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 Computational and Applied Math@Rice University

CAAM is a department with 12 faculty whose interests include: 
PDE constrained optimization, inverse problems, numerical linear algebra, 

numerical PDEs, discrete optimization, neuroscience...

Rice University is a small private university in Houston, Texas.
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DG+GPU+

Electromagnetics
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Multiphysics

Dr Andreas Klöckner
DG+GPU+Python+
 Shock Capturing

Nigel Nunn
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Reid Atcheson
DG + GPU + ? 

Xin Wang
DG+GPU+

Seismic inversion

Rajesh Gandham
DG+GPU+

Supersonic flows
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 Denmark GPU Boot Camp 2011

Lecture notes on request.
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  Talk Overview
1. Porting: PU Accelerated Discontinuous Galerkin methods

• Performance of DG time-domain Maxwell’s solver.

• CUDA v. OpenCL

• Local time-stepping.

2. Discretization: Low Storage Curvilinear Discontinuous Galerkin methods: 

• GPU driven modification for curvilinear elements.

3. Algorithms: Global seismic modeling on 100s of GPUs

• Performance of a linear elasticity code GPU kernels for DG
on hexahedral elements.

• Strong and weak scaling study.

4.  Physics: Gas dynamics

• Time stepping.  

• Artificial viscosity.
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Artificial 
absorbing BC

Coarse 
curvilinear 

mesh where 
possible

Multirate time 
stepping for 

tiny elements

Compute on a 
commodity 
workstation

“High order” 
approximation 

of solution

Time 
dependent 

volume wave 
propagation

Many__ λ

+ antennae + thin wires + thin material layers 
+ more realistic geometry + different physical models

 Challenge: numerical wave prop.
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Find a weak solution Qi ∈V
h  that satisfies

0 = φ, ∂Qi

∂t
+
∂Fij
∂x j

⎛

⎝⎜
⎞

⎠⎟ Dk

Weak form of conservation law
  

 + φ,nj Fij
* − Fij( )( )

∂Dk

Distributional derivative contribution
  

for all φ  in variational space V h

∂Qi

∂t
+
∂Fij
∂x j

= 0

  Discontinuous Galerkin Methods

We mesh the domain and 
solve a weak form of the 
PDE in each element with 
boundary data supplied by 
its neighboring elements.

Given the strong form of a
PDE in conservation form:

dQ
dt

+ F Q( ) = 0
We boil away the details on
discretization to reveal a 
(possibly nonlinear) ODE:

Linear PDEs (like Maxwell’s)
   is sparse & block-dense.
   is large & never stored.

dQ
dt

= −FQ+ S
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 Discontinuous Galerkin

The DG simulations shown courtesy of Per-Olof Persson, UC Berkeley.

24 CPU hours

DG solvers enable simulations of fluid flow, acoustics, electromagnetics ...
but the computations are demanding !!

16M dofs. 64 CPUs. 5 days
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 Discontinuous Galerkin: scalable

Excellent strong scaling has been demonstrated on 130K+ cores.
 Source: Min & Fischer,

 Performance Analysis on the IBM Blue Gene/P for Wakefield Calculations.

NekCEM is a DG based time-domain Maxwell’s solver on hex elements.
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E=273K, N=15, n= 1.1B points
E=273K, N=  5, n= 58M points
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Figure 2: Efficiency on different problem sizes.
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Figure 3: Speedup on different problem sizes.

Figure 3 demonstrates performance in TFLOPS, show-
ing approximately 10% of peak performance on BG/P.
Our future work includes further enhancement of NekCEM
performance with double-hammer intensive coding. Cur-
rently, NekCEM uses an MPI programming interface for
parallel algorithms. We will also expand this to a hy-
brid (MPI/shared-memory) programming approach. These
and other advanced approaches will dramatically enhance
NekCEM’s capabilities for petascale and exascale simula-
tions.

Table 1: Parallel efficiency withE=273,000,N=15, the to-
tal number of grid points n=E(N + 1)3 after running 100
timesteps for the different numbers of cores with the num-
ber of grid points per core n/P . Eff denotes the efficiency.
Proc (P ) n/P CPU (sec) Ideal(sec) Eff
16,384 68,250 1.9130 1.9130 –
32,768 34,125 1.0610 0.9565 0.96
65,536 17,063 0.6388 0.4783 0.87
131,072 8,531 0.4146 0.2391 0.72

Figure 4: Performance in TFLOPS.
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 The DG Grab Bag

Choose 5 for an instant paper/talk/poster
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 DG Grab Bag: this talk

Seriously: should architecture inform DG
design choices to maximize performance ?
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 Low Order versus High Order

 Approximation error  hmin N+1,σ( ).   Storage  N 3 / h3.   Element size ~ h

N=1 
“Linears” 

N=2 
“Quadratics” 

N=3 
“Cubics” 

N=6 
“Sextics” 

N=10
“Decics” 

The solution is represented on each element as a multivariate polynomial 
(interpolated at Warp & Blend nodes)

Np = 4 Np = 10 Np = 20 Np = 84 Np = 220
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 DG Options Element Type

Dimensional splitting on the hex yields a much lower op count per node
for local elemental operations like interpolation or differentiation.

Q: Does the excess floating point capability of GPGPUs make this moot ?

Element Nodes/Element FLOPS
FLOPS
LOADS

Two common choices of elements in 3D are tetrahedra and hexahedra
using N’th order polynomial approximation:

Np =
N +1( ) N + 2( ) N + 3( )

6

Np = N +1( )3

O N 6

36
⎛
⎝⎜

⎞
⎠⎟

O N 3

6
⎛
⎝⎜

⎞
⎠⎟

O N 4( ) O N( )
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GPU Accelerated
Discontinuous Galerkin 

Methods

A. Klöckner, T. Warburton, J. Bridge, and J.S.Hesthaven, High-Order Discontinuous Galerkin Methods on Graphics Processors, 
Journal of Computational Physics, 2009.

Tuesday, June 14, 2011



 Incomplete History of DG & Maxwell’s Equations
Progression of DG methods for time-domain electromagnetics:

• M. Remaki and L. Fezoui, Une Méthode de Galerkin Discontinu pour la résolution des équations de Maxwell en milieu 
hétérogene. Technical report RR-3501, INRIA, 1998.

•  TW, Application of the discontinuous Galerkin method to Maxwell’s equations using unstructured polymorphic hp-finite 
elements,  Lecture Notes in Computational Science and Engineering, 2000.

• D.A. Kopriva, S.L. Woodruff, and M.Y. Hussaini, Discontinuous spectral element approximation of Maxwell’s Equations, 
Lecture Notes in Computational Science and Engineering, 2000.

• M. Remaki, A new finite volume scheme for solving Maxwell’s equations. COMPEL, 2000.

• S. Piperno, M. Remaki and L. Fezoui, A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on 
unstructured meshes, SINUM 2002.

• J.S.Hesthaven and TW, Nodal High-Order Methods on Unstructured Grids, JCP 2002.

• ... many papers including advances in local time stepping... few commercial codes...

•  N. Gödel, S. Schomann, T. Warburton, and M. Clemens, Discontinuous Galerkin Methods for Electromagnetic Radio 
Frequency Problems, IEEE, 2009.

•  A. Klöckner, TW, J. Bridge, and J.S.Hesthaven, High-Order Discontinuous Galerkin Methods on Graphics Processors, JCP 2009.
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For all triangles Dk{ }  find H ,E( )∈Xh (Dk )×Y h (Dk ) such that

0 = φ, ∂µH
∂t

+∇× E⎛
⎝⎜

⎞
⎠⎟ Dk

+ φ,n × E
*
− E( )( )

∂Dk

0 = ψ , ∂εE
∂t

−∇ × H⎛
⎝⎜

⎞
⎠⎟ Dk

− ψ ,n × H
*
− H( )( )

∂Dk

Distributional derivative contribution
  

holds for all φ,ψ( )∈Xh (Dk )×Y h (Dk )

The H* and E* variables are the magnetic and electric fields 
obtained by upwinding at the element boundaries.

 DG Maxwell’s Variational Equation

DG methods time march the solution locally on each 
element, with boundary data from neighbor elements.
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High order elements have 
regular internal node-node topology.

 DG Grid Topology: element local
There is a common perception of a false dichotomy 

between unstructured and structured grids.
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Node-node connectivity is per boundary node per face.

 DG Grid Topology: inter element
The connectivity between elements is by flux exchange.
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Node-node connectivity is per boundary node per face.
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Node-node connectivity is per boundary node per face.

 DG Grid Topology: inter element
The connectivity between elements is by flux exchange.
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Elements that just share a vertex are “disconnected”.

 DG Grid Topology: inter element
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 DG Grid Topology: inter element

The solution is multivalued at the element boundary nodes. 
i.e. no need to maintain “coherency” with gather/scatter
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Node-node connectivity is per boundary node per face.

