
Toward portable programming of numerical linear

algebra on manycore nodes

Michael A. Heroux

Scalable Algorithms Department

Sandia National Laboratories

Collaborators:

SNL Staff: [B.|R.] Barrett, E. Boman, R. Brightwell, H.C. Edwards, A. Williams

SNL Postdocs: M. Hoemmen, S. Rajamanickam,

MIT Lincoln Lab: M. Wolf

ORNL staff: Chris Baker

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Labs (US Dept of Energy)

Sandia CSRI

Albuquerque, NM

(505) 845-7695

1907 km Commute (Walking)

Sandia CSRI

Albuquerque, NM

(505) 845-7695

Sandia Home Office

Avon, MN

(320) 845-7695

Quiz (True or False)

1. MPI-only has the best parallel performance.

2. Future parallel applications will not have MPI_Init().

3. Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.

4. All future programmers will need to write parallel code.

5. DRY is not possible across CPUs and GPUs.

6. CUDA and OpenCL will be footnotes in computing history.

7. Extended precision is too expensive to be useful.

8. Resilience will be built into algorithms.

9. A solution with error bars complements architecture trends.

10.Global SIMT is sufficient parallelism for scientific computing.

Trilinos Background & Motivation

Trilinos Contributors

Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous

Fluids

And More…

Target Platforms: Any and All
(Now and in the Future)

 Desktop: Development and more…

 Capability machines:

 Cielo (XE6), JaguarPF (XT5), Clusters

 Titan (Hybrid CPU/GPU).

 Multicore nodes.

 Parallel software environments:

 MPI of course.

 threads, vectors, CUDA OpenCL, …

 Combinations of the above.

 User “skins”:

 C++/C, Python

 Fortran.

 Web.

Evolving Trilinos Solution

 Trilinos1 is an evolving framework to address these challenges:

 Fundamental atomic unit is a package.

 Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).

 Provides a common abstract solver API (Thyra package).

 Provides a ready-made package infrastructure:

• Source code management (git).

• Build tools (Cmake).

• Automated regression testing.

• Communication tools (mail lists, trac).

 Specifies requirements and suggested practices for package SQA.

 In general allows us to categorize efforts:

 Efforts best done at the Trilinos level (useful to most or all packages).

 Efforts best done at a package level (peculiar or important to a package).

 Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

Transforming Computational Analysis To

Support High Consequence Decisions

Forward Analysis

Accurate & Efficient Forward Analysis

Robust Analysis with Parameter Sensitivities

Optimization of Design/System

Quantify Uncertainties/Systems Margins

Optimization under Uncertainty

Each stage requires greater performance and error control of prior stages:

Always will need: more accurate and scalable methods.

more sophisticated tools.

Systems of systems

Trilinos Download History: 19525 Total

Registered User by Region

Registered Users by Type

Ubuntu/Debian: Other sources

maherou@jaguar13:/ccs/home/maherou> module avail trilinos

-- /opt/cray/modulefiles ---

trilinos/10.0.1(default) trilinos/10.2.0

--- /sw/xt5/modulefiles --

trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3 trilinos/9.0.2

Capability Leaders:

Layer of Proactive Leadership

 Areas:

 Framework, Tools & Interfaces (J. Willenbring).

 Software Engineering Technologies and Integration (R. Bartlett).

 Discretizations (P. Bochev).

 Geometry, Meshing & Load Balancing (K. Devine).

 Scalable Linear Algebra (M. Heroux).

 Linear & Eigen Solvers (J. Hu).

 Nonlinear, Transient & Optimization Solvers (A. Salinger).

 Scalable I/O: (R. Oldfield)

 Each leader provides strategic direction across all Trilinos packages

within area.

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi, Rbgen

ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros, Teko

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos

Observations and Strategies for Parallel

Software Design

Three Design Points

• Terascale Laptop: Uninode-Manycore

• Petascale Deskside: Multinode-Manycore

• Exascale Center: Manynode-Manycore

Basic Concerns: Trends, Manycore

• Stein’s Law: If a trend cannot

continue, it will stop.
Herbert Stein, chairman of the Council of

Economic Advisers under Nixon and

Ford.

• Trends at risk:

– Power.

– Single core performance.

– Node count.

– Memory size & BW.

– Concurrency expression in

existing Programming

Models.

– Resilience.

0

20

40

60

80

100

120

140

160

180

1E+05 1E+06 1E+07

G
ig

a
fl

o
p

s

3D Grid Points with 27pt stencil

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196

Trilinos ThreadPool Library v1.1.

“Status Quo” ~ MPI-only

19

Strong Scaling Potential

Observations

• MPI-Only is not sufficient, except … much of the time.

• Near-to-medium term:

– MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]

– Long term, too?

• Concern:

– Best hybrid performance: 1 MPI rank per UMA core set.

– UMA core set size growing slowly  Lots of MPI tasks.

• Long- term:

– Something hierarchical, global in scope.

• Conjecture:

– Data-intensive apps need non-SPDM model.

– Will develop new programming model/env.

– Rest of apps will adopt over time.

– Time span: 10-20 years.

What Can we Do Right Now?

• Study why MPI was successful.

• Study new parallel landscape.

• Try to cultivate an approach similar to MPI (and

others).

MPI Impresssions

22

Dan Reed, Microsoft

Workshop on the Road Map for the

Revitalization of High End

Computing

June 16-18, 2003

Tim Stitts, CSCS

SOS14 Talk

March 2010

“ MPI is often considered the

“portable assembly language” of

parallel computing, …”

Brad Chamberlain, Cray, 2000.

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf

MPI Reality

25

Tramonto

WJDC

Functional

• New functional.

• Bonded systems.

• 552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.

Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.

Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems.

How much MPI-specific code?

dft_fill_wjdc.c

dft_fill_wjdc.c

MPI-specific

code

MFIX
Source term for

pressure

correction

• MPI-callable, OpenMP-enabled.

• 340 Fortran lines.

• No MPI-specific code.

• Ubiquitous OpenMP markup

(red regions).

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)

source_pp_g.f

Reasons for MPI Success?

• Portability? Yes.

• Standardized? Yes.

• Momentum? Yes.

• Separation of many

Parallel & Algorithms

concerns? Big Yes.

• Once framework in place:

– Sophisticated physics added as serial code.

– Ratio of science experts vs. parallel experts: 10:1.

• Key goal for new parallel apps: Preserve this ratio

Single Program Multiple Data (SPMD) 101

2D PDE on Regular Grid (Standard Laplace)

2D PDE on Regular Grid (Helmholtz)

2D PDE on Regular Grid (4th Order Laplace)

More General Mesh and Partitioning

SPMD Patterns for Domain Decomposition

• Halo Exchange:

– Conceptual.

– Needed for any partitioning, halo layers.

– MPI is simply portability layer.

– Could be replace by PGAS, one-sided, …

• Collectives:

– Dot products, norms.

• All other programming:

– Sequential!!!

Computational Domain Expert Writing MPI Code

Computational Domain Expert Writing Future

Parallel Code

Evolving Parallel Programming Model

38

Parallel Programming Model:

Multi-level/Multi-device

Stateless computational kernels

run on each core

Intra-node (manycore)

parallelism and resource

management

Node-local control flow (serial)

Inter-node/inter-device (distributed)

parallelism and resource management

Threading

Message Passing

stateless kernels

computational

node with

manycore CPUs

and / or

GPGPU

network of

computational

nodes

39
Adapted from slide of H. Carter Edwards

Domain Scientist’s Parallel Palette

• MPI-only (SPMD) apps:

– Single parallel construct.

– Simultaneous execution.

– Parallelism of even the messiest serial code.

• MapReduce:

– Plug-n-Play data processing framework - 80% Google cycles.

• Pregel: Graph framework (other 20%)

• Next-generation PDE and related applications:

– Internode:

• MPI, yes, or something like it.

• Composed with intranode.

– Intranode:

• Much richer palette.

• More care required from programmer.

• What are the constructs in our new palette?

Obvious Constructs/Concerns

• Parallel for:

forall (i, j) in domain {…}

– No loop-carried dependence.

– Rich loops.

– Use of shared memory for temporal reuse, efficient

device data transfers.

• Parallel reduce:

forall (i, j) in domain {

xnew(i, j) = …;

delx+= abs(xnew(i, j) - xold(i, j);

}

– Couple with other computations.

– Concern for reproducibility.

Other construct: Pipeline

• Sequence of filters.

• Each filter is:

– Sequential (grab element ID, enter global assembly) or

– Parallel (fill element stiffness matrix).

• Filters executed in sequence.

• Programmer’s concern:

– Determine (conceptually): Can filter execute in parallel?

– Write filter (serial code).

– Register it with the pipeline.

• Extensible:

– New physics feature.

– New filter added to pipeline.

0

4

21

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0

1

4

3

0

1

2

3

4

5

6

7

8

1

2

5

4

3

4

7

6

4

5

8

7

Global Matrix

Assemble

Rows

0,1,2

Assemble

Rows

3,4,5

Assemble

Rows

6,7,8

TBB Pipeline for FE assembly

FE Mesh

Element-stiffness

matrices computed

in parallel

Launch elem-data

from mesh

Compute stiffnesses

& loads

Assemble rows of stiffness

into global matrix

Serial Filter Parallel Filter Several Serial Filters in series

Each assembly filter assembles certain rows from a

stiffness, then passes it on to the next assembly filter

0

4

21

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0

1

4

3

0

1

2

3

4

5

6

7

8

1

2

5

4

3

4

7

6

4

5

8

7

Global Matrix

Assemble

Rows

Alternative

TBB Pipeline for FE assembly

FE Mesh

Element-stiffness

matrices computed

in parallel

Launch elem-data

from mesh

Compute stiffnesses

& loads

Assemble rows of stiffness

into global matrix

Serial Filter Parallel Filter Parallel Filter

Each parallel call to the assembly

filter assembles all rows from the

stiffness, using locking to avoid

race conflicts with other threads.

Assemble

Rows

Assemble

Rows

Assemble

Rows

Base-line FE Assembly Timings

Num-

procs

Assembly

-time

Intel 11.1

Assembly

-time

GCC 4.4.4

1 1.80s 1.95s

4 0.45s 0.50s

8 0.24s 0.28s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into

operations

(8 per element) and 4096000 vector-entry sum-into operations.

MPI-only, no threads. Linux dual quad-core workstation.

FE Assembly Timings

Num-

threads

Elem-

group

-size

Matrix-

conflicts

Vector-

conflicts

Assembly

-time

1 1 0 0 2.16s

1 4 0 0 2.09s

1 8 0 0 2.08s

4 1 95917 959 1.01s

4 4 7938 25 0.74s

4 8 3180 4 0.69s

8 1 64536 1306 0.87s

8 4 5892 49 0.45s

8 8 1618 1 0.38s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into operations

(8 per element) and 4096000 vector-entry sum-into operations.

No MPI, only threads. Linux dual quad-core workstation.

0

0.5

1

1.5

2

2.5

1 4 8

1

4

8

Other construct: Thread team

• Multiple threads.

• Fast barrier.

• Shared, fast access memory pool.

• Example: Nvidia SM

• X86 more vague, emerging more clearly in future.

• Observe: Iteration count increases with number of subdomains.

• With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

– Solve with fewer, larger subdomains.

– Better kernel scaling (threads vs. MPI processes).

– Better convergence, More robust.

• Exascale Potential: Tiled, pipelined implementation.

• Three efforts:
– Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).

– Decomposition by partitioning

– Multithreaded direct factorization

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

MPI

Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

48

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and

Michael A. Heroux and Erik G. Boman, VECPAR 2010.

MPI Ranks

Thread Team Advantanges

• Qualitatively better algorithm:

– Threaded triangular solve scales.

– Fewer MPI ranks means fewer iterations, better

robustness.

• Exploits:

– Shared data.

– Fast barrier.

– Data-driven parallelism.

Finite Elements/Volumes/Differences

and parallel node constructs

• Parallel for, reduce, pipeline:

– Sufficient for vast majority of node level computation.

– Supports:

• Complex modeling expression.

• Vanilla parallelism.

– Must be “stencil-aware” for temporal locality.

• Thread team:

– Complicated.

– Requires true parallel algorithm knowledge.

– Useful in solvers.

Programming Today for Tomorrow’s

Machines

51

Programming Today for Tomorrow’s Machines

• Parallel Programming in the small:

– Focus: writing sequential code fragments.

– Programmer skills:

• 10%: Pattern/framework experts (domain-aware).

• 90%: Domain experts (pattern-aware)

• Languages needed are already here.

– Exception: Large-scale data-intensive graph?

FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {

compute coefficients for point (i,j,k)

inject into global matrix

}

Notes:

• User in charge of:

– Writing physics code.

– Iteration space traversal.

– Storage association.

• Pattern/framework/runtime in charge of:

– SPMD execution.

FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {

filter(addPhysicsLayer1<i,j,k)>);

...

filter(addPhysicsLayern<i,j,k>);

filter(injectIntoGlobalMatrix<i,j,k>);

}

Notes:

• User in charge of:

– Writing physics code (filter).

– Registering filter with framework.

• Pattern/framework/runtime in charge of:

– SPMD execution.

– Iteration space traversal.

o Sensitive to temporal locality.

– Filter execution scheduling.

– Storage association.

• Better assignment of responsibility (in general).

Quiz (True or False)

1. MPI-only has the best parallel performance.

2. Future parallel applications will not have MPI_Init().

3. Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.

4. All future programmers will need to write parallel code.

Portable Multi/Manycore Programming

Trilinos/Kokkos Node API

56

Generic Node Parallel Programming via C++

Template Metaprogramming

• Goal: Don’t repeat yourself (DRY).

• Every parallel programming environment supports basic

patterns: parallel_for, parallel_reduce.

– OpenMP:

#pragma omp parallel for

for (i=0; i<n; ++i) {y[i] += alpha*x[i];}

– Intel TBB:

parallel_for(blocked_range<int>(0, n, 100), loopRangeFn(…));

– CUDA:

loopBodyFn<<< nBlocks, blockSize >>> (…);

• How can we write code once for all these (and future)

environments?

Tpetra and Kokkos

• Tpetra is an implementation of the Petra Object Model.

– Design is similar to Epetra, with appropriate deviation.

– Fundamental differences:

• heavily exploits templates

• utilizes hybrid (distributed + shared) parallelism via Kokkos Node API

• Kokkos is an API for shared-memory parallel nodes

– Provides parallel_for and parallel_reduce skeletons.

– Support shared memory APIs:

• ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package)

• Intel Threading Building Blocks (TBB)

• NVIDIA CUDA-capable GPUs (via Thrust)

• OpenMP (implemented by Radu Popescu/EPFL)

Generic Shared Memory Node

• Abstract inter-node comm provides DMP support.

• Need some way to portably handle SMP support.

• Goal: allow code, once written, to be run on any parallel

node, regardless of architecture.

• Difficulty #1: Many different memory architectures

– Node may have multiple, disjoint memory spaces.

– Optimal performance may require special memory

placement.

• Difficulty #2: Kernels must be tailored to architecture

– Implementation of optimal kernel will vary between archs

– No universal binary  need for separate compilation paths

• Practical goal: Cover 80% kernels with generic code.

59

Kokkos Node API

• Kokkos provides two main components:

– Kokkos memory model addresses Difficulty #1

• Allocation, deallocation and efficient access of memory

• compute buffer: special memory used for parallel computation

• New: Local Store Pointer and Buffer with size.

– Kokkos compute model addresses Difficulty #2

• Description of kernels for parallel execution on a node

• Provides stubs for common parallel work constructs

• Currently, parallel for loop and parallel reduce

• Code is developed around a polymorphic Node object.

• Supporting a new platform requires only the

implementation of a new node type.

60

Kokkos Memory Model

• A generic node model must at least:

– support the scenario involving distinct device memory

– allow efficient memory access under traditional scenarios

• Nodes provide the following memory routines:
ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

void Node::copyToBuffer<T>(T * src,

ArrayRCP<T> dest);

void Node::copyFromBuffer<T>(ArrayRCP<T> src,

T * dest);

ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

void Node::readyBuffer<T>(ArrayRCP<T> buff);

Kokkos Compute Model

• How to make shared-memory programming generic:

– Parallel reduction is the intersection of dot() and norm1()

– Parallel for loop is the intersection of axpy() and mat-vec

– We need a way of fusing kernels with these basic constructs.

• Template meta-programming is the answer.

– This is the same approach that Intel TBB and Thrust take.

– Has the effect of requiring that Tpetra objects be templated on Node type.

• Node provides generic parallel constructs, user fills in the rest:

template <class WDP>

void Node::parallel_for(

int beg, int end, WDP workdata);

template <class WDP>

WDP::ReductionType Node::parallel_reduce(

int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides:

• loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:

• reduction type WDP::ReductionType

• element generation via WDP::generate(i)

• reduction via WDP::reduce(x,y)

62

Example Kernels: axpy() and dot()

template <class WDP>

void

Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i)

{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>

struct DotOp {

typedef T ReductionType;

const T * x, * y;

T identity() { return (T)0; }

T generate(int i) { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;

op.x = ...; op.alpha = ...;

op.y = ...; op.beta = ...;

node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;

op.x = ...; op.y = ...;

float dot;

dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

63

Compile-time Polymorphism

Kokkos

functor

(e.g.,

AxpyOp)

Serial

Kernel

+SerialNode pthread

Kernel
+TpiNode

Thrust

Kernel+ThrustNode

Future

Kernel

+FutureNode

. . .

68

What’s the Big Deal about Vector-Vector Operations?

Examples from OOQP (Gertz, Wright)

y y x i ni i i/ , ...1y y x z i ni i i i , ...1

y

y y y y

y y y y

y y y

i ni

i i

i i

i

min min

max max

min max

, ...

if

if

if0

1 dx:max

Example from TRICE (Dennis, Heinkenschloss, Vicente)

d

b u w b

w b

u a w a

w a

i ni

i i i

i i

i i i

i i

() and

 and

() and .

 and .

, ...

/

/

1 2

1 2

0

1 0

0

1 0

1

if

if

if

if

Example from IPOPT (Waechter)

U

i

L

i

U

i

L

ii
U

L

i

L

i

U

i

L

ii
L

i
U

ii
U

i
L

ii
L

i
U

i
L

L

i

U

iL

i

i

xxxxx

xxxxx
where

ni

xxx

xxx

xx
xx

x

x

,maxö

,minö
:

...1,

öifö

öifö

ööif
2 Currently in MOOCHO :

> 40 vector operations!

Many different and unusual

vector operations are needed

by interior point methods for

optimization!

Tpetra RTI Components

• Set of stand-alone non-member methods:
– unary_transform<UOP>(Vector &v, UOP op)

– binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op)

– reduce<G>(const Vector &v1, const Vector &v2, G op_glob)

– binary_pre_transform_reduce<G>(Vector &v1,

const Vector &v2,

G op_glob)

• These are non-member methods of Tpetra::RTI which are
loosely coupled with Tpetra::MultiVector and Tpetra::Vector.

• Tpetra::RTI also provides Operator-wrappers:
– class KernelOp<..., Kernel > : Tpetra::Operator<...>

– class BinaryOp<...,BinaryOp> : Tpetra::Operator<...>

Tpetra RTI Example

// isn’t this nicer than a bunch of typedefs?

auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform();

auto comm = platform.getComm();

auto node = platform.getNode();

// create Map and some Vector objects

Tpetra::global_size_t numGlobalRows = ...;

auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node);

const size_t numLocalRows = map->getNodeNumElements();

auto x = Tpetra::createVector<float>(map),

y = Tpetra::createVector<float>(map);

auto z = Tpetra::createVector<double>(map),

w = Tpetra::createVector<double>(map);

// parallel initialization of x[i] = 1.0 using C++-0x lambda function

Tpetra::RTI::unary_transform(*x, [](float xi){return 1.0f;});

// parallel initialization of y[i] = x[i]

Tpetra::RTI::binary_transform(*y, *x, [](float, float xi) {return xi;});

// parallel y[i] = x[i] + y[i]

Tpetra::RTI::binary_transform(*y, *x, std::plus<float>());

// parallel single precision dot(x,y)

fresult = Tpetra::RTI::reduce(*x, *y, reductionGlob<ZeroOp<float>>(

std::multiplies<float>(),

std::plus<float>()));

Future Node API Trends

• TBB provides very rich pattern-based API.

– It, or something very much like it, will provide environment

for sophisticated parallel patterns.

• Simple patterns: FutureNode may simply be OpenMP.

– OpenMP handles parallel_for, parallel_reduce fairly well.

– Deficiencies being addressed.

– Some evidence it can beat CUDA.

• OpenCL practically unusable?

– Functionally portable.

– Performance not.

– Breaks the DRY principle.

Hybrid CPU/GPU Computing

72

Writing and Launching

Heterogeneous Jobs

• A node is a shared-memory domain.

• Multiple nodes are coupled via a communicator.

– This requires launching multiple processes.

• In a heterogeneous cluster, this requires code written
for multiple node types.

• It may be necessary to template large parts of the code
and run the appropriate instantiation on each rank.

• For launching, two options are available:

– Multiple single-node executables, complex dispatch

– One diverse executable, early branch according to rank

Tpetra::HybridPlatform

• Encapsulate main in a templated class method:

• HybridPlatform maps the communicator rank to the
Node type, instantiates a node and the run routine:

template <class Node>

class myMainRoutine {

static void run(ParameterList &runParams,

const RCP<const Comm<int> > &comm,

const RCP<Node> &node)

{

// do something interesting

}

};

int main(...) {

Comm<int> comm = ...

ParameterList machine_file = ...

// instantiate appropriate node and myMainRoutine

Tpetra::HybridPlatform platform(comm , machine_file);

platform.runUserCode< myMainRoutine >();

return 0;

}

hostname0

HybridPlatform Machine File

<ParameterList>

<ParameterList name="%2=0">

<Parameter name="NodeType" type="string" value="Kokkos::ThrustGPUNode"/>

<Parameter name="Verbose" type="int" value="1"/>

<Parameter name="Device Number" type="int" value="0"/>

<Parameter name="Node Weight" type="int" value="4"/>

</ParameterList>

<ParameterList name="%2=1">

<Parameter name="NodeType" type="string" value="Kokkos::TPINode"/>

<Parameter name="Verbose" type="int" value="1"/>

<Parameter name="Num Threads" type="int" value="15"/>

<Parameter name="Node Weight" type="int" value="15"/>

</ParameterList>

</ParameterList>

ThrustGPUNode TPINode

rank 0 rank 1

hostname1

ThrustGPUNode TPINode

rank 2 rank 3 ...

round-robin assignment interval assignment explicit assignment default

%M=N [M,N] =N default

HybridPlatformTest Output

[tpetra/example/HybridPlatform] mpirun –np 4 ./Tpetra_HybridPlatformTest.exe

--machine-file=machines/G+15.xml

Every proc machine parameters from: machines/G+15.xml

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 0!

Running test with Node == Kokkos::ThrustGPUNode on rank 0/4

ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens31 and rank 1!

Running test with Node == Kokkos::TPINode on rank 1/4

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 2!

Running test with Node == Kokkos::ThrustGPUNode on rank 2/4

TPINode initializing with numThreads == 15

ThrustGPUNode attached to device #0 "Tesla C1060", of compute capability 1.3

Teuchos::GlobalMPISession::GlobalMPISession(): started with name lens10 and rank 3!

Running test with Node == Kokkos::TPINode on rank 3/4

TPINode initializing with numThreads == 15

...

See HybridPlatformAnasazi.cpp and HybridPlatformBelos.cpp for more fun!

Additional Benefits of Templates

77

• Tpetra is a templated version of the Petra distributed linear
algebra model in Trilinos.

– Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int,

global_ordinal=local_ordinal> …

CrsMatrix<scalar=double, local_ordinal=int,

global_ordinal=local_ordinal> …

– Examples:

MultiVector<double, int, long int> V;

CrsMatrix<float> A;

Multiprecision possibilities

Scalar float double
double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves

using Tpetra and Belos

linear solver package

Speedup of float over double

in Belos linear solver.

float double speedup

18 s 26 s 1.42x

class FloatShadowDouble {

public:

FloatShadowDouble() {

f = 0.0f;

d = 0.0; }

FloatShadowDouble(const FloatShadowDouble & fd) {

f = fd.f;

d = fd.d; }

…

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {

f += fd.f;

d += fd.d;

return *this; }

…

inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {

os << fd.f << "f " << fd.d << "d”; return os;}

FP Accuracy Analysis:
FloatShadowDouble Datatype

• Templates enable new
analysis capabilities

• Example: Float with
“shadow” double.

FloatShadowDouble

Initial Residual = 455.194f 455.194d

Iteration = 15 Residual = 5.07328f 5.07618d

Iteration = 30 Residual = 0.00147022f 0.00138466d

Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d

Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;

Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Resilient Algorithms:

A little reliability, please.

81

#ifndef TPETRA_POWER_METHOD_HPP

#define TPETRA_POWER_METHOD_HPP

#include <Tpetra_Operator.hpp>

#include <Tpetra_Vector.hpp>

#include <Teuchos_ScalarTraits.hpp>

namespace TpetraExamples {

/** \brief Simple power iteration eigensolver for a Tpetra::Operator.

*/

template <class Scalar, class Ordinal>

Scalar powerMethod(const Teuchos::RCP<const Tpetra::Operator<Scalar,Ordinal> > &A,

int niters, typename Teuchos::ScalarTraits<Scalar>::magnitudeType tolerance,

bool verbose)

{

typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;

typedef Tpetra::Vector<Scalar,Ordinal> Vector;

if (A->getRangeMap() != A->getDomainMap()) {

throw std::runtime_error("TpetraExamples::powerMethod(): operator must have domain and range maps that

are equivalent.");

}

// create three vectors, fill z with random numbers

Teuchos::RCP<Vector> z, q, r;

q = Tpetra::createVector<Scalar>(A->getRangeMap());

r = Tpetra::createVector<Scalar>(A->getRangeMap());

z = Tpetra::createVector<Scalar>(A->getRangeMap());

z->randomize();

//

Scalar lambda = 0.0;

Magnitude normz, residual = 0.0;

// power iteration

for (int iter = 0; iter < niters; ++iter) {

normz = z->norm2(); // Compute 2-norm of z

q->scale(1.0/normz, *z); // Set q = z / normz

A->apply(*q, *z); // Compute z = A*q

lambda = q->dot(*z); // Approximate maximum eigenvalue: lamba = dot(q,z)

if (iter % 100 == 0 || iter + 1 == niters) {

r->update(1.0, *z, -lambda, *q, 0.0); // Compute A*q - lambda*q

residual = Teuchos::ScalarTraits<Scalar>::magnitude(r->norm2() / lambda);

if (verbose) {

std::cout << "Iter = " << iter

<< " Lambda = " << lambda

<< " Residual of A*q - lambda*q = " << residual

<< std::endl;

}

}

if (residual < tolerance) { break; } } return lambda; } } // end of namespace TpetraExamples

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a

reliable, digital machine.

84

“At 8 nm process technology, it will be harder

to tell a 1 from a 0.”

(W. Camp)

Users’ View of the System Now

• “All nodes up and running.”

•Certainly nodes fail, but invisible to user.

•No need for me to be concerned.

•Someone else’s problem.

85

Users’ View of the System

Future

•Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).

3. Reviving.

4. Running properly:

a) Fully reliable or…

b) Maybe still producing an occasional bad result.

86

Hard Error Futures

• C/R will continue as dominant approach:

– Global state to global file system OK for small systems.

– Large systems: State control will be localized, use SSD.

• Checkpoint-less restart:

– Requires full vertical HW/SW stack co-operation.

– Very challenging.

– Stratified research efforts not effective.

Soft Error Futures

• Soft error handling: A legitimate algorithms issue.

• Programming model, runtime environment play role.

Consider GMRES as an example of how soft

errors affect correctness

• Basic Steps

1) Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)

2) Compute orthonormal basis for Krylov subspace (matrix

factorization)

3) Compute vector yielding minimum residual in subspace

(linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

• More examples in Bronevetsky & Supinski, 2008

89

Why GMRES?

•Many apps are implicit.

•Most popular (nonsymmetric) linear solver is

preconditioned GMRES.

•Only small subset of calculations need to be

reliable.

– GMRES is iterative, but also direct.

90

Every calculation matters

• Small PDE Problem: ILUT/GMRES

• Correct result:35 Iters, 343M
FLOPS

• 2 examples of a single bad op.

• Solvers:
– 50-90% of total app operations.

– Soft errors most likely in solver.

• Need new algorithms for soft errors:
– Well-conditioned wrt errors.

– Decay proportional to number of errors.

– Minimal impact when no errors.

Description Iters FLOP

S

Recursive

Residual

Error

Solution Error

All Correct

Calcs

35 343

M

4.6e-15 1.0e-6

Iter=2, y[1] +=

1.0

SpMV incorrect

Ortho

subspace

35 343

M

6.7e-15 3.7e+3

Q[1][1] += 1.0

Non-ortho

subspace

N/C N/A 7.7e-02 5.9e+5

91

Soft Error Resilience

• New Programming Model

Elements:

• SW-enabled, highly reliable:

• Data storage, paths.

• Compute regions.

• Idea: New algorithms with

minimal usage of high reliability.

• First new algorithm: FT-GMRES.

• Resilient to soft errors.

• Outer solve: Highly Reliable

• Inner solve: “bulk” reliability.

• General approach applies to

many algorithms.

M. Heroux, M. Hoemmen

FTGMRES Results

92

Quiz (True or False)

5. DRY is not possible across CPUs and GPUs.

6. Extended precision is too expensive to be useful.

7. Resilience will be built into algorithms.

Bi-Modal: MPI-only and MPI+[X|Y|Z]

94

Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors:

• m = number of nodes.

• n = number of shared memory processors per node.

– Two ways to program:

• Way 1: p MPI processes.

• Way 2: m MPI processes with n threads per MPI process.

- New third way:

• “Way 1” in some parts of the execution (the app).

• “Way 2” in others (the solver).
95

Multicore Scaling: App vs. Solver

Application:
• Scales well

(sometimes superlinear)

• MPI-only sufficient.

Solver:
• Scales more poorly.

• Memory system-limited.

• MPI+threads can help.

* Charon Results:

Lin & Shadid TLCC Report
96

MPI-Only + MPI/Threading: Ax=b

App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0

Thread 0 Thread 1 Thread 2 Thread 3

App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

Library solves Ax=b using shared memory algorithms

on the node.

97

MPI Shared Memory Allocation

Idea:

• Shared memory alloc/free
functions:

– MPI_Comm_alloc_mem

– MPI_Comm_free_mem

• Predefined communicators:
MPI_COMM_NODE – ranks on node

MPI_COMM_SOCKET – UMA ranks

MPI_COMM_NETWORK – inter
node

• Status:
– Available in current development

branch of OpenMPI.

– First “Hello World” Program
works.

– Incorporation into standard still
not certain. Need to build case.

– Next Step: Demonstrate usage
with threaded triangular solve.

• Exascale potential:
– Incremental path to MPI+X.

– Dial-able SMP scope.

98

int n = …;

double* values;

MPI_Comm_alloc_mem(

MPI_COMM_NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI_INFO_NULL, // placeholder for now

&values); // Pointer to shared array (out)

// At this point:

// - All ranks on a node/socket have pointer to a shared buffer (values).

// - Can continue in MPI mode (using shared memory algorithms) or

// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank 0 of the node

…

}

MPI_Comm_free_mem(MPI_COMM_NODE, values);

Collaborators: B. Barrett, Brightwell, Wolf - SNL; Vallee, Koenig - ORNL

Algorithms and Meta-Algorithms

Communication-avoiding iterative methods

• Iterative Solvers:

– Dominant cost of many apps (up to 80+% of runtime).

• Exascale challenges for iterative solvers:

– Collectives, synchronization.

– Memory latency/BW.

– Not viable on exascale systems in present forms.

• Communication-avoiding (s-step) iterative solvers:

– Idea: Perform s steps in bulk (s=5 or more):

• s times fewer synchronizations.

• s times fewer data transfers: Better latency/BW.

– Problem: Numerical accuracy of orthogonalization.

• New orthogonalization algorithm:

– Tall Skinny QR factorization (TSQR).

– Communicates less and more accurate

than previous approaches.

– Enables reliable, efficient s-step methods.

• TSQR Implementation:

– 2-level parallelism (Inter and intra node).

– Memory hierarchy optimizations.

– Flexible node-level scheduling via Intel Threading Building

Blocks.

– Generic scalar data type: supports mixed and extended

precision.

TSQR capability:

• Critical for exascale solvers.

• Part of the Trilinos scalable multicore
capabilities.

• Helps all iterative solvers in Trilinos
(available to external libraries, too).

• Staffing: Mark Hoemmen (lead, post-
doc, UC-Berkeley), M. Heroux

• Part of Trilinos 10.6 release, Sep 2010.

LAPACK – Serial, MGS –Threaded modified Gram-Schmidt

Advanced Modeling and Simulation Capabilities:

Stability, Uncertainty and Optimization

• Promise: 10-1000 times increase in parallelism (or more).

• Pre-requisite: High-fidelity “forward” solve:

– