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Objectives 

•  Learn about basic performance measurement and 
analysis methods and techniques for HPC applications 

•  Get to know Scalasca, a scalable and portable 
performance analysis tool   



Performance tuning: an old problem 

“The most constant difficulty in 
contriving the engine has arisen from 
the desire to reduce the time in which 
the calculations were executed to the 
shortest which is possible.” 

Charles Babbage 
1791 - 1871   



Outline 

•  Principles of parallel performance 
•  Performance analysis techniques 
•  Practical performance analysis using Scalasca 



Mo#va#on	  

Source:	  Wikipedia	  

Why parallelism at all?  
Moore's Law is still in charge… 



Mo#va#on	  Free lunch is over… 



Parallelism 

•  System/application level 
–  Server throughput can be improved by spreading workload 

across multiple processors or disks 
–  Ability to add memory, processors, and disks is called scalability  

•  Individual processor 
–  Pipelining 
–  Depends on the fact that many instructions do not depend on the 

results of their immediate predecessors 

•  Detailed digital design 
–  Set-associative caches use multiple banks of memory 
–  Carry-lookahead in modern ALUs 



Amdahl’s Law for parallelism 

•  Assumption – program can be parallelized on p 
processors except for a sequential fraction f with 

•  Speedup limited by sequential fraction 
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Available parallelism 

•  Overall speedup of 80 on 100 processors 
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1
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1− f
p



Law of Gustafson 

•  Amdahl’s Law ignores increasing problem size 
–  Parallelism often applied to calculate bigger problems instead of 

calculating a given problem faster 

•  Fraction of sequential part may be function of problem 
size 

•  Assumption 
–  Sequential part has constant runtime 
–  Parallel part has runtime 

•  Speedup 

If	  	  parallel	  part	  can	  be	  
perfectly	  parallelized	  



Parallel efficiency 

•  Metric for cost of parallelization (e.g., communication) 
•  Without super-linear speedup 

•  Super-linear speedup possible 
–  Critical data structures may fit into the aggregate cache 



Scalability 

•  Weak scaling 
–  Ability to solve a larger input problem by using more resources 

(here: processors) 
–  Example: larger domain, more particles, higher resolution 

•  Strong scaling 
–  Ability to solve the same input problem faster as more resources 

are used 
–  Usually more challenging 
–  Limited by Amdahl’s Law and communication demand 



Serial vs. parallel performance 

•  Serial programs 
–  Cache behavior and ILP 

•  Parallel programs 
–  Amount of parallelism 
–  Granularity of parallel tasks 
–  Frequency and nature of inter-task communication 
–  Frequency and nature of synchronization 

•  Number of tasks that synchronize much higher → contention 



Goals of performance analysis 

•  Compare alternatives 
–  Which configurations are best under which conditions? 

•  Determine the impact of a feature 
–  Before-and-after comparison 

•  System tuning 
–  Find parameters that produce best overall performance 

•  Identify relative performance 
–  Which program / algorithm is faster? 

•  Performance debugging 
–  Search for bottlenecks 

•  Set expectations 
–  Provide information for users 



Analysis techniques (1) 

•  Analytical modeling 
–  Mathematical description of the system 
–  Quick change of parameters 
–  Often requires restrictive assumptions rarely met in practice 

•  Low accuracy 
–  Rapid solution 
–  Key insights 

•  Validation of simulations / measurements 

•  Example 
–  Memory delay 

–  Parameters obtained from manufacturer or measurement 



Analysis techniques (2) 

•  Simulation 
–  Program written to model important features of the system being 

analyzed 
–  Can be easily modified to study the impact of changes 
–  Cost 

•  Writing the program 
•  Running the program 

–  Impossible to model every small detail 
•  Simulation refers to “ideal” system 
•  Sometimes low accuracy 

•  Example 
–  Cache simulator 
–  Parameters: size, block size, associativity, relative cache and 

memory delays 



Analysis techniques (3) 

•  Measurement 
–  No simplifying assumptions 
–  Highest credibility 
–  Information only on specific system being measured 
–  Harder to change system parameters in a real system 
–  Difficult and time consuming 
–  Need for software tools 