 P1 FEM Connectivity
By contrast linear FEM topology involves all nodes
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Red-green ordering or similar => lower performance.
Similar issue with SEM assembly.

 P1 FEM Connectivity
More book keeping per dof & more complicated MPI.
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We spent 5 days during summer 2008 
porting our core DGTD solvers using CUDA:

Day 1: ported using cuBLAS ☹☹☹ 
Day 2: wrote our first CUDA kernels☺

Day 3: added shared memory for field data ☺☺
Day 4: used texture memory for operator matrix data ☺☺ ☺

Day 5: improved data layout patterns ☺☺ ☺☺

Overall speed up is 30x or more when compared with 
SSE accelerated code on a single 3GHz Intel core

Additional time was spent enabling multiple GPUs
through pThreads and/or MPI...

24

 Learning Curve
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cublasSgemm performance on (MxM)x(Mx8000)

The cublasSGEMM performance degrades for small block matrix multiplication.

 Day 1: CUBLAS

M

M 8000
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More problematic:  cuBLAS achieves <30 GFLOPS for level 1 & 2 operations.

 Day 1: CUBLAS

M

M 8000

N=2

N=3

N=4

N=5

N=6

N=7

Tuesday, June 14, 2011



 Day 2-5:  Learning the NUMA

The GPU cores load/store ~50 GFLOATS per second
& perform a total of ~1.4  TFLOPS per second.

Theoretical peak performance requires >64 FLOPS per output float.

High memory latency hidden by simultaneous multithreading with 1000s of threads.

Each SM 
is a cluster

 of 32 “cores”

Fermi has 16
streaming

 multiprocessors 

Tuesday, June 14, 2011



GPU programming is a balancing trick with 
competing demands to:

• minimize register pressure

• maximize occupancy

• hide high latency of global memory accesses

• maximize parallelism of data load/stores 

• i.e. avoid partition camping, inefficient bus 
utilization & local memory bank conflicts.

• reduce shared memory footprint

• avoid branching.... 

 with only coarse grain profiling tools.

 Day 2-5: GPGPU Programming Challenges

Up to 192GB/s 
bandwidth

~1.58 TFLOPS (SP)
up to 512 cores

NVIDIA Fermi GPU

My initial interest was sparked in 2007 by the high device-memory bandwidth. 
Modern GPUs typically have an excess of floating point units.
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ParMetis
partitioning

Each element is 
updated by a block 

of threads that 
share fast memory

Vector field updates
at a node are done 
by a single CUDA 

thread

FEM Mesh

 Parallel Partitioning Approach
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Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Discretizing the “curl” terms on straight sided tetrahedra yields
templated derivative matrices that are dense and require lots of FLOPS.

Time Dependent
Magnetic and Electric Field Components

Templated operator:
Derivative Matrices

(Np x Np x3)

Geometric Factors (Fixed data)

Data: Time Dependent
Magnetic and Electric Field Components

( Np x #elements x 6)

 Template Curl Operation

One thread is responsible for computing the curl of H and E at one node

Tuesday, June 14, 2011



Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

After some experimentation our hand tuned kernel: 
compute the elemental curl H and curl E to a thread block. 

Time Dependent
Magnetic and Electric Field Components

Derivative Matrices

Texture array

Geometric Factors => shared

Time Dependent
Magnetic and Electric Field Components

 Hand Coded CUDA Implementation

One thread is responsible for computing the curl of H and E at one node

Magnetic & Electric Fields:

load column into shared
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Computation: Nigel Nunn

Note the artifacts generated by a paneled representation of the toy plane

K=227,000 & 27M DOFs
cubic polynomial fields

 Day 5: CUDA Based Maxwell’s DGTD

Tuesday, June 14, 2011



PCI express bus PCI express bus PCI express bus PCI express bus

GPU

HOST coordinates 
multi-GPUs 

 with MPI or pThreads

 Day 6: CUDA+pThreads
GPU GPU GPU
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Network

Communications:
GPU threads: CUDA

HOST threads: pThreads (optional)
HOST to HOST: MPI

 Day 7: CUDA & pThreads & MPI
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 Day 7: Hand Coded CUDA DG Performance

Baseline: our SSE/CPU implementation achieves ~25 GFLOPS on
 a 2.66GHz Intel Yorkfield Quad Core Q9450 (similar vintage to the GPU)

4x Tesla C1060
3x GTX 295

Polynomial order 
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 Day 8: Thermal Monitoring

In the early days we caused unexpected computation failures... by baking the chips.
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Solver performance has improved through three generations with
 efficiencies gained from increases core count, core frequency, bus size, & caching.

 Scaling on 3 Generations of GPUs

Tesla C870    (128 cores)
Tesla C1060  (240 cores)
Tesla C2050  (448 cores)
GTX 480      (480 cores)
GTX 590      (2x512 cores)

G
FL

O
PS
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 Kernel Performance on Fermi (2010)

RK

Surface

Curl

642 GFLOPS
“284” GB/s

341 GFLOPS
151 GB/s

29 GFLOPS
145 GB/s

Tet Aggregate: 
460 GFLOPS

The three CUDA DG kernels are achieving a respectable
 fraction of peak memory bandwidth (177GB/s).
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 MiDG Multi-GPU DG Code

Download: http://www.caam.rice.edu/~timwar/NUDG/RMMC/MIDG.html 

We have released a simple 
DGTD electromagnetic solver:

MIDG implements the high order 
nodal DGTD method for 2D & 3D 
electromagnetic cavities on multiple 

GPUs using CUDA and MPI.

3 KLOC in C.

Tuesday, June 14, 2011
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Mesh generation of this model helicopter gives
~ 4% pathologically small tetrahedra

Local time stepping is an absolute necessity.
[ local time stepping is not as trivial for SEM or FEM ]

 Local dt + Multiple GPUs
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It is tricky to load-balance and minimize communication for local time-stepping
Approach: use ParMetis with lumped weighted graph to avoid splitting fine clusters 

Each GPU owns isolated
clusters of fine elements.
Work load is balanced. 

GPU 0
22%

GPU 1
12%

GPU 2
35%

GPU 3
30%

 Local dt + Multiple GPUs
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375K tetrahedral elements
4th order polynomial approximation

78M degrees of freedom

1:8 coarse to fine time step ratio
Weighted graph partitioning by Metis

Method Platform Compute Time Speed Up

Global Adams-Bashforth 4x AMD Opteron 8356 Quad Cores 29h 55m 1

Global Adams-Bashforth 4x NVIDIA Tesla C1060 2h 31 11.88

Two-level AB 4x NVIDIA Tesla C1060 53m 33.87

Small elements handled with Gear & Wells’ multirate linear multistep method 

 Local Time Stepping & Multi GPUs

Nico Gödel, Steffen Schomann, TW, and Markus Clemens, GPU Accelerated Adams-Bashforth Multirate Discontinuous 
Galerkin Simulation of High Frequency Electromagnetic Fields, IEEE Transactions on Magnetics, 2010.
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Improved performance at low polynomial order was obtained with Andreas Klöckner’s 
Python DG domain specific language Hedge (built on PyCUDA with autotuning)

 Are we Doing ok ?
There is still a lingering doubt: how good is the hand coded implementation ?

Hand coded: gtx 295(1)

Polynomial order 
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In each case our hand coded application performance 
exceeds the most optimistic CUBLAS performance.

 Why was CUBLAS Disappointing ?
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Hand coded: gtx 295(1)

Realism: every Level 1,2 CUBLAS call drops performance closer to 30GFLOPS
i.e. “Modularity” can cause low performance !
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Approach: lightweight kernels with auto-tuning to automatically select:
i. the number of elements processed in a thread-block. 

ii. the (shared memory) cache blocking strategy in mXm.
iii. run-time code generation in Python (simultaneously creating PyCUDA)

 Are we Doing ok ?
I was later in a friendly competition with Andreas Klöckner... 

1 High-Order Discontinuous Galerkin Methods by GPU Metaprogramming 9

preparation steps, while the latter does that, and in addition increases utilization
of parallel processing resources. The third choice, called in-line parallel in Figure
1.4, occupies a middle-ground between the two by accomplishing a number of dot
products along with each other within a single work item. This exploits the fact that,
in order for the matrix to be operated on, its components must be resident within
the GPU’s register file–but once they are there, it is economical to use them not
just once, but multiple times. All of these strategies are specific forms of work item
coarsening. How many elements are worked on in each of these fashions is captured
by the numbers ws, wi and wp.

Obviously, regardless of the choices for these numbers, the same amount of work
is begin done–it is just the partitioning that differs. Nonetheless, in Section 1.5, we
will observe fairly significant performance differences between such partitionings.

Fig. 1.5 Multiple granularities for inter-element flux computation. Obviously, larger blocks lead
to more data reuse as fewer face pairs are split.

