
Programming paradigms using
PGAS-based languages

Marc Tajchman

CEA - DEN/DM2S/SFME/LGLS

Monday, June 9th 2011

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

PGAS

PGAS (Partitioned Global Address Space) is a parallel
programming model.

This model defines:

I execution contexts, with separated memory spaces,
Execution context ≈ MPI process

I threads running inside an execution context.
PGAS thread ≈ OpenMP thread, pthread, ...
(PGAS threads are often light threads)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 1/39

PGAS

I direct access from one context to data managed by
another context,

Data structures can be distributed in several
contexts, with a global addressing scheme
(more or less transparent, depending on the
programming language).

I higher-level operations on distributed data structures, e.g.
“for each”-type operations on arrays

These operations may create threads implicitely
(e.g. on multicore computing nodes), and do
implicit data copy between contexts. The
available set depends on the programming
language.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 2/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

“Standard Models”

“Message passing” model “Shared memory” model
(e.g. MPI) (e.g. OpenMP)

owned by each process
Private memory space

Processes

Direct access
to local memory

Message exchanges

...P0 P1 Pn−1 T0 T1 Tn−1...

Shared memory

Threads

Direct access

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 3/39

“Standard Models”

Hybrid programming (e.g. MPI-OpenMP) :

I One or more threads in each process.
I A thread has direct access to the private memory owned

by its process.
I Inter-processes data communications handled by

messages.

Direct access
to local memory

T1,0 T2,0 T3,0 T1,1 T2,1

P0 P1

Private (and local) memory
owned by each process

send/receive
Message

Ti,j: thread in Pi

Pi: process

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 4/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

PGAS: Execution and memory models

Execution model depends on the language (see next chapter).

Memory model:

C0

Private (local)
memory of C0

Shared (local)
memory of C0

T1,0 T2,0 T3,0 C1

Private (local)
memory of C1

Shared (local)
memory of C1

T1,1 T2,1

Global addressing
Ti,j: thread in Ci

Ci: context

Local access to the context private memory
Local access to the shared memory
Distant access to the shared memory

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 5/39

PGAS: Execution and memory models

Distant memory accesses are (or should be):
I of RDMA-type (remote direct memory access),
I handled by one-sided communication functions (like
MPI Put, MPI Get in MPI middleware).

So, PGAS models need efficient implementation of these
operations.

That’s why PGAS implementations are typically build on a few
low-level communication layers, like GASNet or MPI-LAPI (on
IBM machines).

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 6/39

Notion of affinity

PGAS models consider several memory access types, by
increasing speed:

I shared memory location, on a different context,
I shared memory location, on the same context,
I private memory location, on the same context.

⇒ notion of affinity:
logical association between shared data and
contexts. Each element of shared data storage
has affinity to exactly one context.

⇒ PGAS languages propose mechanisms to take a better
account of affinity

i.e. to distribute data and threads to perform as
many local accesses as possible, instead of distant
accesses.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 7/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Languages

Several PGAS programming environments exist (language
definition + compilation/execution tools) :

I UPC (Unified Parallel C), a superset of C
I CAF (Co-Array Fortran), syntax based on fortran 95
I Titanium , a superset of java
I X10, syntax based on java
I Chapel, new language (various influences)
I XcalableMP, set of pragma’s added to C/C++/fortran

Compilers = “Intermediate source” front-end generators +
C/C++/fortran back-end compiler.

Intermediate source code generation in C (Chapel, UPC,
Titanium, XcalableMP), C++ (X10), fortran (CAF, XcalableMP), or
java (X10).

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 8/39

Languages

Remote communications and data distribution handled by
external tools/libraries :

I MPI (proposed by most implementations)
I GASNet (proposed by most implementations)

http://gasnet.cs.berkeley.edu

I OpenSHMEM
http://www2.cs.uh.edu/˜hpctools/research/OpenSHMEM

I GPI
http://www.gpi-site.com

I ...

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 9/39

http://gasnet.cs.berkeley.edu
http://www2.cs.uh.edu/~hpctools/research/OpenSHMEM
http://www.gpi-site.com

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Langage UPC

UPC (http://upc.gwu.edu) is a superset of the C language.
It’s one of the first languages that use a PGAS model, and also
one of the most stable.

UPC extends the C norm with the following features:
I a parallel execution model of SPMD type,
I distributed data structures with a global addressing

scheme, and static or dynamic allocation
I operators on these structures, with affinity control,
I copy operators between private, local shared, and distant

shared memories,
I 2 levels of memory coherence checking (strict for

computation safety and relaxed for performance),

UPC proposes only one level of task parallelism (only processes,
no threads).

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 10/39

http://upc.gwu.edu

Langage UPC

Several “open-source” implementations exist, the most active
are:

I Berkeley UPC (v 2.12.2, may 2011),
http://upc.lbl.gov

I GCC/UPC (v 4.5.1.2, october 2010),
http://www.gccupc.org

Several US computer manufacturers propose UPC compilers :
IBM, HP, Cray

(there was apparently some incentive from the US
administration to provide a UPC compiler along with
C/C++/fortran compilers for new machines).

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 11/39

http://upc.lbl.gov
http://www.gccupc.org

UPC Example (1)

A (static) distributed data structure can be defined by:

1 #define N 1000∗THREADS
2 int i ;
3 shared int v1 [N] ;

T0

v1[0]
v1[n]
v1[2n]

i

T1

v1[1]
v1[n+1]
...

i

Tn−1

v1[n-1]
v1[2n-1]
v1[N-1]

i
...

shared memory
“Distributed”

Local
memory

or, with a different distribution:

1 #define N 1000∗THREADS
2 int i ;
3 shared [1000] int v1 [N] ;

T0

v1[0]
...

v1[999]

i

T1

v1[1000]
...

v1[1999]

i

Tn−1

v1[N-1000]
...

v1[N-1]

i

v1[N-1000]

...

shared memory
“Distributed”

Local
memory

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 12/39

UPC Example (1a)

Definition and use of distributed vectors
(1st version):

1 #include <upc. h>
2 #define N 10000∗THREADS
3
4 shared int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 for (i=1; i<N−1; i++)
9 v3 [i]=0 .5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 upc barr ier ;
12 return 0;
13 }

Test with 2 processes (on 2 different machines):
. 793,1 s (10000 loops)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 13/39

UPC Example (1b)

Definition and use of distributed vectors
(2nd version, using affinity information):

1 #include <upc relaxed . h>
2 #define N 10000∗THREADS
3
4 shared int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 for (i=0; i<N ; i++)
9 if (MYTHREAD == upc threadof(&(v3 [i])))

10 v3 [i]=0 .5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;
11 upc barr ier ;
12 return 0;
13 }

Test with 2 processes (on 2 different machines):
. 307,0 s (10000 loops)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 14/39

UPC Example (1c)

Definition and use of distributed vectors
(3rd version, using an “upc loop”):

1 #include <upc relaxed . h>
2 #define N 10000∗THREADS
3
4 shared int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 upc fora l l (i=0; i<N ; i++; &(v3 [i]))
9 v3 [i]=0 .5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 upc barr ier ;
12 return 0;
13 }

Test with 2 processes (on 2 different machines):
. 301,5 s (10000 loops)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 15/39

UPC Example (1d)

Definition and use of distributed vectors
(4th version, using a different distribution):

1 #include <upc relaxed . h>
2 #define N 10000∗THREADS
3
4 shared [1000] int v1 [N] , v2 [N] , v3 [N] ;
5 int main ()
6 {
7 int i ;
8 upc fora l l (i=0; i<N ; i++; &(v3 [i]))
9 v3 [i]=0 .5∗ (v1 [i+1]−v1 [i−1])+v2 [i] ;

10
11 upc barr ier ;
12 return 0;
13 }

Test with 2 processes (on 2 different machines):
. 13,7 s (10000 loops)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 16/39

Remote data access optimization

Distant accesses imply data (transparent) transferts between
processes.

To improve the efficiency, UPC proposes a set of bloc-copy
functions between:

I shared memories of 2 different processes: upc memcpy,
I private memory of one process, and shared memory of the

same or another process: upc memget and upc memput.

With these operators, the code will be more efficient, but may
be more complicated to write.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 17/39

Sample Comparison of data accesses types

Extract of the upc test code:

1 #define N 10000∗THREADS
2 #define M 10000
3 #define NLocal N/THREADS
4 #define NLast N−1
5 #define NDummy 0
6
7 shared [1000] int v [N] ;
8 int ∗ vLocal = (int ∗) malloc (NLocal ∗ sizeof (int)) ;
9

10 for (j=0; j<M ; j++)
11 for (i=0; i<NLocal ; i++) vLocal [i+NDummy] += 1;
12
13 for (j=0; j<M ; j++)
14 upc fora l l (i=0; i<N ; i++; i) v [i+NDummy] += 1;
15
16 for (j=0; j<M ; j++)
17 upc fora l l (i=0; i<N ; i++; i) v [NLast−i] += 1;

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 18/39

Sample Comparison of data accesses types

Running times obtained with Berkeley UPC (similar results with
GCCUPC)

On a 32-core (8× 4) machine with shared memory:
Memory type no of threads no of threads

at compile time at run time
local private 0.085 s 0.088 s
local shared 2.43 s 1.96 s
distant shared 44.0 s 18.2 s

On a 2-core machine (this laptop):
Memory type no of threads no of threads

at compile time at run time
local private 0.071 s 0.067 s
local shared 1.95 s 1.09 s
distant shared 2.97 s 1.20 s

Expect more differences on a distributed memory machine.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 19/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Co-Array Fortran

Co-Array Fortran (http://www.co-array.org) is an extension
of fortran95. Fortran 2008 norm includes some of the co-arrays
features.

Co-Array Fortran provides:
I an explicit parallel execution model of SPMD-type,

Co-Array Fortran use the name of images for
processes.

I distributed arrays (co-array) with transparent access to
coefficients,

I the extension of fortran matrix operations to co-array’s,
I etc.

Like in UPC, there is only one level of parallelism in Co-Array
fortran.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 20/39

http://www.co-array.org

Co-Array Fortran

There are now relatively few implementations of Co-Array
Fortran.

I Some commercial compilers provides partial versions of
co-arrays (IBM CoArray Fortran, Intel Fortran Compiler XE
2011, etc).

I The only (as far as I know) open-source Co-Array fortran
compilers are in development stage: a compiler from Rice
University, or 4.6 and (experimental) 4.7 versions of GNU’s
gfortran.

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 21/39

Example in Co-Array Fortran

integer ,codimension [∗] ,dimension (10) : : A ,B
integer size , rank , C (10)
size = num_images ()
rank = this_image ()

do i=1 ,10
A (i) = rank∗10 + i

end do

if (rank .eq . 1) then
do i=1 ,10
B (i) = size∗10 + i

end do
end if

sync images (∗)

if (rank .eq . size) then
A (2 : 9) [1] =A (2 : 9)

end if

image1

C(1:10) A(1:10)[1] B(1:10)[1]

image2

C(1:10) A(1:10)[2] B(1:10)[2]

imagen

C(1:10) A(1:10)[n] B(1:10)[n]

Distributed
shared memory

Local
memory

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 22/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

X10 language

X10 (http://x10.codehaus.org) is a language defined and
developped at IBM Research. It’s the IBM proposal to DARPA’s
HPCS program (High Productivity Computer System).
Development is very active (new version every 2-3 months).

A context (resp. thread) is called a place (resp. activity) in X10.

X10 main features (for parallel programing):
I a specific execution model:

an initial activity starts at place 0, from that activity
the user can launch “child” activities on the same
or other places,

I tasks parallelism
activities are synchronous or asynchronous,
syncronization barriers can be activated between
activities (not necessarily on the same place)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 23/39

http://x10.codehaus.org

X10 language

I data parallelism
data can be distributed on a (sub)set of places
(see examples)

I low-level operators:
interaction between data and task parallelism can
be specified very precisely by the programmer

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 24/39

X10 : data parallelism
To define a distributed array, one proceeds in 3 steps, building:

I a region (set of points or valid indexes):

R : Region (2) = (0 . . n) ∗ (0 . .n) ;

I a distribution (partition scheme between places)

D : D i s t (2) = D i s t . makeBlock(R , 0) ;

I the array itself:

u : D i s tAr ray [double] (2) =
Dis tAr ray .make[double] (D) ;

To read/write a coefficient in a distributed array:
at (A . d i s t (2 , 2))

A (2 ,2) = (at (A . d i s t (3 ,0)) A (3 ,0)) + 4 . 5 ;

at (A . d i s t (2 ,2))
A (2 ,2) = at (A . d i s t (3 ,0)) (A (3 ,0) + 4 . 5) ;

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 25/39

X10 : task parallelism

At first, one activity (thread) only start in place 0.
Then this activity can start other activities in the same or other
places. These activities can themselves launch local or remote
activities.

f i n i s h
for (p i n u)

async at (u . d i s t (p))
S (u (p)) ;

Place 0 Place 1 Place n − 1

...

f i n i s h
for (p i n D . places ())

async at (p)
for (q i n u . d i s t | here) {

async S (u (q)) ;
}

Place 0 Place 1 Place n − 1

...
Local activity

Distant activity

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 26/39

X10 : task parallelism

var u : D i s tAr ray [double] (3) ;

n : int = 100;
R : Region (3) = (1 . . n) ∗ (1 . .n) ∗ (1 . .n) ;
D : D i s t (3) = D i s t . makeBlock(R , 0) ;
u = Dis tAr ray .make[double] (D , (p :Point) => 0 . 0) ;

// 1 level of threads // 2 levels of threads
f i n i s h f i n i s h
for (p i n u) for (pl i n u . d i s t . places ())

async at (u . d i s t (p)) async at (pl)
S (u (p)) ; for (q i n D | here)

S (u (q)) ;

On a 2-core machine (this laptop) with 2 places (processes):

level of threads
1 9.46 s
2 0.665 s

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 27/39

X10 : some guideline for performance

X10 is a very rich language, advanced features are very
powerful, but add additional execution time cost.
So, as (non definitive) guidelines for performance:

I try to launch as many local activities as possible (vs. distant
ones)

I try to put as many barriers between colocalized activities
as possible (vs barriers between activities on different
places).

I activities are light threads but their creation take some
time, so put enough work into each activities

I if you know that a region is cartesian, specify it explicitely
(for the current version, the compiler cannot always detect
it)

I ...

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 28/39

X10 : Laplace Equation (version 1)

f i n i s h
for ((i ,j) in u . d i s t) {

async at (u . d i s t (i ,j))
v (i , j) = (1−4∗lambda) ∗ u (i ,j) + lambda ∗
((at (u . d i s t (i+1 ,j)) u (i+1 , j)) +

(at (u . d i s t (i−1,j)) u (i−1, j)) +
(at (u . d i s t (i ,j−1)) u (i , j−1)) +
(at (u . d i s t (i ,j+1)) u (i , j+ 1))) ;

}

Lots of distant activities + scalar remote transferts : performs
very badly

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 29/39

X10 : Laplace Equation (version 2)

f i n i s h
for (p i n u . d i s t . places ())

async at (p)
for ((i ,j) in u . d i s t | here) {

async
v (i ,j) = (1−4∗lambda)∗u (i ,j) + lambda∗

((at (u . d i s t (i+1 ,j)) u (i+1 , j)) +
(at (u . d i s t (i−1,j)) u (i−1, j)) +
(at (u . d i s t (i ,j−1)) u (i , j−1)) +
(at (u . d i s t (i ,j+1)) u (i , j+ 1))) ;

}

A few distant activities + many local activities (and these
activities do very little work) + scalar remote transferts :
performs badly

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 30/39

X10 : Laplace Equation (version 3)

f i n i s h
for (p i n u . d i s t . places ()) async at (p) {

localRegion : Region (2) = u . d i s t | here ;
innerRegion : Region (2)

= (localRegion .min(0)+1 . . localRegion .max(0)−1) ∗
(localRegion .min(1)+1 . . localRegion .max(1)−1);

boundaryRegion : new Array [Region (2)] (4) ;
boundaryRegion (0)

= (localRegion .min (0) . . localRegion .min (0)) ∗
(localRegion .min(1)+1 . . localRegion .max(1)−1)

. . .
async
for ((i ,j) in innerRegion)

async
v (i , j) = (1−4∗lambda) ∗ u (i ,j) + lambda ∗

(u (i+1 , j) + u (i−1, j) + u (i , j−1) + u (i , j+1)) ;

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 31/39

X10 : Laplace Equation (version 3, cont’d)

async
for ((i ,j) in boundaryRegion (0))

v (i , j) = (1−4∗lambda) ∗ u (i ,j) + lambda ∗
(u (i+1 , j) +

(at (u . d i s t (i−1,j)) u (i−1, j)) +
u (i , j−1) +
u (i , j+1)) ;

async
for ((i ,j) in boundaryRegion (1))

v (i , j) = (1−4∗lambda) ∗ u (i ,j) + lambda ∗
(at (u . d i s t (i+1 ,j)) u (i+1 , j)) +
u (i−1, j) +
u (i , j−1) +
u (i , j+1)) ;

. . .

Much less activities : “false remote” activities dropped, scalar
tranferts: not optimal but performs better

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 32/39

X10 : Laplace Equation (version 4)

Code extract for the interfaces between places:

externalRegion = new Array [Region (2)] (4) ;

externalRegion (0)
= (localRegion .min(0)−1 . . localRegion .min(0)−1) ∗

(localRegion .min(1)+1 . . localRegion .max(1)−1)
async {

w : Array (2) = at (p) u (externalRegion (0)) ;
for ((i ,j) in boundaryRegion (0))

v (i , j) = (1−4∗lambda) ∗ u (i ,j) + lambda ∗
(u (i+1 , j) + w (i−1, j) + u (i , j−1) + u (i , j+1)) ;

}
. . .