•  Should be used in conjunction with modeling 
–  Can aid the development of performance models 
–  Performance models set expectations against which 

measurements can be compared 



Metrics of performance 

•  What can be measured? 
–  A count of how many times an event occurs 

•  E.g., Number of input / output requests 
–  The duration of some time interval 

•  E.g., duration of these requests 
–  The size of some parameter 

•  Number of bytes transmitted or stored 

•  Derived metrics               
–  E.g., rates / throughput 
–  Needed for normalization  



Primary performance metrics 

•  Execution time, response time  
–  Time between start and completion of a program or event 
–  Only consistent and reliable measure of performance 
–  Wall-clock time vs. CPU time 

•  Throughput 
–  Total amount of work done in a given time 

•  Performance =  

•  Basic principle: reproducibility 
•  Problem: execution time is slightly non-deterministic 

–  Use mean or minimum of several runs 

1	  

Execu:on	  :me	  



Alternative performance metrics  

•  Clock rate 
•  Instructions executed  

per second 
•  FLOPS 

–  Floating-point operations per second  

•  Benchmarks 
–  Standard test program(s) 
–  Standardized methodology 
–  E.g., SPEC, Linpack 

•  QUIPS / HINT [Gustafson and Snell, 95] 
–  Quality improvements per second 
–  Quality of solution instead of effort to reach it 

“Math” operations? 
   HW operations? 

      HW instructions? 
    Single or double 

precision? 



Comparison of analysis techniques  

Analytical 
modeling 

Simulation Measurement 

Flexibility High High Low 

Cost Low Medium High 

Credibility Low Medium High 

Accuracy Low Medium High 



Peak performance 

•  Peak performance is the performance a computer is 
guaranteed not to exceed 

Source:	  Hennessy,	  Pa@erson:	  Computer	  Architecture,	  4th	  edi:on,	  Morgan	  Kaufmann	  

64	  processors	  



Performance tuning cycle 

Instrumenta:on	  

Measurement	  

Analysis	  

Presenta:on	  

Op:miza:on	  



Performance measurement cycle (2) 

•  Instrumentation 
–  Insertion of extra code (probes) into application  

•  Measurement 
–  Collection of data relevant to performance analysis 

•  Analysis 
–  Calculation of metrics 
–  Identification of performance bottlenecks 

•  Presentation 
–  Transformation of the results into a representation that can  be 

easily understood by a human user 

•  Optimization 
–  Elimination of bottlenecks   



Semantic gap 

•  Programmer’s mental model of the program does not match the 
executed version 
–  Performance tools needed to bridge this semantic gap 

C = A + B 
(c1, c2) = (a1, a2) 6 (b1, b2) 

a1=1& a2=1e c1bb1& c2bb2 
b1=1& b2=1e c1ba1& c2ba2 

for i = 1 : 2, 
ai=? e ci b bi 
bi=? e ci b ai 

ai= bi e ci b ai 
otherwise, error 

... 
v09,S  [a30,1],m00 
a30    -26612:abcd 
v12,S  [a31,1],m00 
a30    a12+a30 
a31    -26616:abcd 
v10,S  [a30,1],m00 
a16    -22516:abcd 
a31    a12+a31 
a30    a15+a16 
v14,S  [a31,1],m00 
a16    -32764:abcd 
v11,S  v10-v14,m00  
... 



Semantic performance mapping 

•  Instrumentation levels 
–  Source code 
–  Library  
–  Runtime system 
–  Object code 
–  Operating system 
–  Runtime image 
–  Virtual machine 

•  Problem 
–  Every level provides different information 
–  Often instrumentation on multiple levels required 

•  Challenge 
–  Mapping performance data onto application-level abstraction  



Instrumentation techniques 

•  Static instrumentation 
–  Program is instrumented prior to execution 

•  Dynamic instrumentation 
–  Program is instrumented at runtime 

•  Code is inserted  
–  Manually 
–  Automatically 

•  By preprocessor 
•  By compiler 
•  By linking against preinstrumented (interposition) library 
•  By binary-rewrite / dynamic instrumentation tool  