We have just seen that a question of granularities arises even in a simple situation
like that of the element-local operations. There is an even more important concern
of this nature in the only inter-element communication operation within DG, the
computation of surface fluxes. Since the computation of each surface flux refers to
data from two opposite element faces, there is definite savings potential if data for
a number of such faces is brought onto the chip at the same time and reused. Obvi-
ously, this leads to a decrease in the amount of parallelism available, but for large
enough problems (which are the main driver for the application of GPU technology),
this becomes a non-issue. The amount of parallelism is however limited by two sets
of data that need to be fit onto the chip, namely the metadata indicating which faces
with what geometry data need to be processed, and the output buffer used to write
vectors of face data that can then be processed in the lifting stage of the computa-
tion. Both of these could theoretically be accomplished in streaming mode without
on-chip storage, however we have found that buffering them improves performance
measurably. Once a granularity has been found that suitably balances these factors
with data reuse, the computational mesh needs to be partitioned in a way that maxi-
mizes the number of interior faces in each partition. Fortunately, we have found that
performance is somewhat insensitive to the absolute quality of this partition, and a
simple greedy algorithm, as outlined in [11], suffices.

Overall, we have seen a few examples of computations requiring that the imple-
menter select a granularity entirely unrelated to the computation itself. Each of these
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Substantial improved performance at low polynomial order was obtained with
Andreas Klöckner’s Python DG domain specific language Hedge.

 Are we Doing ok ?
The high-order performance is quite similar with two very different approaches:

Hand coded CUDA
PyCUDA

Polynomial order 
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PyCUDA*

47

Slides by Andreas Klöckner:
http://mathema.tician.de/software/pycuda

Tuesday, June 14, 2011

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda


Scripting for GPUs
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Scripting for GPUs
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PyCUDA
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PyCUDA: Example code
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PyCUDA: Example code

52
Tuesday, June 14, 2011



PyCUDA: Example code
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PyCUDA
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Python + CUDA = PyCUDA

55http://mathema.tician.de/software/pycuda
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We were pleasantly surprised that the code ported easily from CUDA to 
OpenCL and maintained performance on GPUs from AMD and NVIDIA

 OpenCL: cross-platform

Tesla C870
Tesla C1060
AMD 5970 (1 chip)
Tesla C2050
GTX 480
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 OpenCL: Kernel Hand Tuning Process
Porting our CUDA code to OpenCL we tracked the performance on fermi.
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Polynomial order N

CUDA Code
Simplified CUDA ported to CL
+Images
+Compiler optimization
 -Padding
+Restored shared memory
+Partial manual unroll
+#defined loop limits

For higher order individual kernels exceed 600GFLOPS (~50% peak)
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 ptx Code
tex.2d.v4.f32.f32 { %f122, %f123, %f124, %f125 },
add.s32         %r17, %r16, 1;
ld.shared.f32   %f47, [%r15+1120];
ld.shared.f32   %f48, [%r15+896];
ld.shared.f32   %f49, [%r15+672];
ld.shared.f32   %f50, [%r15+448];
ld.shared.f32   %f51, [%r15+224];
ld.shared.f32   %f55, [%r15];
add.s32         %r18, %r15, 4;
mad.f32         %f37, %f124, %f47, %f19;
mad.f32         %f36, %f123, %f47, %f18;
mad.f32         %f35, %f122, %f47, %f17;
mad.f32         %f34, %f124, %f48, %f16;
mad.f32         %f33, %f123, %f48, %f15;
mad.f32         %f32, %f122, %f48, %f14;
mad.f32         %f31, %f124, %f49, %f13;
mad.f32         %f30, %f123, %f49, %f12;
mad.f32         %f29, %f122, %f49, %f11;
mad.f32         %f28, %f124, %f50, %f10;
mad.f32         %f27, %f123, %f50, %f9;
mad.f32         %f26, %f122, %f50, %f8;
mad.f32         %f25, %f124, %f51, %f7;
mad.f32         %f24, %f123, %f51, %f6;
mad.f32         %f23, %f122, %f51, %f5;
mad.f32         %f22, %f124, %f55, %f2;
mad.f32         %f21, %f123, %f55, %f3;

tex.1d.v4.f32.s32 {%f54,%f55,%f56,%f57};
.loc    14      325     0
mov.f32         %f58, %f54;
mov.f32         %f59, %f55;
mov.f32         %f60, %f56;
.loc    14      329     0
ld.shared.f32   %f61, [%rd7+0];
fma.rn.f32      %f53, %f61, %f58, %f53;
fma.rn.f32      %f52, %f61, %f59, %f52;
fma.rn.f32      %f51, %f61, %f60, %f51;
.loc    14      330     0
ld.shared.f32   %f61, [%rd7+224];
fma.rn.f32      %f50, %f61, %f58, %f50;
fma.rn.f32      %f49, %f61, %f59, %f49;
fma.rn.f32      %f48, %f61, %f60, %f48;
.loc    14      331     0
ld.shared.f32   %f61, [%rd7+448];
fma.rn.f32      %f47, %f61, %f58, %f47;
fma.rn.f32      %f46, %f61, %f59, %f46;
fma.rn.f32      %f45, %f61, %f60, %f45;
.loc    14      333     0
ld.shared.f32   %f61, [%rd7+672];
fma.rn.f32      %f44, %f61, %f58, %f44;
fma.rn.f32      %f43, %f61, %f59, %f43;
fma.rn.f32      %f42, %f61, %f60, %f42;
....OpenCL CUDA

The intermediate ptx “assembler” code reveals some differences in the compiler output
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PyOpenCL

60

• There is also a Python API for OpenCL. 

• This provides a very clean and intuitive interface. 

• For further details see: pyopencl.pdf on the K2I summer 
institute resources web page. 

• Web pages: 

• http://mathema.tician.de/software/pyopencl

• http://documen.tician.de/pyopencl/
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PyOpenCL: Example
import pyopencl as cl

import numpy
import numpy.linalg as la

a = numpy.random.rand(50000).astype(numpy.float32)
b = numpy.random.rand(50000).astype(numpy.float32)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)
b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)
dest_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes)

prg = cl.Program(ctx, """
    __kernel void sum(__global const float *a,
    __global const float *b, __global float *c)
    {
      int gid = get_global_id(0);
      c[gid] = a[gid] + b[gid];
    }
    """).build()

prg.sum(queue, a.shape, a_buf, b_buf, dest_buf)

a_plus_b = numpy.empty_like(a)
cl.enqueue_read_buffer(queue, dest_buf, a_plus_b).wait()

print la.norm(a_plus_b - (a+b))
61
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As a side project we used the just in time compilation feature of OpenCL
to perform source code modification based profiling.

Material sourced from:
Paulius Micikevicius’ Presentation on Source Code Analysis

Source Code Modification 
Based Profiling in OpenCL

Tuesday, June 14, 2011
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OpenCL Profiling: source modification
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From: Paulius Micikevicius Presentation on Source Code Analysis
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OpenCL Profiling: source modification

!"#$%&'(#)*$%!+$,(-."/

time
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mem math full mem math full mem math full mem math full

Memory and latency bound

Poor mem-math overlap: 
latency is a problem

Math-bound

Good mem-math 
overlap: latency not a 
problem

(assuming instruction 
throughput is not low 
compared to HW theory)

Memory-bound

Good mem-math 
overlap: latency not a 
problem

(assuming memory 
throughput is not low 
compared to HW theory)

Balanced

Good mem-math 
overlap: latency not a 
problem

(assuming memory/instr
throughput is not low 
compared to HW theory)
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From: Paulius Micikevicius Presentation on Source Code Analysis
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OpenCL Profiling: source modification
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From: Paulius Micikevicius Presentation on Source Code Analysis
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OpenCL Profiling: source modification
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OpenCL Profiling: source modification

From: Paulius Micikevicius Presentation on Source Code Analysis
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OpenCL Profiling: source modification
We wrote a source code analysis tool that:

i. labels each line of a kernel according to the type of actions
a. math
b. smem memory read/write
c. device memory read/write
d. control flow
e. integer or floating point arithmetic

ii. Math: Then we scan the kernel source code expression by expression and 
automatically generate a kernel with individual math operation turned off. We then 
build the OpenCL kernel in each case, and time the kernels.

iii. Memory: we repeat the sweep selectively turning off each type of memory access 
where possible [ without radically altering the control flow]

This is all done automatically and we output a html heat map of the source code.
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 Fine Grain Kernel Profiling

Q: is it possible to measure fine grain profiling info for GPGPU kernels by 
automatic code dissection ?

A: maybe.

So far we are able to automatically detect “interesting” expressions and 
generate/compile/benchmark kernels by selectively switching expressions 
on and off.