Version 4 = Version 3 + vector tranferts: much better

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 33/39

X10 : Laplace Equation (version 4)

Comparison of several results (old tests, must be updated)
ite

ra
tio

n
va

ria
tio

n
sh

ift
to

ta
l

−> 96.1

−> 73.0

−> 72.9

−> 242.1

6.6

8.8

0.8

16.1

4.9

0.7

0.6

6.2

1.1

0.7

0.6

2.4

ite
ra

tio
n

va
ria

tio
n

sh
ift

to
ta

l

V4: V3 + block copy + virtual columns
V3: multi−level task parallelism
V2: task parallelism
V1: sequential computation

−> 188.6

−> 137.8

−> 135.8

−> 462.2

7.2

49.4

2.9

59.6

7.0

3.0

2.9

12.9

3.9

3.1

3.0

10.0

8× 4 cores, 8-nodes, 4-cores,
shared memory dist. memory

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 34/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

Langage Chapel
Chapel (Cascade High Productivity Language,
http://chapel.cray.com/index.html) is a language
designed by Cray, and selected by the HPCS project of DARPA
like X10 of IBM.
It’s a language built from scratch, with various influences.

Contexts (resp. threads) are called locales (resp. tasks) in
Chapel. The main features are:

I a similar execution model as X10 (a unique thread starts in
the first context, it can create other threads in the same of
other contexts),

I distributed data structures
I tasks parallelism

Several levels of abstraction : global operations
(forall, reduce, etc.), finer control of tasks
(begin, cobegin, etc.)

I simple language to learn

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 35/39

http://chapel.cray.com/index.html

Data Parallelism

Distributed data definition in 3 steps, one has to build:
I a domain (set of valid indexes),
I a distribution (partition of a domain between locales),
I the array itself on this distribution.

Example:

use BlockDis t ;
. . .

var D : domain(1) = [1 . . n] dmapped Block ([1 . . n]) ;
var Din : domain(1) = [2 . . n−1];
var a , b , f : [D] real ;

. . .

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 36/39

Task Parallelism, global access to distributed data

Example (global operations):

do {
f o r a l l i i n Din
b (i) = h2∗f (i)+(a (i−1)+a (i+1)) /2 ;

diff= +reduce
f o r a l l i i n D do abs (b (i)−a (i)) ;

f o r a l l i i n Din
a (i) = b (i) ;

} while (diff > 1e−5);

Example (finer control of tasks):

cobegin {
functionA () ;
functionB () ;
on Locales (2) functionC () ;

}

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 37/39

Outline

General considerations
PGAS definition
MPI and multithreads models
PGAS models

Langages
UPC
Co-Array Fortran
X10
Chapel
XcalableMP

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages

XcalableMP

XcalableMP comes from the University of Tsukuba (Japan). It
can be seen as an extension of C or fortran, using pragma’s to
express parallel and PGAS concepts (task parallelism and data
distribution).

pragma’s can be deactivated at compile-time, and
the C/fortran source should be a valid sequential code
(as in OpenMP).

XcalableMP is a very new langage (first version available at the
end of 2010). It’s influenced by the HPF (high-performance
fortran) and co-array fortran experiences.

As in X10 and Chapel, data distribution is done in 3 steps:
I defining a region (#pragma xmp template),
I a partition on contexts (#pragma xmp distribute),
I data array alignment (#pragma xmp align)

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 38/39

XcalableMP example

int array [YMAX] [XMAX] ;
#pragma xmp nodes p (∗)
#pragma xmp template t (YMAX)
#pragma xmp d i s t r i b u t e t (block) on p
#pragma xmp al ign array [i] [∗] with t (i)

main (){
int i , j , res ;
res = 0;

#pragma xmp loop on t (i) reduction (+ :res)
for (i = 0; i < YMAX ; i++)

for (j = 0; j < XMAX ; j++) {
array [i] [j] = func (i , j) ;
res += array [i] [j] ;

}
}

CEA-EDF-Inria School - 9/6/2011 Programming paradigms using PGAS-based languages 39/39

	General considerations
	PGAS definition
	MPI and multithreads models
	PGAS models

	Langages
	UPC
	Co-Array Fortran
	X10
	Chapel
	XcalableMP