Measurement 

Typical performance data include 
•  Counts 
•  Durations 

•  Communication cost 
•  Synchronization cost 
•  IO accesses 
•  System calls 
•  Hardware events 

inclusive	  
dura:on	  

exclusive	  
dura:on	  

int foo()  
{ 
  int a; 

  a = a + 1; 

  bar(); 

  a = a + 1; 
} 



Critical issues 

•  Accuracy 
–  Perturbation 

•  Measurement alters program behavior 
•  E.g., memory access pattern 

–  Intrusion overhead 
•  Measurement itself needs time and thus lowers performance 

–  Accuracy of timers, counters 

•  Granularity 
–  How many measurements 

•  Pitfall: short but frequently executed functions  
–  How much information / work during each measurement  

•  Tradeoff 
–  Accuracy ⇔ expressiveness of data 



Single-node performance 

•  Huge gap between CPU and memory speed 

•  Internal operation of a microprocessor potentially complex 
–  Pipelining 
–  Out-of-order instruction issuing 
–  Branch prediction 
–  Non-blocking caches                                                                                    

Source:	  Hennessy,	  Pa@erson:	  Computer	  
Architecture,	  4th	  edi:on,	  Morgan	  
Kaufmann	  



Hardware counters 

•  Small set of registers that count events  
•  Events are signals related to the processor’s internal 

function  
•  Original purpose: design verification and performance 

debugging for microprocessors 
•  Idea: use this information to analyze the performance 

behavior of an application as opposed to a CPU  



Typical hardware counters 

Cycle	  count 
Instruc:on	  count All	  instruc:ons	  

Floa:ng	  point	  

Integer	  

Load	  /	  store 
Branches Taken	  /	  not	  taken	  

Mispredic:ons 
Pipeline	  stalls	  due	  to Memory	  subsystem	  

Resource	  conflicts 
Cache I/D	  cache	  misses	  for	  

different	  levels	  

Invalida:ons 
TLB Misses	  

Invalida:ons 



Profiling 

•  Mapping of aggregated information 
–  Time 
–  Counts 

•  Calls 
•  Hardware counters 

•  Onto program and system entities 
–  Functions, loops, call paths 
–  Processes, threads 

•  Methods to create a profile 
–  PC sampling (statistical approach) 
–  Interval timer / direct measurement (deterministic approach)  



Profiling (2) 

•  Sampling 
–  Statistical measurement technique  

•  Based on the assumption that a subset of a population being 
examined is representative for the whole population 

•  Requires long-running programs 
–  Periodic operating system signal interrupts the running program 
–  Interrupt service routine examines return-address stack to find 

address of instruction being executed when interrupt occurred 
–  Using symbol-table information this address is mapped onto 

specific subroutine 

•  Interval timing 
–  Time measurement at beginning and end of a code region 
–  Requires high-resolution / low-overhead clock 



Call-path profiling 

•  Behavior of a function may depend 
on caller (i.e., parameters) 

•  Flat function profile often not 
sufficient 

•  How to determine call path at 
runtime? 
–  Runtime stack walk 
–  Maintain shadow stack 

•  Requires tracking of function calls 

main() 
{ 
  A( ); 
  B( ); 
} 

A( )    B( )       
{       {            
  X();    Y();      
  Y();  }                    
}              

main	  

A	  

B	  

X	  

Y	  

Y	  



Event tracing 

Section on 
display 

•  Typical events 
–  Entering and leaving a function 
–  Sending and receiving a message 



Why tracing? 

•  High level of detail 
•  Allows in-depth post-mortem analysis of program behavior  

–  Time-line visualization 
–  Automatic pattern search 

•  Identification of wait states 
Discovery of 
wait states 

   zoom in 



Obstacle: trace size 

•  Problem: width and length of event trace 

Number of processes 

t 

W
id

th
 

Execution time 

t 

t 

long 

short 

Event frequency 

t 

t 

high 

low 



Tracing vs. profiling 

•  Advantages of tracing 
–  Event traces preserve the temporal and spatial relationships 

among individual events  
–  Allows reconstruction of dynamic behavior of application 

on any required abstraction level 
–  Most general measurement technique 

•  Profile data can be constructed from event traces 

•  Disadvantages 
–  Traces can become very large 
–  Writing events to a file at runtime can cause perturbation 
–  Writing tracing software is complicated 