[ extending ideas from Micikevicius ]
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 Red is bad
__kernel  void  MaxwellsVolume2d(int  K,  
                             read_only  __global  float  *g_Q,  
                             __global  float  *g_rhsQ,  
                             read_only  image2d_t  t_DrDs,
                             read_only  __global  float  *g_vgeo,
                             __local    float  *s_Q,
                             __local    float  *s_vgeo){

#define  p_Np    (((p_N+1)*(p_N+2))/2)

    const  int  p_Nfields  =  3;

    const  int  BSIZE  =  (4*((p_Np+3)/4));

    /*  LOCKED  IN  to  using  Np  threads  per  block  */
    const  int  n  =  get_local_id(0);
    const  int  k  =  get_group_id(0);

    float  dHxdr=0;   float  dHxds=0;
    float  dHydr=0;   float  dHyds=0; 
    float  dEzdr=0;   float  dEzds=0; 
    float  Q;

    if(k>=K)  return;

    int  m  =  n+k*p_Nfields*BSIZE;
    int  id  =  n;

    s_Q[id]  =  g_Q[m];   m+=BSIZE;  id+=BSIZE;
    s_Q[id]  =  g_Q[m];   m+=BSIZE;  id+=BSIZE;
    s_Q[id]  =  g_Q[m];   

Tentatively we can spot intensive expressions (soon groups of expressions) 
More reliable information can be gleaned from the OpenCL profiler.

   dHxdr=0;   dHxds=0; 
    dHydr=0;   dHyds=0; 
    dEzdr=0;   dEzds=0; 

    sampler_t  sampler  =  CLK_NORMALIZED_COORDS_FALSE;
    for(m=0;p_Np-m;){
        float4  D=  read_imagef(t_DrDs,  sampler,  (int2)(n,m));   

        id  =  m;
        Q  =  s_Q[id];   dHxdr  +=  D.x*Q;   dHxds  +=  D.y*Q;   id  +=  BSIZE;
        Q  =  s_Q[id];   dHydr  +=  D.x*Q;   dHyds  +=  D.y*Q;   id  +=  BSIZE;
        Q  =  s_Q[id];   dEzdr  +=  D.x*Q;   dEzds  +=  D.y*Q; 

        ++m;

    }

    m  =  n+p_Nfields*BSIZE*k;

    const  float  drdx=  s_vgeo[0]; 
    const  float  drdy=  s_vgeo[1]; 
    const  float  dsdx=  s_vgeo[2]; 
    const  float  dsdy=  s_vgeo[3]; 

    g_rhsQ[m]  =  -(drdy*dEzdr+dsdy*dEzds);   m  +=  BSIZE;
    g_rhsQ[m]  =    (drdx*dEzdr+dsdx*dEzds);   m  +=  BSIZE;
    g_rhsQ[m]  =    (drdx*dHydr+dsdx*dHyds  -  drdy*dHxdr-dsdy*dHxds);   

}
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 Red is bad
__kernel  void  MaxwellsVolume2d(int  K,  
                             read_only  __global  float  *g_Q,  
                             __global  float  *g_rhsQ,  
                             read_only  image2d_t  t_DrDs,
                             read_only  __global  float  *g_vgeo,
                             __local    float  *s_Q,
                             __local    float  *s_vgeo){

#define  p_Np    (((p_N+1)*(p_N+2))/2)

    const  int  p_Nfields  =  3;

    const  int  BSIZE  =  (4*((p_Np+3)/4));

    /*  LOCKED  IN  to  using  Np  threads  per  block  */
    const  int  n  =  get_local_id(0);
    const  int  k  =  get_group_id(0);

    float  dHxdr=0;   float  dHxds=0;
    float  dHydr=0;   float  dHyds=0; 
    float  dEzdr=0;   float  dEzds=0; 
    float  Q;

    if(k>=K)  return;

    int  m  =  n+k*p_Nfields*BSIZE;
    int  id  =  n;

    s_Q[id]  =  g_Q[m];   m+=BSIZE;  id+=BSIZE;
    s_Q[id]  =  g_Q[m];   m+=BSIZE;  id+=BSIZE;
    s_Q[id]  =  g_Q[m];   

Tentatively we can spot intensive expressions (soon groups of expressions) 
More reliable information can be gleaned from the OpenCL profiler.

   dHxdr=0;   dHxds=0; 
    dHydr=0;   dHyds=0; 
    dEzdr=0;   dEzds=0; 

    sampler_t  sampler  =  CLK_NORMALIZED_COORDS_FALSE;
    for(m=0;p_Np-m;){
        float4  D=  read_imagef(t_DrDs,  sampler,  (int2)(n,m));   

        id  =  m;
        Q  =  s_Q[id];   dHxdr  +=  D.x*Q;   dHxds  +=  D.y*Q;   id  +=  BSIZE;
        Q  =  s_Q[id];   dHydr  +=  D.x*Q;   dHyds  +=  D.y*Q;   id  +=  BSIZE;
        Q  =  s_Q[id];   dEzdr  +=  D.x*Q;   dEzds  +=  D.y*Q; 

        ++m;

    }

    m  =  n+p_Nfields*BSIZE*k;

    const  float  drdx=  s_vgeo[0]; 
    const  float  drdy=  s_vgeo[1]; 
    const  float  dsdx=  s_vgeo[2]; 
    const  float  dsdy=  s_vgeo[3]; 

    g_rhsQ[m]  =  -(drdy*dEzdr+dsdy*dEzds);   m  +=  BSIZE;
    g_rhsQ[m]  =    (drdx*dEzdr+dsdx*dEzds);   m  +=  BSIZE;
    g_rhsQ[m]  =    (drdx*dHydr+dsdx*dHyds  -  drdy*dHxdr-dsdy*dHxds);   

}
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 OpenCL or CUDA: DGTD

• DGTD achieves a reasonable percentage of peak with both 
OpenCL and CUDA on NVIDIA cards.

• DGTD achieves a reasonable percentage of peak with both 
PyOpenCL and PyCUDA on NVIDIA cards.

• There is a definite bump in performance with OpenCL but 
this can likely be achieved with CUDA.

• CUDA is currently limited to x86 and NVIDIA cards.

• OpenCL is infinitely faster than CUDA on AMD GPUs.

• PyOpenCL is a to get similar performance for DGTD via 
auto-tuning.
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 OpenCL or CUDA: May’s law

“ First, a disappointment. It is widely accepted that hardware efficiency doubles 
ever 18 months, following Moore’s law. Let me now introduce you to May’s law:

 
software efficiency halves every 18 months, 

compensating Moore’s law! 

It’s not clear what has caused this, but the tendency to add features, programming 
using copy-paste techniques, and programming by ‘debugging the null-program’ - 
starting with a debugger and an empty screen and debugging interactively until the 
desired program emerges - have probably all contributed. ”

David May
CSP, occam, and Transputers, Communicating Sequential Processes, pp. 75-84, 2004.

Tuesday, June 14, 2011



 OpenCL or CUDA: my view
Long term: 

• Fingers crossed compilers make all this irrelevant.

Short/medium term:

• Shielding “domain specialists” from parallelism may add complexity
   => use very thin wrappers on the HOST.

• CUDA/OpenCL force us to address task level parallelism and data locality  
   => encourages programmer focus and simplicity on the DEVICE.

• OpenCL is a nearly uniform way to program devices 
   => obliges us to code with at least simple auto-tuning in mind.

• New devices will be heterogeneous
   => need a general interface.

• We are migrating our “legacy” CUDA codes to OpenCL and 
all new codes are OpenCL or PyOpenCL.
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Low-Storage Curvilinear 
Discontinuous Galerkin
Time-Domain Method

Question: how can we handle curvilinear elements
without saturating memory capacity and bandwidth

 
We adopted the “flops-for-free philosophy”
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J = ∂x
∂r

× ∂x
∂s

 appears in inner products: u,v( )Dk = u(r, s)v(r, s)J(r, s)dr ds
D̂
∫∫

FEM Mesh Curvilinear 
Mesh

Piecewise polynomial 
determinant of the 

Jacobian plotted vertically

 Isoparameteric Transform Jacobians
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Emk
m
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*
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∂Dk

εψ n ,ψ m( )Dk

dEmk

dtm
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Hmk
m
∑ − ψ ,n × H

*( )
∂Dk

for n = 1,...,Np ,  k=1,...,K.

 Discrete DG Equations
Testing with a basis for the function spaces

In matrix form we have

Mµ
dH
dt

=  CE + fluxes

Mε
dE
dt

= −CTH − fluxes

The mass matrices are block diagonal with dense blocks.
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 Standard DG Mass Matrices
Unfortunately the local mass matrices are unique to each 

element with curvature or non-constant coefficients.

For a specific element’s mass matrix:

Mµ
dH
dt

=  CE + fluxes

Mε
dE
dt

= −CTH − fluxes

Where the electric permittivity and the determinant of the coordinate 
transform Jacobian matrix, J, can be non-constant.

M ε
k( )nm = εφn ,φm( )Dk

= εφnφm
Dk

∫ = εφnφmJ
D̂
∫
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Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Each curved element requires its own mass matrix,
occupying expensive memory and bandwidth

Geometric Factors (Fixed data)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Mass Matrices
(Not templated 

~100x100x5000)

Inverse 
Mass Matrices

Not templated 
Np x Np x Kcurved

Derivative Matrices

Templated
Np x Nc x3

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Time Dependent
Magnetic and Electric Field Components

Data
Nc x K x 6

 Curvilinear Matrix Structures
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 Geometry Free Mass Matrices
The geometric dependence of the mass matrices...

