to the corresponding IRIS mote to commence irrigation in that area.

4. Specialized Application Commissioning (garden watering)

System Description

Each IRIS mote, via a relay, drives an external power circuit that controls the irrigation electrovalve. When an alert signal is received the circuit is closed and irrigation starts.

When soil humidity levels reach a predefined upper threshold then a close message is sent from the TelosB to the IRIS motes to stop irrigation.

System Description

- For performance evaluation we use three pots with diverse water needs (geranium, lavender, mint).
- Summertime in Greece: $36^{\circ}C$ at daytime, $30^{\circ}C$ at night.
- We compared the WSN system to common irrigation programmer

HOBNE

Performance Evaluation

Figure: Common irrigation programmer

- With common programmer there exist great variations in soil humidity.
- Soil dries out and then is flooded with water.
- Dried-out soil, when flooded, withholds much less water.

Figure: WSN-based smart irrigation system

- Smart irrigation system maintains soil humidity levels
- Less water is dissipated.
- By constantly monitoring soil humidity the system adapts to the watering needs of each plant.
- System is also able to adapt to current weather conditions.

イロト イポト イヨト イヨト

REST Architecture

- REST is an architectural style of building network-based systems
- It is a certain approach to creating Web Services
- Resources: Every distinguishable entity is a resource: anything from a physical device, like a sensor/actuator, to a Web site, XML file, etc..
- URIs Identify Resources: Every resource is uniquely identified by a URI

・ロト ・回ト ・ヨト ・ヨト

- Low-power RF + IPv6 = The Wireless Embedded Internet
- 6LoWPAN = IPv6 over Low-Power Wireless Area Networks

OBNE

33/36

イロト イポト イヨト イヨト

- Stateless header compression
- Enables a standard socket API
- Minimal use of code and memory
- Direct end-to-end Internet integration

CoAP

CoAP is:

- A RESTful application protocol
- Both synchronous and asynchronous
- For constrained devices and networks

HOBNET

34 / 36

・ロン ・四 と ・ ヨン ・ ヨン

- Specialized for M2M applications
- Easy to proxy to/from HTTP

HOBNET BWSP (Building Web Server Proxy)

Two-fold contribution:

- Via an Object Building Interface API, it assists the application developer to gather sensor data and control appliances
- Eases the deployment of heterogeneous nodes, management and maintenance of the network by providing the Embedded Building Interface; an abstraction of all embedded services

More information: HOBNET Deliverable D1.3

- Measurements based experimental research nicely complements rigorous performance analysis and simulation based evaluation
- The results are more realistic and can contribute to validating and fine tuning the abstract algorithms
- A large variety of realistic topologies, mobility profiles, traffic patterns is needed
- Novel network parameters as well as performance measures (and their trade-offs) arise
- Ad hoc approaches are useful but there is a need to converge to widely accepted, common integrated approaches, systems and tools