•  Event buffering, clock synchronization, … 



•  Scalable performance-analysis toolset for parallel codes 
–  Focus on communication & synchronization 

•  Integrated performance analysis process 
–  Performance overview on call-path level via call-path profiling   
–  In-depth study of application behavior via event tracing 

•  Supported programming models  
–  MPI-1, MPI-2 one-sided communication  
–  OpenMP (basic features) 

•  Available for all major HPC platforms 



Joint project of 



The team 



www.scalasca.org 



Installations and users 
•  Companies 

–  Bull (France) 
–  Dassault Aviation (France) 
–  Efield Solutions (Sweden) 
–  GNS (Germany) 
–  INTES (Germany) 
–  MAGMA (Germany) 
–  RECOM (Germany) 
–  SciLab (France) 
–  Shell (Netherlands) 
–  Sun Microsystems (USA, Singapore, India) 
–  Qontix (UK) 

•  Research/supercomputing centers 
–  ANL (USA)BSC (Spain) 
–  CASPUR (Italy) 
–  CEA (France) 
–  CERFACS (France) 
–  CINECA (Italy) 
–  CSC (Finland) 
–  CSCS (Switzerland) 
–  DLR (Germany) 
–  DKRZ (Germany) 
–  EPCC (UK) 
–  FZJ (Germany) 
–  HLRN (Germany) 
–  HLRS (Germany) 
–  ICHEC (Ireland) 
–  IDRIS (France) 
–  KIT (Germany) 
–  LLNL (USA) 

•  Research/supercomputing centers (cont.) 
–  LRZ (Germany) 
–  MCH (Switzerland) 
–  NCAR (USA) 
–  NCSA (USA) 
–  ORNL (USA) 
–  PIK (Germany) 
–  PSC (USA) 
–  RZG (Germany) 
–  SARA (Netherlands) 
–  SAITC (Bulgaria) 
–  TACC (USA) 

•  Universities 
–  Lund University (Sweden) 
–  MSU (Russia) 
–  RPI (USA) 
–  RWTH (Germany) 
–  TUD (Germany) 
–  UOregon (USA) 
–  UTK (USA) 

•  DoD/MoD computing centers 
–  AFRL DSRC (USA) 
–  ARL DSRC (USA) 
–  ARSC DSRC (USA) 
–  AWE (UK) 
–  ERDC DSRC (USA) 
–  Navy DSRC (USA) 
–  MHPCC DSRC (USA) 
–  SSC-Pacific (USA) 
–  MetOffice (UK) 



Which	  problem?	  
Where	  in	  the	  
program?	  

Which	  
process?	  

Parallel	  wait-‐
state	  search	  

Summary	  
report	  

Wait-‐state	  
report	  

Instr.	  
target	  
applica:on	  	  

Measurement	  
library	  

HWC	   Local	  event	  
traces	  

Op:mized	  measurement	  configura:on	  

Instrumenter	  
compiler	  /	  linker	  

Instrumented	  
executable	  

Source	  
modules	  

Re
po

rt
	  	  

m
an
ip
ul
a:
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Wait-state analysis 

•  Classification 
•  Quantification 

:me	  

pr
oc
es
s	  

(a)	  Late	  Sender	  

:me	  

pr
oc
es
s	  

(c)	  Late	  Receiver	  
:me	  

pr
oc
es
s	  

(b)	  Late	  Sender	  /	  Wrong	  Order	  



XNS CFD simulation application 

•  Computational fluid dynamics code  
–  Developed by Chair for Computational Analysis of Technical 

Systems, RWTH Aachen University 
–  Finite-element method on unstructured 3D meshes 
–  Parallel implementation based on message passing 
–  >40,000 lines of Fortran & C 
–  DeBakey blood pump test case 