.. suggests local elemental test and trial spaces of the form ...

Adopting a basis for the numerator space PN we see that 
the resulting mass matrix is independent of the element. 

 
Vk = φ :φ =

φ
Jk

 for some φ ∈PN D̂( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

M ε
k( )nm = εφnφmJk

D̂
∫

 
M ε

k( )nm = εφnφmJk
D̂
∫ = ε

φn
Jk

φm
Jk
Jk

D̂
∫ = ε φn φm

D̂
∫
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0 = φ, ∂µ
H

∂t
⎛
⎝⎜

⎞
⎠⎟ D̂

+ φ,∇× E( )D̂ +
φ
Jk

,n × E
*
− E( )⎛

⎝⎜
⎞

⎠⎟ ∂Dk

− φ,∇Jk
2Jk

× E
⎛
⎝⎜

⎞
⎠⎟ D̂

0 = ψ , ∂ε
E

∂t
⎛
⎝⎜

⎞
⎠⎟ D̂

− ∇ × ψ , H( )D̂
Maxwell's equations on reference element
  

−
ψ
Jk

,n × H
*⎛

⎝⎜
⎞

⎠⎟ ∂Dk

Distributional derivative contribution
  

+ ψ ,∇Jk
2Jk

× H
⎛
⎝⎜

⎞
⎠⎟ D̂

Transform terms
  

The variational equation becomes:

 Low Storage Curvilinear DG 

 

d
dt

H
J

2

+
E
J

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= − 1

2
wiJi

s,k , f

i=1

i=Nc

∑
f =1

4

∑
k=1

k=K

∑ n ×
H
Jk

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ n ×
E
Jk

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

xi
k , f

Semi-discrete stability is automatic:

No need for custom mass matrices for the price of extra FLOPS 
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Method N h h/2 h/4 h/8 Est. Order

DGTD
5 2.45E-04 8.06E-06 2.56E-05 5.24E-09 5.61

DGTD
6 4.31E-05 1.43E-06 2.52E-08 2.81E-10 6.49

Low 
storage

5 2.44E-04 8.03E-06 2.55E-05 5.22E-09 5.61Low 
storage 6 4.29E-05 1.43E-06 2.52E-08 2.79E-10 6.50

8 T. WARBURTON, X. ZHU, A. KLÖCKNER, AND N. NUNN

Table 2.1

Comparison of the number of points for interpolation Np and for integration up to order 2N

using a tensor-product of Gauss quadratures NTP
c , tensor-product of triangle cubature and Gauss

quadrature NGTP
c , and the Grundmann-Möller cubature for the tetrahedron.

2N Np NTP
c NGTP

c NGM
c

2 4 8 6 5
4 10 27 18 15
6 20 64 48 35
8 35 125 80 69
10 56 216 150 125
12 84 343 252 209
14 120 512 368 325
16 165 729 522 489
18 220 1000 730 709

asymptotically favorable operation count for the tensorized evaluation of the DG op-
erators. However for mid-range N (i.e. 1 ≤ N ≤ 10) there is little or no benefit from
tensorization [?]. An alternative choice of quadrature for the tetrahedron is to use
a tensor-product of a one-dimesional (2, 0) weighted Gauss-Jacobi quadrature with a
two-dimensional cubature rule on the triangle [?]. This approach requires the evalu-
ation of the residuals at just Nc(N)(N + 1) quadrature points, achieving a saving of
approximately thirty to forty percent in the mid-range of N .

One can alternatively use the Grudmann-Möler multi-dimensional quadrature
formulae []. These are normally problematic because of some weights being negative.
However, the low storage curvilinear method is stable independent of the choice of
quadrature even in the case of negative weights.

Table 2.1 lists the number of nodes required to accurately integrate polynomials
of degree 2N . It is apparent that the Grundmann-Möller cubature rules require less
function evaluations than the alternatives discussed thus far.

3. Numerical Results.

3.1. Concentric Cylinder Cavity Case. We consider the concentric cylinder
cavity test case considered in [4, 5] for testing an embedded boundary finite difference
time domain method, and also used in [6] for testing non-conforming DGTD methods.
The exact solution requires perfectly electrically conducting boundary conditions ap-
plied on concentric cylinders with radii 1/6 and 1/2. The solution is known for all
time and is given by

Ez = cos(ωt + θ)(J1(ωr) + aY1(ωr)) ,

Hx = −
1

2
sin(ωt + θ) sin(θ)(J0(ωr) − J2(ωr) + a(Y0(ωr) − Y2(ωr)))

−
cos(θ)

ωr
cos(ωt + θ)(J1(ωr) + aY1(ωr)) ,

Hy =
1

2
sin(ωt + θ) cos(θ)(J0(ωr) − J2(ωr) + a(Y0(ωr) − Y2(ωr)))

−
sin(θ)

ωr
cos(ωt + θ)(J1(ωr) + aY1(ωr)) ,

Resonant mode 
of concentric 
cylinder cavity

Negligible change in accuracy !!!

 2D Convergence Test
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Low storage
 curvilinear DGTD

Discrepancy with 
full integration DGTD

LSC-DG & CRBC Radiation Boundary Conditions
We integrated the Low Storage Curvilinear DG scheme

with the Complete radiation boundary conditions

log(|Ez|) log(|error|)
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N h h/2 h/4 Est.Order
1 1.87E-01 5.75E-02 1.09E-02 2.03
2 1.59E-02 2.07E-03 1.24E-04 3.43
3 2.53E-03 1.65E-04 6.13E-06 4.01
4 2.03E-04 7.69E-06 2.70E-08 6.89
5 2.29E-05 4.72E-07 7.55E-10 7.85

Ez = J0 kcρ( )cos k z +1( )( )
Eρ = − k

kc
′J0 kcρ( )sin k z +1( )( )

Hθ = − iω
kc

′J0 kcρ( )cos k z +1( )( )

 3D Cavity Convergence Test
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3 2.53E-03 1.65E-04 6.13E-06 4.01
4 2.03E-04 7.69E-06 2.70E-08 6.89
5 2.29E-05 4.72E-07 7.55E-10 7.85

Ez = J0 kcρ( )cos k z +1( )( )
Eρ = − k

kc
′J0 kcρ( )sin k z +1( )( )

Hθ = − iω
kc

′J0 kcρ( )cos k z +1( )( )

 3D Cavity Convergence Test
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Model airplane curved with cubic Bezier spline surfaces (PN triangles)

 Low-storage Curvilinear DGTD
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The Low Storage Curvilinear DGTD trades some
extra algebraic operations for much reduced storage

 Low Storage Curvi DGTD Performance 

72M
 DOFs
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The graphics are not very polished: 
we didn’t waste GPU cycles on rendering

One hour workstation 
compute time

Colorful Electro-Magnetics
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Carsten Burstedde, Omar Ghattas, Michael Gurnis, Tobin Isaac, Andreas Klöckner, Georg Stadler, TW, and Lucas C. Wilcox, 
Extreme-Scale AMR. ACM/IEEE Super Computing Conference Series, 2010. Gordon-Bell finalist paper.

Multi-GPU Scaling Study for a 
Global Seismic Simulator

[ similar to work by Komatitsch et al discussed by Dominik Goeddeke ] 
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Velocity-Stress Formulation

∂Sij
∂t

= λ ∂vk
∂xk

⎛
⎝⎜

⎞
⎠⎟
δ ij + µ ∂vi

∂x j
+
∂vj
∂xi

⎛

⎝⎜
⎞

⎠⎟

ρ ∂vi
∂t

=
∂Sij
∂x j

+ fi

We start with a first order velocity-stress formulation for elasticity: 

∂Qi

∂t
=
∂Fi Q( )
∂xk

+ fi

φ, ∂Qi

∂t
⎛
⎝⎜

⎞
⎠⎟ Dk

= φ,
∂Fij Q( )
∂x j

+ fi
⎛

⎝⎜
⎞

⎠⎟ Dk

+ φ,nj Fij Q
* −Q( )( )

i( )
∂Dk

We express this in conservation law form:

We then express this in weak conservation law form on the local element Dk

Hexahedra are typically the element of choice in geophysics.
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DGTD Elasticity 

Example grid and simulation.
Note: non-conforming mesh 
enabled trivially with DG.

Magnitude of velocity after some time.

