Impact of power-law topology on IP-level routing dynamics: simulation results

Amélie Medem, Clémence Magnien, Fabien Tarissan

CNRS and UPMC Sorbonne Universités LIP6 Laboratory

> **Netscicom 2012** 30 mars 2012

Orlando FL, Florida

Laboratoire d'Informatique de Paris 6

Mapping the Internet topology is important

- Future network protocols hard to test on real Internet
- ■Understanding how the Internet topology evolves in times is equally or even more important → Study its dynamics

Goal: IP-level routing topology and its dynamics

Ego-centered view

Focus: the IP routing topology around a single node

Ego-centered view: what a node sees from the Internet

Outline

• (1) Measure the Internet IP topology around a node

What a machine sees from the internet?

(2) Extract dynamic behaviors

How the topology measured evolves in time ?

(3) Confront them with the dynamics in artificial graphs
How to explain the observed dynamics ?

Outline

- (1) Measure the Internet IP topology around a node
- (2) Extract dynamic behaviors
- (3) Confront them with the dynamics of artificial graphs

Measures

- Tracetree: traceroute-like measurement tool
 - A routing tree of IP paths from 1 source to destinations
- **Radar:** periodic measure with **Tracetree**

Series of routing trees

Sources: mostly PlanetLab (> 150); Destinations : random; Measurement frequency : **15 mn.** or less Web site: "A Radar for the Internet–Publicly available datasets." http://data.complexnetworks.fr/Radar/

Outline

- (1) Measure the Internet IP topology around a node
- (2) Extract dynamic behaviors
- (3) Confront them with the dynamics in artificial graphs

Dynamic behaviors

- Two dynamic behaviors
 - IPs discovery
 - Pattern of occurrence of IPs

IPs discovery

Stabilization ?

> woolthorpe

> 3,000 destinations

> 17,450 rounds

> 7 months

Number of distinct IPs observed since the beginning

40000 35000 35000 25000 25000 15000 15000 Dec Jan Feb Mar Apr May Jun Jul Date

New IPs are persistently discovered

- \rightarrow High rate of discovery: ~150 new IPs per day
- \rightarrow Not due do measurement artifacts

Pattern of occurrence of IPs

- 2 values to quantify the occurrence of IPs
 - Observation number: The total of distinct rounds in which it occurs
 - Block number: The number of groups of consecutive rounds in which it is observed

SORBONNE UNIVERTISES

Observation number vs. block number

(2) A large set of points close to the X -axis

The parabola, explained through Load balancing

- Given r rounds of measurements
 - IPs on load-balancing paths has Prob p of being observed
 - Observation number: rp
 - Block number: rp(1-p)

Outline

- (1) Measure the Internet IP topology around a node
- (2) Extract dynamic behaviors

 \rightarrow Hard to explain them without knowing the Internet

• (3) Confront them with the dynamics in artificial graphs

Our approach

Goal: Simulate **Tracetree** measurements on artificial graphs

- Generate an initial undirected graph G
 - Power-law graph, Erdös-Rényi graph ...
- Simulate Tracetree on G to create a routing tree T
 - Shortest-path model, ...
- Incorporate on **G** well-known route change factors
- Repeat previous steps to simulate periodic Tracetree

Route changes

- Well-known factors of route changes
 - Load balancing
 - Route evolution

How to model these factors ?

Modeling load balancing

How to model Load balancing ?

- Tracetree measurement simulation
 - Shortest path model
 - Routing tree \rightarrow BFS from the source

Modeling route evolution

How to model route evolution ?

- Possible approaches:
 - Realistic or not: link rewiring, nodes added or removed
- Link rewiring or swap

abcd are distinct

Main interest: the degree distribution of nodes is conserved

Simulations

Goal: Simulate **Tracetree** measurements on artificial graphs

- (1) Generate a Power-law (PL) graph **G** = (V,E)
 - Nodes: *n*; Exponent: *α*
- (2) Select 1 source and *d* destinations
 - Uniformly, at random
- (3) Simulate **Tracetree** from source to destinations in **G**
 - Shortest paths, Random $BFS \rightarrow T_1$
- (4) Simulate route evolution : Inject s link swap in G
- (5) Repeat steps 3 and 4 \rightarrow T₂, T₃, T₄, ..., T_r

Simulations: Power graph with n=500,000; α=2.3; with d=3,000

50 swaps

Qualitative similar behavior as observed in real Internet data !

Impact of the number of swaps

More swaps \rightarrow Faster node discovery No swaps \rightarrow Stabilization The persistent discovery of IPs: due to route evolution

Observation vs. block

Impact of the number of swaps

The parabola vanishes when the number of swaps increases Points close to the parabola : due to load-balancing nodes

Power law vs. Erdös-Renyi

Quantitative difference between PL and ER graphs

Intuitions:

(1) Degree-1 nodes ?(2) Average distance ?

Power law vs. Erdös-Renyi

(1) Degree-1 nodes : Large fraction of nodes in PL graphs !!!

- Unless source/destinations, difficult for them to be discovered
- Not router nodes

Power law vs. Erdös-Renyi

(2) The average distance is smaller in PL than in ER graphs !!!

- PL graphs produce smaller routing trees than ER
 - On avg: 5,363 vs. 12,868 (n=500,000; α=2.3/1,000,000 links)

SORBONNE UNIVERTISES

Summary

Study the dynamics of Internet IP routing topology around a node

- Two main behaviors to characterize the dynamics
- A model (IP topology, dynamics, **Tracetree**) for explanation
- Observed dynamics reproduced on power-law graphs
- Observations quantitatively different in Erdös-Rényi graphs
 - Degree-one nodes, Average distance

Perspectives

- Integrate other dynamics
 - Node adding/remove, link adding/remove
- Test other topologies (realistic topologies)
- Perform theoretical analysis (quantify the slopes of curves)

Stable destinations