•  Scalability of original version limited <1024 CPUs 

Par::oned	  finite-‐element	  mesh	  



Call-path profile: Computation 

Execu:on	  
:me	  excl.	  
MPI	  comm	  

Just	  30%	  of	  
simula:on	  

Widely	  
spread	  
in	  code	  

Widely	  
spread	  
in	  code	  

Widely	  
spread	  
in	  code	  



Call-path profile: P2P messaging 

P2P	  comm	  
66%	  of	  

simula:on	   Primarily	  
in	  sca@er	  
&	  gather	  

Primarily	  
in	  sca@er	  
&	  gather	  

MPI	  point-‐	  
to-‐point	  	  
communic-‐	  
a:on	  :me	  



Call-path profile: P2P sync. ops. 

Masses	  of	  
P2P	  sync.	  
opera:ons	  

Processes	  
all	  equally	  
responsible	  

Point-‐to-‐	  
point	  msgs	  
w/o	  data	  



Trace analysis: Late sender 

Half	  of	  the	  
send	  :me	  	  	  
is	  wai:ng	  

Significant	  
process	  
imbalance	  

Wait	  :me	  
of	  receivers	  
blocked	  for	  
late	  sender	  



XNS scalability remediation 

•  Review of original XNS 
–  Computation is well balanced 
–  Real communication is very imbalanced 
–  Huge amounts of P2P synchronisations  

•  Grow exponentially with number of processes 

•  Elimination of redundant messages 
–  Relevant neighbor partitions known in advance from static mesh 

partitioning  
–  Most transfers still required at small scale  

while connectivity is relatively dense 
–  Growing benefits at larger scales (>512) 



After removal of redundant messages 

Original	  
performance	  
peaked	  at	  	  
132	  ts/hr	  

Revised	  
version	  
con:nues	  
to	  scale	  



XNS wait-state analysis of tuned version 



MAGMAfill by MAGMASOFT® GmbH 

•  Simulates mold-filling in 
casting processes 

•  Scalasca used  
–  To identify communication 

bottleneck  
–  To compare alternatives using 

performance algebra utility 

•  23% overall runtime 
improvement 



INDEED by GNS® mbh 

•  Finite-element code for the simulation of 
material-forming processes 

–  Focus on creation of element-stiffness matrix 

•  Tool workflow 
–  Scalasca identified serialization in critical 

section as bottleneck 
–  In-depth analysis using Vampir 

•  Speedup of 30-40% after optimization 



Scalability in terms of the number of cores 

•  Application study of ASCI 
Sweep3D benchmark  

•  Identified MPI waiting time 
correlating with computational 
imbalance 

•  Measurements & analyses  
demonstrated on 
–  Jaguar with up to 192k cores 
–  Jugene with up to 288k cores 

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

1

10

100

1000

Ti
m

e 
[s

]

Measured execution
 - Computation
 - MPI processing
 - MPI waiting

Brian	   J.N.	   Wylie	   et	   al.:	   Large-‐scale	  
performance	  analysis	  of	  Sweep3D	  with	  
the	  Scalasca	  toolset.	  Parallel	  Processing	  
Le@ers,	   20(4):397-‐414,	   December	  
2010.	  

Jaguar,	  MK	  =	  10	  (default)	  

Computa:on	  



Performance dynamics 

•  Most simulation codes work iteratively 
•  Growing complexity of codes makes performance 

behavior more dynamic – even in the absence of failures  
–  Periodic extra activities 
–  Adaptation to changing state of computation 

•  External influence (e.g., dynamic reconfiguration)  

129.tera_i	  

MPI	  point-‐to-‐point	   MPI	  point-‐to-‐point	  Execu:on	  



 P2P communication in SPEC MPI 2007 suite 

107.leslie3d	   113.GemsFDTD	   115.fds4	   121.pop2	  

126.leslie3d	   128.GAPgeofem	   129.tera_i	  127.wrf2	  

130.socorro	   132.zeusmp2	   137.lu	  



Scalasca’s approach to performance dynamics  

•  Capture overview of performance dynamics via  
time-series profiling 
–  Time and count-based metrics 

•  Identify pivotal iterations  
–  If reproducible 

•  In-depth analysis of these iterations via tracing 
–  Analysis of wait-state formation  

including root cause analysis 
–  Tracing restricted to iterations of interest 

New	  



Scalable time-series call-path profiling 

•  Instrumentation of the main loop 
to distinguish individual 
iterations 

•  Complete call-tree recorded for 
each iteration 
–  With multiple metrics collected 

for every call-path 
•  Low-overhead online 

compression of iteration profiles 
–  Reduces memory requirements  

Zoltán	   Szebenyi	   et	   al.:	   Space-‐Efficient	  
Time-‐Series	   Call-‐Path	   Profiling	   of	  
Parallel	   Applica:ons.	   In	   Proc.	   of	   the	  
SC09	   Conference,	   Portland,	   Oregon,	  
ACM,	  November	  2009.	  



Pretty Efficient Parallel Coulomb-solver (PEPC) 

•  Multi-purpose parallel tree code 
–  Molecular dynamics 
–  Laser-plasma interactions 

•  Developed at JSC  

Late	  Sender	   #	  par:cles	  owned	  by	  a	  process	  



Reconciling sampling and direct instrumentation 

•  Semantic compression needs direct instrumentation to capture 
communication metrics and to track the call path  

•  Direct instrumentation may result in excessive overhead 
•  New hybrid approach 

–  Applies low-overhead sampling to user code  
–  Intercepts MPI calls via direct instrumentation 
–  Relies on efficient stack unwinding  
–  Integrates measurements in statistically sound manner 

Zoltan	   Szebenyi	   et	   al.:	   Reconciling	   sampling	   and	   direct	   instrumenta:on	   for	  
unintrusive	  call-‐path	  profiling	  of	  MPI	  programs.	  In	  Proc.	  of	  IPDPS,	  Anchorage,	  AK,	  
USA.	  IEEE	  Computer	  Society,	  May	  2011.	  (to	  appear)	  	  

Joint	  work	  with	  



Delay analysis 

•  Classification of waiting times into 
–  Direct vs. indirect 
–  Propagating vs. terminal 

•  Attributes costs of wait states to delay intervals 
–  Scalable through parallel forward and backward replay of traces 

:me	  

pr
oc
es
s	  

Delay	  

Direct	  wai:ng	  :me	  

	  	  Indirect	  wai:ng	  :me	  	  

David	   Böhme	   et	   al.:	   Iden:fying	  
the	   root	   causes	  of	  wait	   states	   in	  
large-‐scale	   parallel	   applica:ons.	  
In	   Proc.	   of	   ICPP,	   San	   Diego,	   CA,	  
IEEE	   Computer	   Society,	  
September	  2010.	  	  
Best	  Paper	  Award	  



Delay analysis of code Illumination 

•  Particle physics code (laser-plasma interaction) 
•  Delay analysis identified inefficient communication 

behavior as cause of wait states 

Computa:on	  	   Propaga:ng	  wait	  states:	  
Original	  vs.	  op:mized	  code	  

Costs	  of	  direct	  delay	  
in	  op:mized	  code	  



Score-P measurement system 

Applica:on	  (MPI,	  OpenMP,	  accelerator,	  PGAS,	  hybrid)	  

Score-‐P	  measurement	  infrastructure	  

Online	  interface	  Profiling	  Tracing	  

Interac:ve	  
trace	  

explora:on	  

Vampir	  
Performance	  
dynamics	  &	  
wait	  states	  

Scalasca	  
Automa:c	  
online	  

classifica:on	  

Periscope	  
Performance	  
data	  base	  &	  
data	  mining	  

TAU	  



Future work 

•  Further scalability improvements 
•  Emerging architectures and programming models 

–  PGAS languages 
–  Accelerator architectures 

•  Interoperability with 3rd-party tools 
–  Common measurement library for several performance tools  



Virtual Institute – 
High Productivity Supercomputing 

The virtual institute in a… •  Partnership to develop advanced 
programming tools for complex 
simulation codes 

•  Goals 
•  Improve code quality  
•  Speed up development 

•  Activities 
•  Tool development and 

integration 
•  Training 
•  Support 
•  Academic workshops 

•  www.vi-hps.org 



Thank you! 