PREM: Preliminary Reference Earth Model  
(Dziewonski & Anderson, 1981)
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CPU Scaling on Jaguar
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Fig. 4. Weak scaling results for a six-octree forest on up to 220,320
cores. We define a fractal-type mesh by recursively subdividing octants
with child identifiers 0, 3, 5 and 6 while not exceeding four levels of
size difference in the forest. To scale from 12 to 220,320 cores the
maximum refinement level is incremented by one while the number
of cores is multiplied by eight. Top: Percentages of runtime for each
of the core p4est algorithms. Runtime is dominated by Balance
and Nodes while Partition and Ghost together take up less
than 10% (New and Refine are negligible and not shown). Bottom:
Performance assessed by normalizing the time spent in the Balance
and Nodes algorithms by the number of octants per core, which is
held constant at approximately 2.3 million (ideal scaling would result
in bars of constant height.) The largest mesh created contains over
5.13× 1011 octants.

associated with tensor product Legendre-Gauss-Lobatto
(LGL) points, as in the spectral element method [39]. All
integrations are performed using LGL quadrature, which
reduces the dG mass matrix to diagonal form.

To examine the scalability of p4est and mangll,
we solve (1) on a spherical shell domain using mesh
adaptivity to dynamically resolve four advecting spheri-
cal fronts. The spherical shell domain is split into six
caps as used in a cubed-sphere decomposition. Each
cap is further divided into four octrees, resulting in
24 adaptive octrees overall. The element order in this
example is 3, and the mesh is coarsened/refined and
repartitioned every 32 times steps. The weak scaling
results presented in Figure 5 reveal 70% end-to-end
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Fig. 5. Weak scaling for a dynamically adapted dG solution of the
advection equation (1) from 12 up to 220,320 cores. The mesh is
adapted and repartitioned, maintaining 3200 tricubic elements per core.
The maximum number of elements is 7.0 × 108 on 220,320 cores,
yielding a problem with 4.5 × 1010 unknowns. The top bar chart
shows the overhead imposed by all AMR operations, which begins at
7% for 12 cores and grows to 27% for 220,320 cores. The bottom
bar chart demonstrates an end-to-end parallel efficiency of 70% for an
increase in problem size and number of cores by a factor of 18,360.

parallel efficiency for weak scaling from 12 cores (with
2.5 million unknowns) to 220,320 cores (with 45 billion
unknowns). This problem is a severe test of the AMR
framework; not only are there few flops to hide the
parallel AMR operations behind (as mentioned above),
but the aggressive adaptivity (about 40% of the elements
are coarsened and about 5% are refined in each adaption
step of the largest run, keeping the overall number of
elements constant) results in exchange of over 99% of
the elements among cores during repartitioning at each
adaptivity step.

IV. AMR SIMULATIONS IN SOLID EARTH
GEOPHYSICS

In this section we present applications of p4est and
mangll to two problems in solid earth geophysics, one
in global mantle convection and global seismic wave
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Fig. 4. Weak scaling results for a six-octree forest on up to 220,320
cores. We define a fractal-type mesh by recursively subdividing octants
with child identifiers 0, 3, 5 and 6 while not exceeding four levels of
size difference in the forest. To scale from 12 to 220,320 cores the
maximum refinement level is incremented by one while the number
of cores is multiplied by eight. Top: Percentages of runtime for each
of the core p4est algorithms. Runtime is dominated by Balance
and Nodes while Partition and Ghost together take up less
than 10% (New and Refine are negligible and not shown). Bottom:
Performance assessed by normalizing the time spent in the Balance
and Nodes algorithms by the number of octants per core, which is
held constant at approximately 2.3 million (ideal scaling would result
in bars of constant height.) The largest mesh created contains over
5.13× 1011 octants.

associated with tensor product Legendre-Gauss-Lobatto
(LGL) points, as in the spectral element method [39]. All
integrations are performed using LGL quadrature, which
reduces the dG mass matrix to diagonal form.

To examine the scalability of p4est and mangll,
we solve (1) on a spherical shell domain using mesh
adaptivity to dynamically resolve four advecting spheri-
cal fronts. The spherical shell domain is split into six
caps as used in a cubed-sphere decomposition. Each
cap is further divided into four octrees, resulting in
24 adaptive octrees overall. The element order in this
example is 3, and the mesh is coarsened/refined and
repartitioned every 32 times steps. The weak scaling
results presented in Figure 5 reveal 70% end-to-end
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advection equation (1) from 12 up to 220,320 cores. The mesh is
adapted and repartitioned, maintaining 3200 tricubic elements per core.
The maximum number of elements is 7.0 × 108 on 220,320 cores,
yielding a problem with 4.5 × 1010 unknowns. The top bar chart
shows the overhead imposed by all AMR operations, which begins at
7% for 12 cores and grows to 27% for 220,320 cores. The bottom
bar chart demonstrates an end-to-end parallel efficiency of 70% for an
increase in problem size and number of cores by a factor of 18,360.

parallel efficiency for weak scaling from 12 cores (with
2.5 million unknowns) to 220,320 cores (with 45 billion
unknowns). This problem is a severe test of the AMR
framework; not only are there few flops to hide the
parallel AMR operations behind (as mentioned above),
but the aggressive adaptivity (about 40% of the elements
are coarsened and about 5% are refined in each adaption
step of the largest run, keeping the overall number of
elements constant) results in exchange of over 99% of
the elements among cores during repartitioning at each
adaptivity step.

IV. AMR SIMULATIONS IN SOLID EARTH
GEOPHYSICS

In this section we present applications of p4est and
mangll to two problems in solid earth geophysics, one
in global mantle convection and global seismic wave
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Fig. 4. Weak scaling results for a six-octree forest on up to 220,320
cores. We define a fractal-type mesh by recursively subdividing octants
with child identifiers 0, 3, 5 and 6 while not exceeding four levels of
size difference in the forest. To scale from 12 to 220,320 cores the
maximum refinement level is incremented by one while the number
of cores is multiplied by eight. Top: Percentages of runtime for each
of the core p4est algorithms. Runtime is dominated by Balance
and Nodes while Partition and Ghost together take up less
than 10% (New and Refine are negligible and not shown). Bottom:
Performance assessed by normalizing the time spent in the Balance
and Nodes algorithms by the number of octants per core, which is
held constant at approximately 2.3 million (ideal scaling would result
in bars of constant height.) The largest mesh created contains over
5.13× 1011 octants.

associated with tensor product Legendre-Gauss-Lobatto
(LGL) points, as in the spectral element method [39]. All
integrations are performed using LGL quadrature, which
reduces the dG mass matrix to diagonal form.

To examine the scalability of p4est and mangll,
we solve (1) on a spherical shell domain using mesh
adaptivity to dynamically resolve four advecting spheri-
cal fronts. The spherical shell domain is split into six
caps as used in a cubed-sphere decomposition. Each
cap is further divided into four octrees, resulting in
24 adaptive octrees overall. The element order in this
example is 3, and the mesh is coarsened/refined and
repartitioned every 32 times steps. The weak scaling
results presented in Figure 5 reveal 70% end-to-end
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Fig. 5. Weak scaling for a dynamically adapted dG solution of the
advection equation (1) from 12 up to 220,320 cores. The mesh is
adapted and repartitioned, maintaining 3200 tricubic elements per core.
The maximum number of elements is 7.0 × 108 on 220,320 cores,
yielding a problem with 4.5 × 1010 unknowns. The top bar chart
shows the overhead imposed by all AMR operations, which begins at
7% for 12 cores and grows to 27% for 220,320 cores. The bottom
bar chart demonstrates an end-to-end parallel efficiency of 70% for an
increase in problem size and number of cores by a factor of 18,360.

parallel efficiency for weak scaling from 12 cores (with
2.5 million unknowns) to 220,320 cores (with 45 billion
unknowns). This problem is a severe test of the AMR
framework; not only are there few flops to hide the
parallel AMR operations behind (as mentioned above),
but the aggressive adaptivity (about 40% of the elements
are coarsened and about 5% are refined in each adaption
step of the largest run, keeping the overall number of
elements constant) results in exchange of over 99% of
the elements among cores during repartitioning at each
adaptivity step.

IV. AMR SIMULATIONS IN SOLID EARTH
GEOPHYSICS

In this section we present applications of p4est and
mangll to two problems in solid earth geophysics, one
in global mantle convection and global seismic wave
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Hex Element DG Kernels

Surface Kernels use 2(N+1)2 threads: the thread-block modifies 
surface nodes on three pairs of faces in turn to avoid write conflicts.

Derivative Kernel uses (N+1)3 threads: each thread computes the 1D spatial 
derivatives at one node and applies the chain rule for physical derivatives.
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Multi-GPU Flow
λ ∂vk

∂xk

⎛
⎝⎜

⎞
⎠⎟
δ ij + µ ∂vi

∂x j
+
∂vj
∂xi

⎛

⎝⎜
⎞

⎠⎟
∂Sij
∂x j

Fij Q
* −Q( ) φ,nj Fij Q

* −Q( )( )
i( )

∂Dk

MPI

AsyncCopy

AsyncCopy

Standard copy and MPI latency hiding through 
Async GPU<>CPU copies and non-blocking MPI communications.

We had to pay attention to pinning conflicts between CUDA & MPI.

C
PU

-0
C

PU
-1

G
PU

-1
G

PU
-0
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Hex DGTD: Single C1060 

Overall 72 GFLOPS, 53 GB/s.
The tensor product structure of the hex causes some performance issues.

RK+Lift
15%

Non-con 
4%

Flux
10%

Jump
20%

Gradient
20%

Divergence
31%

125 GFLOPS
64 GB/s

88 GFLOPS
41 GB/s

3 GFLOPS
35 GB/s

119 GFLOPS
72 GB/s

20 GFLOPS
70 GB/s

Performance of each kernel (N=7)
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Hex v. Tet on a Fermi GPU

Tet Aggregate: 
460 GFLOPS

Hex Aggregate: 
132 GFLOPS

Tetrahedra consume more FLOPS but at a higher rate than hexahedra.
The elements achieve similar throughput determined by bandwidth not operation count.

(N=7 hexahedra & elasticity)      v.         (N=7 tetrahedra & Maxwell’s)

Tuesday, June 14, 2011



The Longhorn GPU Cluster
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Longhorn GPU Cluster

Longhorn is  The Texas Advanced Computing Center's 
Dell XD Visualization Cluster, consisting of:

 2048 compute cores
14.5 TB aggregate memory

QDR InfiniBand interconnect
Lustre parallel file system
256 nodes + 2 login nodes

2 NVIDIA Quadro FX 5800 (gt200) GPUs per node

Each pair of GPUs shares a PCI Express bus (i.e. half bandwidth)
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Strong Scaling: FX5800 

Performance drops with increasing #GPUs due to:
1. Less compute time to hide communication latency.

2.  Shared PCI Express bus.
3.  Fixed kernel invocation time starts to matter.
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Strong scaling: fixed size problem with K=224,048 elements of degree N=7.
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Weak Scaling: FX 5800

Average bandwidth on each GPU is ~62 GB/s out of ~102GB/s peak.
i.e. we need to restructure the algorithm to substantially improve performance.
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Weak scaling: #elements in the range [22,000 , 26,000] per GPU with N=7

Hexes:   ~12 million 
Nodes:  ~6  billion
DOFS:  ~56 billion
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GPU Accelerated
Discontinuous Galerkin Methods 

for Compressible Flows

Similar machinery as we have just seen for electromagnetics and elasticity.
Major exceptions: time-stepping for mildly stiff parabolic terms & handling shocks. 

Andreas Klöckner, Tim Warburton, Jan S. Hesthaven, Viscous Shock Capturing with an Explicitly Time-Stepped Discontinuous 
Galerkin Method,  Mathematical Modelling of Natural Phenomena, 2011.

Tuesday, June 14, 2011



 Compressible Navier-Stokes ...

We consider the compressible Navier-Stokes equations
in subsonic, transitional and supersonic regimes.

An F/A-18F Super Hornet

Photo by: Jarod Hodge, US Navy

GPU Workstation <1hr Workstation in future ?
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 Gibb’s Phenomenon
High order polynomial elements yields better utilization, but...

... can suffer critical oscillations when approximating shocks: Gibbs.
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 Shocking Death for High-Order

... the undershoots can stop computations.

The undershoots can cause bad physics...
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 Artificial Viscosity
A popular strategy developed by von Neumann and Richtmyer is 

to smooth the shocks “slightly”

We devised a new shock detector and use it to turn on the extra diffusion 
at shocks and for under resolved features in the flow.
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 Compressible Navier-Stokes

• First order terms:    
• Roe averaging & Riemann solvers for flux terms.

• Second order terms:    
• Brezzi et al ’97 mixed form DG.

• Artificial viscosity:       
• Persson & Peraire, Barter & Darmofal.

• Departures:
i.   Low storage curvilinear DG on unstructured meshes. 
ii.  Continuous piecewise linear artificial viscosity reconstruction.
iii. Shock sensor based on modified regularity estimator of Houston & Süli. 
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 Artificial Viscosity: global pollution
Cockburn & Guzman*: DG applied to linear transport localizes pollution.A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

(a) EOC for the wave equation with a discontinu-
ous initial condition without artificial viscosity.

(b) EOC for the wave equation with a discontinu-
ous initial condition with artificial viscosity.

Figure 8: Empirical order of convergence for the wave equation with discontinuous initial condi-
tions.

(3.1) and its discretization may be transformed into two decoupled advection equations, and hence
the result applies in this case as well.

We will study the pollution of the solution by examining its pointwise empirical order of
convergence to the known analytic solution in space and time, starting from the initial condition

u(x, 0) = 2 + cos(5πx) + 4 · 1[−0.3,0.3](x), v(x, 0) = 0,

subject to Neumann boundary conditions, on a domain Ω = (−1, 1) up to a final time T = 0.6, with
a wave speed c = 1.

Figure 8 shows the resulting convergence plots, obtained with and without artificial viscosity.
As expected through the work of Cockburn and Guzmán [12], the inviscid DG scheme of Figure
8(a) achieves full convergence away from the discontinuities, but also shows a slowly-growing zone
of non-convergence near the discontinuities, again matching predictions.

Unfortunately, results are not as favorable once artificial viscosity starts to act on the scheme.
Outside the region that interacts with the discontinuities, convergence is roughly as before. However
inside the interacting regions, convergence does improve again away from the discontinuity, but it
does not recover the full order of the scheme. This reduction in order is in line with results obtained
for finite-difference solutions downstream of a slightly viscous shock by Efraimsson and Kreiss
[21] (see also [38]). The observation further underscores the importance of the wave equation as a
test example for shock capturing schemes. Once the PDE is rewritten in as a system of first-order
conservation laws, the single added viscosity of (3.1) induces a cross-coupling that appears to
destroy accuracy.

Note that such behavior cannot be observed in the advection equation, or, generally, any purely
scalar conservation law, since these equations have only one characteristic wave, and hence the
pollution caused by the artificial viscosity cannot spread, but propagates along with the solution.
This might lead one to suggest an obvious “fix” for the issue: The first-order system (i.e. the

19

For 1D acoustics a scalar artificial viscosity, based on density alone, 
generates global pollution by cross coupling characteristics 

* B.Cockburn & J.Guzman, Error estimates for the Runge-Kutta discontinuous Galerkin method for the transport equation with discontinuous initial 
data. SINUM 2008.
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 Artificial Viscosity: global pollution
A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

(a) L2-projected exact and approximate numer-
ical solutions of Sod’s problem for polynomial
degree N = 5 in K = 80 elements.

(b) Space-time diagram of the empirical order of
convergence for Sod’s problem, computed with
artificial viscosity.

Figure 9: Sod’s problem with artificial viscosity: solution and x-t convergence.

left-hand side of 3.1) can easily be transformed into characteristic variables, where it takes the form
of two advection equations that only couple at the boundary, such that the issue disappears [49]. As
we have already discussed, proposing this is as a general remedy is however a bit disingenuous, as
it cannot work properly in multiple dimensions. Another idea that one might have to try and avoid
the reduction in accuracy is to use separate viscosities for each of the variables. According to our
experiments, this does not help, as the cross-coupling of the system persists.

Next, it seems unlikely that this problem is specific to the artificial viscosity constructed in this
article, or to discontinuous Galerkin methods, for that matter. It should be investigated whether all
artificial viscosity schemes proposed so far in the literature suffer from this shortcoming.

6.3 Euler’s Equations
In this section, we will carefully examine the behavior of the artificial viscosity method introduced
above on Euler’s equations of gas dynamics, starting with the classical exact solution of the Riemann
problem given by Sod [53] as the first example.

Figure 9(a) shows computational results, again at polynomial degree N = 5 on K = 80
elements, in direct comparison with the (L2 projection of) the exact solution, for the density ρ and
the pressure p, at the final time T = 0.25 of the computation.

While the figure above gives an impression of the desired solution and a first impression of
the performance of the method, it is perhaps more enlightening to examine an analog to the the
convergence in space and time of Figure 8 in the gas dynamics setting. Figure 9(b) provides this. As
above, the computation was carried out at polynomial degree N = 5, at a variety of mesh resolutions
ranging from K = 20 to 320 elements across the domain. Like in the linear case, convergence away
from the shock region is good, while in the central, shock-interacting ‘fan’, it hardly exceeds order
1. In particular, it is worth noting that convergence along the profile of the smooth rarefaction wave
is also no better than order 1. Given the results obtained for the wave equation, this is not very

20

Mesh adaptivity and/or post processing is indicated.

Order reduction appears in the cone of influence of shocks as expected.
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 Artificial Viscosity: zooming in
Small “coherent” sub 

element scale oscillations 
emanate from the shock.

Known problem: 
see e.g. Arora & Roe, 
Efraimsson & Kreiss 

Experimental L1 errors 
for the Sod shock 

problem scale 
approximately as:

A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

(a) Close-up view of the contact discontinuity in

Figure 9(a) at low and high numerical resolutions.

Interpolation nodes for the low-resolution case

are shown as dots.

