Impact of power-law topology on IP-level routing dynamics: simulation results

Amélie Medem, Clémence Magnien, Fabien Tarissan
CNRS and UPMC Sorbonne Universités
LIP6 Laboratory

Netscicom 2012
30 mars 2012
Orlando FL, Florida
Studying the Internet topology

- Mapping the Internet topology is important
 - Future network protocols hard to test on real Internet

- Understanding how the Internet topology evolves in times is equally or even more important
 → Study its dynamics

Goal: IP-level routing topology and its dynamics
Ego-centered view

- **Focus:** the IP routing topology around a single node

Ego-centered view: what a node sees from the Internet
Outline

- (1) Measure the Internet IP topology around a node
 What a machine sees from the internet?

- (2) Extract dynamic behaviors
 How the topology measured evolves in time?

- (3) Confront them with the dynamics in artificial graphs
 How to explain the observed dynamics?
Outline

- (1) Measure the Internet IP topology around a node
- (2) Extract dynamic behaviors
- (3) Confront them with the dynamics of artificial graphs
Measures

- **Tracetree**: traceroute-like measurement tool
 - A routing tree of IP paths from 1 source to destinations

- **Radar**: periodic measure with **Tracetree**

 Series of routing trees

 - round 1
 - round 2
 - round 3
 - ... round \(r \)

Sources: mostly **PlanetLab** (> 150); **Destinations**: random; **Measurement frequency**: 15 mn. or less

Web site: “A Radar for the Internet–Publicly available datasets.” [http://data.complexnetworks.fr/Radar/]
Outline

(1) Measure the Internet IP topology around a node

(2) Extract dynamic behaviors

(3) Confront them with the dynamics in artificial graphs
Dynamic behaviors

- Two dynamic behaviors
 - IPs discovery
 - Pattern of occurrence of IPs
IPs discovery

- **Stabilization?**
 - woolthorpe
 - 7 months
 - 3,000 destinations
 - 17,450 rounds

New IPs are persistently discovered

→ High rate of discovery: ~150 new IPs per day
→ Not due to measurement artifacts
Pattern of occurrence of IPs

- **2 values** to quantify the occurrence of IPs
 - **Observation number**: The total of distinct rounds in which it occurs
 - **Block number**: The number of groups of consecutive rounds in which it is observed

9 rounds

An \(\text{IP}_a \) appears in rounds: 1, 2, 3, 5, 6, 8, 9

- Observation number of \(\text{IP}_a = 7 \)
- Block number of \(\text{IP}_a = 3 \)
Pattern of occurrence of IPs

- Observation number vs. block number

1. A parabola

2. A large set of points close to the x-axis

Stable IPs: observed on consecutive rounds
Pattern of occurrence of IPs

- The parabola, explained through Load balancing

- Given r rounds of measurements
 - IPs on load-balancing paths has Prob p of being observed
 - Observation number: rp
 - Block number: $rp(1 - p)$
Outline

(1) Measure the Internet IP topology around a node

(2) Extract dynamic behaviors → Hard to explain them without knowing the Internet

(3) Confront them with the dynamics in artificial graphs
Our approach

- **Goal:** Simulate Tracetree measurements on artificial graphs

 - Generate an initial undirected graph G
 - Power-law graph, Erdös-Rényi graph ...
 - Simulate Tracetree on G to create a routing tree T
 - Shortest-path model, ...
 - Incorporate on G well-known route change factors
 - Repeat previous steps to simulate periodic Tracetree
Route changes

- Well-known factors of route changes
 - Load balancing
 - Route evolution

How to model these factors?
Modeling load balancing

- **How to model Load balancing?**
 - Trace tree measurement simulation
 - Shortest path model
 - Routing tree \rightarrow BFS from the source
 - Random BFS

![Diagram of load balancing and BFS](image)
Modeling route evolution

How to model route evolution?

Possible approaches:

- Realistic or not: link rewiring, nodes added or removed
- Link rewiring or swap

\[\begin{array}{c}
\text{a} & \text{b} & \text{c} & \text{d} \\
\end{array} \]
\[\begin{array}{c}
\text{a} & \text{c} \\
\text{b} & \text{d} \\
\end{array} \]
\[\begin{array}{c}
\text{a} & \text{b} & \text{c} & \text{d} \\
\end{array} \]

\text{a, b, c, d are distinct}

Main interest: the degree distribution of nodes is conserved
Simulations

- **Goal:** Simulate Tracetree measurements on artificial graphs

 - (1) Generate a Power-law (PL) graph $G = (V,E)$
 - Nodes: n; Exponent: α
 - (2) Select 1 source and d destinations
 - Uniformly, at random
 - (3) Simulate Tracetree from source to destinations in G
 - Shortest paths, Random BFS $\rightarrow T_1$
 - (4) Simulate route evolution: Inject s link swap in G
 - (5) *Repeat steps 3 and 4* $\rightarrow T_2, T_3, T_4, \ldots, T_r$
Reproducing the dynamics

- Internet

Simulations: Power graph with $n=500,000; \alpha=2.3; \text{ with } d=3,000$

Qualitative similar behavior as observed in real Internet data!
Impact of simulation parameters

Impact of the number of swaps

More swaps → Faster node discovery
No swaps → Stabilization
The persistent discovery of IPs: due to route evolution
Observation vs. block

Impact of the number of swaps

The parabola vanishes when the number of swaps increases
Points close to the parabola: due to load-balancing nodes
Power law vs. Erdös-Renyi

Quantitative difference between PL and ER graphs

Intuitions:
(1) Degree-1 nodes?
(2) Average distance?
Power law vs. Erdös-Renyi

(1) Degree-1 nodes: Large fraction of nodes in PL graphs!!!
- Unless source/destinations, difficult for them to be discovered
- Not router nodes

PL original
PL wo degree-1 nodes

Flat phase, 99.9% of remaining nodes have degree 1

Same evolution
Power law vs. Erdös-Renyi

(2) The average distance is smaller in PL than in ER graphs !!!

- PL graphs produce smaller routing trees than ER

 - On avg: 5,363 vs. 12,868 (n=500,000; $\alpha=2.3/1,000,000$ links)

Same average distance

ER (8,000,000 links)
PL (1,000,000 links)

Evolution, still faster in ER
Ongoing work !
Summary

- **Study the dynamics of Internet IP routing topology around a node**
 - Two main behaviors to characterize the dynamics
 - A model (IP topology, dynamics, **Tracetree**) for explanation
 - Observed dynamics reproduced on power-law graphs
 - Observations quantitatively different in Erdös-Rényi graphs
 - Degree-one nodes, Average distance

- **Perspectives**
 - Integrate other dynamics
 - Node adding/remove, link adding/remove
 - Test other topologies (realistic topologies)
 - Perform theoretical analysis (quantify the slopes of curves)
Dynamic IPs

Stable destinations

![Graph showing the number of distinct IP addresses over time. The x-axis represents dates from 26/05 to 04/08, and the y-axis represents the number of distinct IP addresses from 200 to 1800. The graph shows a steady increase in the number of distinct IP addresses over time.]