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Neural computation and the role in computer science

Vision science

Computational 
vision

Bioinspired
robotics

Psychophysics

Neurophysiology

Imaging
Human-computer 

interaction

Neuroscience Computer Science & Engineering

Neural modeling

How does the brain control behavior? How can technology emulate biological 

intelligence?

What we are doing …
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Introduction and motivation
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Different processing principles are identified in the brain

� Bottom-up (feed forward) processing

convergence / integration

� Lateral processing

integration / message passing

� Top-down (feedback) processing

context / modulation / prediction

Yet little is really known what the role of feedback and the distributed 
computation is – top-down processes coordinate and bias local activity
across lower-level regions based on global, contextual information
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Hierarchical form and shape boundary computation

V4

V2V3

V1

Form processing
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Model of boundary detection & grouping

Neumann & Sepp, Biol. Cybernetics, 1999

contour cell
(matching context of oriented contrast)

filters

feed forward
processing

feedback
(modulation)

center-surround
interaction
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Some computational results

2D input initial contrast V1 V2

Neumann & Sepp, Biol. Cybernetics, 1999

Hansen et al., Emergent Neural Computational 
Architectures, LNAI 2036, 2001

Data

Simulations
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Junctions can be read-out from 
distributed response maps in V1/V2

Weidenbacher & Neumann, PLoS ONE, 2009

Specific activity combinations

Visualization as likelihood map
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Some computational results

Weidenbacher & Neumann, PLoS ONE, 2009

Green:  L-junctions
Red: T-junctions
Blue: X-junctions

V3
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Feedback is used in texture segregation
(compare stimuli H.C. Nothdurft, Vision Research, 1985)

Thielscher & Neumann, 
Neuroscience, 2003; Spatial Vision, 2005
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Processing cascade: Feedforward & feedback interaction

FF = driver, FB = modulator
Experimental evidence (Hupé et al. 1998; Bullier 2001) and theory (Crick & Koch 1998)

FB is excitatory (in early visual cortical stages)

Withdrawal of FB … leads to less responsiveness to target object and higher response 
to background (similar to biased competition in attention – normalization model)

normalization
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modulation signal

driving input

(filtering)
(modulation: linking inputs, 
Eckhorn et al., NECO, 1990)

Generic neural model – columns and areas

(normalization: Carandini & 
Heeger, Science, 1994)
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Gradual activation – membrane potential & firing rates

Response (non-) linearities (compare Carandini et al., J. Neurosci., 1997)

(Bouecke, Tlapale, Kornprobst & Neumann, EURASIP JASP, 2011)
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� Driving feed-forward activation, filtering, and modulating feedback

� Inhibitory pool activity (normalization)

center-surround
filtering

lateral interaction

modulation
(via feedback)
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Reduced columnar model – excit.-inhibit. (E-I) pairs for given feature
(compare L. Zhaoping, Curr. Op. Neurobiol., 2011)
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Hierarchical motion computation

MSTd

MT V2

V1

Motion processing
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Motion analysis – initial motion detection is ambiguous

The aperture problem of motion detection

blank wall problem

aperture problem

feature tracking
The brain needs to solve a 
binding problem

X
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Modeling the integration of motion signals in area MT

Bayerl & Neumann, NECO, 2004

� Local motion signals are integrated –
summation of activities

� Large receptive fields (≈ 8 × V1 RF size)

V1

MT
MT

� Recurrent V1 – MT interaction

Disambiguation of visual motion in V1

Filling-in of disambiguated motion signals
V1

MT
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The brain solves the aperture problem dynamically

Temporal dynamics of area MT

� After 60ms: MT cells respond to motion perpendicular to a contour 
(component response)

� After 150ms: MT cells indicate the actual stimulus direction 
(pattern response)

Pack & Born, Nature, 2001Bayerl & Neumann, NECO, 2004
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Neural models successfully process real-world sequences

Action videos (EU SEARISE, joint INRIA/UUlm modeling)

• short-range scenario – platform scene with high temporal resolution

• full neural model (UUlm/INRIA), motion algorithm (UUlm), 
Sun et al., CVPR’10
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Motion gradients are represented in MT and beyond

Example case flower garden seq. 
– V1-MT motion integration
(Bayerl & Neumann, NECO, 2004)

Motion gradients – MSTd
(Raudies, Ringbauer & Neumann, 2012, submitted)

MSTd

MT

-
+

-+ -
+ …
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Occurrence of motion (semi-) transparency

Shibuya crosswalk, Tokyo
http://www.youtube.com/watch?v=4RYYHckgyUA

Interdigitating net motion 
signals appear to be 
integrated separately

real motion 
transparency

semi-transparent motions
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Motion representation in model cortical hierarchy

Raudies, Mingolla & 
Neumann, NECO, 2011

� Necessary conditions for 
perceiving multiple 
velocities at single 
locations: Define center-
surround interaction in 
velocity space

� Sufficient conditions: 
Include global motion 
pattern responses
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Decide about motion at different coherence levels

x

y

z

x

y

z

Rightward motion for n% of all 
dots (random selection in each 
frame), other dots appear at 
random positions

Result: Psychometric function 
fitted to decisions (temporal 
integration of signals from 
motion patterns & threshold 
function)

Roitman & Shadlen, J Neuroscience, 2002 Raudies, Mingolla & Neumann, NECO, 2011

Motion pattern cell activities
• 2D planar motion
• 3D pattern motion – EXP, CON, 
• ROTcw, ROTccw
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Modeling hierarchies and representations in cortex
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Biological motion is represented in neural hierarchy

STS

MT / MST

dorsal

TE / TEO (IT)

ventral

Shape, form & object 
representations

Convergence zone 
from motion & form

Motions & motion 
pattern representations

Model architecture for biological motion analysis

Hebbian FF learning

Hebbian FB learning

Reinforcement
signals for

Hebbian snapshot
learning



25

Hebbian learning of motion and form prototypes
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Learning of form prototypes is gated by 
reinforcement signal from motion energy
(inspired by AGREL; Van Ooyen & Roelfsema, NECO, 2005)

Learning of prototype representations in form and motion pathway

( )sFF
ji

post
i

pre
j

post
is

sFF
ji wvuvw ,, −⋅=∆ η

with s ∈ {form, motion} and trace rule (Földiák, NECO, 1991)
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Hebbian learning of sequence-selective prototypes

� Feedforward connections are learned (instar)
convergent connections IT → STS & MST → STS (Oja’s rule)

� Feedback connections are learned (outstar)
divergent connections STS → IT + MST (Grossberg rule)

vpost = g(y)
upre = g(x)
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Form prototypes are snapshots of articulated poses

Hebbian learning (with trace) in form pathway

… and incl. reinforcement signal from motion pathway

Main observations: • Automatic selection of key poses (possible for 
static (ambivalent) poses)

• Reinforcement of learning inspired by AGREL 
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Sequence selectivity of STS neurons
(Perrett et al., J. Exp. Biol., 1989; Oram & Perrett, J. Neurophysiol., 1996)

� Probing sequence-selective representations in STS

• Recall walking to the right (forward training sequence)
• Walking to the left (opposite movement)
• Walking backwards from right to left (reverse movement)

� STS neurons are driven by snapshots (form) & motion patterns

Layher & Neumann, JoV (abstracts), 2012; Layher et al., ICANN’12, LNCS 7552, 2012

STS

IT

MST
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Form and motion processing – same generic principles

� Boundary grouping, corner/junction readout, texture boundary 
detection

� Motion integration, gradients, transparent motion segregation

� Building blocks for composition of system’s components

� Enables context-information to bias early processing by feedback

� Unsupervised learning intermediate level representations, e.g. for 
biological motion analysis

Biological inspiration for computational vision

� Filtering – linear/non-linear

� Modulating feedback

� Center-surround pool normalization

3-stage cascade of columnar model architecture

Summary and conclusion
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Thank you 
for your attention !

Website:

http://www.uni-ulm.de/in/neuroinformatik/mitarbeiter/h-neumann.html