(b) Extreme close-up view of the tip of the con-

tact discontinuity in Figure 10(a), at low and high

numerical resolutions.

Figure 10: Element-scale oscillation exhibited by the artificial viscosity scheme.

surprising, and it confirms that the issues observed on linear problems persist in the nonlinear case.

A closer look at the numerical solutions in the poorly-converged region of 9(b) offers a revealing

insight, shown in Figure 10 for a high-resolution case (N = 7, K = 641) and a low-resolution case

(N = 5, K = 81). On the constant parts of the solution to the Riemann problem, we observe small

“wrinkles”. Figure 10(a) provides a sense of scale, while the extreme close-up of Figure 10(b) shows

the phenomenon in detail. In both the high- and the low-resolution case, the oscillation’s wave

length roughly agrees with the size of an element. Further, it is remarkable that the magnitude of the

oscillation appears to grow, rather than shrink, with increased resolution, which seems to indicate

that convergence below the margin provided for by the oscillation might not occur. (Convergence

will be examined in some detail below.) The phenomenon is observed on all constant areas that

are inside the fan of characteristics emanating from the shock at time t = 0. So far, we do not

understand the cause of this phenomenon, nor is it known whether there is a connection between

these wrinkles and the reduced convergence observed in Section 6.2. One might speculate that,

again, the detector’s spatial inhomogeneity is to blame. While we are as yet unsure of the source

of the phenomenon, we would like to note that post-shock oscillations of this nature have been

observed and studied even in schemes that do not use element-based decompositions [2].

Beyond the spot testing conducted so far, we have also carried out a more comprehensive

convergence study on the Euler equations applied to the Sod problem. The raw L1
error data as

well as empirical convergence order results obtained from least-squares fits are shown in Table

1. The data was gathered at a variety of polynomial degrees N and with K = 20 elements at the

coarsest level, with uniform refinements thereafter. The data seems to support about a full order

of convergence in h = 1/K. No improvement in convergence occurs as the order is increased.

Further, the data supports less than a full order of convergence in N , indicating that an addition

of elemental resolution at present is a more effective way of getting a more accurate solution than

increasing the size of the local approximation spaces, especially considering that the computational

complexity grows superlinearly in N . At the resolutions examined, the influence of the oscillations
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A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

N = 4 N = 5 N = 7 N = 9 EOC

h/1 9.982 · 10−3 7.934 · 10−3 6.522 · 10−3 5.567 · 10−3
0.70

h/2 5.442 · 10−3 4.231 · 10−3 3.395 · 10−3 2.921 · 10−3
0.75

h/4 2.945 · 10−3 2.219 · 10−3 1.778 · 10−3 1.568 · 10−3
0.76

h/8 1.548 · 10−3 1.166 · 10−3 9.488 · 10−4 8.329 · 10−4
0.74

h/16 8.087 · 10−4 6.006 · 10−4 5.121 · 10−4 4.598 · 10−4
0.66

h/32 4.207 · 10−4 3.111 · 10−4 2.806 · 10−4
— 0.69

EOC 0.93 0.95 0.92 0.92

Table 1: L1
error and convergence data for the Sod problem of the Euler equations of gas dynamics.

“EOC” stands for the empirical order of convergence, obtained as a least-squares fit to the data.

(“wrinkles”) observed above does not appear to have contributed a significant part of the error–given

their observed behavior in response to resolution changes, they would likely have represented a

“bottom” to convergence at some fixed error magnitude. That issue aside, the observed convergence

data appears to be as good as one might reasonably expect. While convergence of higher order

would of course be desirable, the method as it presently stands is not designed to be able to achieve

this. Through some experiments on polynomials, we have reason to believe that convergence of

order one in N is achievable and thereby a goal for future research.

In addition to the problem of Sod [53], which has furnished the basis for all tests so far, we have

also conducted tests using other available solutions for the Euler equations. One such solution that

is rather similar to the Sod problem is that of Lax [42] in that it also originates from a Riemann

problem. Figure 11(a) demonstrates that the scheme can successfully compute a correct solution

to the problem. Lax’s problem prominently features a contact discontinuity, which is prone to

smearing, as was discussed above. The contact discontinuity in the figure appears somewhat more

smeared than the Sod contact discontinuity at a similar scale.

A further basic benchmark test for the method applied to the one-dimensional Euler equations

was proposed by Shu and Osher [51, Example 8] to highlight the need for high-order methods

in properly capturing the interaction of shocks with smooth wave-like features. Considering

the gathered convergence data, we cannot claim that the method is of high order away from

discontinuities once such areas enter the domain of influence of a location where artificial viscosity

was applied. Nonetheless, it is still instructive to see that the method is capable of keeping the

computation stable and delivering a correct result at least in the “picture norm”, as evidenced by

Figure 11(b). This example is commonly considered challenging, and it is encouraging that the

method is able to stabilize the computation and give a meaningful result without excessive smearing.

As a final validation of the detector’s design on the Euler equations, it is important to examine

whether it will recognize smooth solutions and leave them untouched, preserving high-order

accuracy. We have tested this using the smooth isentropic vortex test case of Zhou and Wei [64] with

the result that as soon as sufficient resolution is available, the detector does not activate anywhere at

any time during the solution process.
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 Artificial Viscosity
Good Match for GPGPU:

i. Shock detector is element local => natural thread blocking
ii. Extra damping terms only require small code modifications.

GPGPU Bottlenecks: 
i. The shock sensor involves a local reduction in the thread block.

ii. Viscosity reconstruction step uses global gather and scatter at element vertices.

Mach 2
Inflow
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 Explicit Time Stepping Restriction
The time step restriction is driven by three factors

Numerical acoustic 
1/(time scale)

Numerical diffusion 
1/(time scale)

Time stepping 
stability region

 

dt ≈ C
N 2 |U | +a( )

h
+

µ + µ( )N 4

h2

Initially we have used an adaptive Runge-Kutta-Chebyshev
time stepping method designed by Medovikov.

* A. Medovikov. High order explicit methods for parabolic equations. BIT Numerical Mathematics, 38:372-390, 1998
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Time Stepping Considerations on the GPU

Need: efficient hp-Multigrid,  AMG for block sparse systems on the GPU.

C
N 2 |U | +a( )

h
+ µN 4

h2

Ch
N 2 |U | + RT( ) dtM ! hN+1dtM ! hN+1

Explicit Semi-implicitSemi-implicit All Implicit

Good
Few reduction operations

Block local preconditionersBlock local preconditionersBlock local preconditionersGood
Very low storage

Block local preconditionersBlock local preconditionersBlock local preconditioners

Bad Reputation

Global preconditioners: CPU worthy ?
(multigrid, domain decomposition)

Global preconditioners: CPU worthy ?
(multigrid, domain decomposition)

Global preconditioners: CPU worthy ?
(multigrid, domain decomposition)

Bad Reputation
Inner-products (e.g. for computing Krylov updates)Inner-products (e.g. for computing Krylov updates)Inner-products (e.g. for computing Krylov updates)

Ugly

(main dt 
restriction)

The issues we ignore on a modest CPU cluster matter even on a single GPU chip.

dt ~ C
N 2 u + a( )

h
+ N

4µ
h2

dt ~ Ch
N 2 u + a( ) dtM ~ hN+1
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 Curvilinear Flow Geometry
We use isoparametric fits to the exact geometry if available 

or spline fits to the geometry otherwise
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 Mach 2 Flow in a Channel 
Airfoils accelerated 
to Mach 2 from rest 

Computation by Nigel Nunn
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 3D Simulation for Fun
For fun we accelerated a model car to Mach one in our GPU powered virtual wind tunnel

Walls

OutflowMach 1
Inflow
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 Supersonic Sedan
For fun we accelerated a model car to Mach one in our GPU powered virtual wind tunnel

Several unique kernels, up to 170K thread blocks, 64 threads per block, called >1e6 times. 

80M DOFS
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 Multiple Element Airfoil Flow
 K = 38032,  N = 5,  α=10

One hour on 3 Tesla class GPUs (+1 GPU rendering)

Low storage curvilinear DG in partial strong-weak form
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Manual GPU kernel tuning and work partitioning becomes challenging.  

 GPGPU Compressible Flow Simulations

Mach 2
Inflow
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• GPUs enable some high-order 3D simulations on a workstation:

• DGTD scales to micro-threading on GPUs.
• Local time stepping gives extra speed boost.
• Teraflop scale work station performance.
• A GPU customized low storage curvilinear DG.

• Main messages: 

• Many-core NUMA favors algebraically intense formulations.
• Comparing algorithms by “operation count” alone is archaic.

• Current/future: 
  

• Hybrid implicit-explicit solvers on the CPU/GPU ????
• 3D compressible Navier-Stokes with turbulence model.
• Improved artificial viscosity based shock capturing.
• Adaptivity in space.

 Summary
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INRIA-CEA-EDF: Toward petaflop numerical simulation 
on parallel hybrid architectures

Tim Warburton, Rice University.
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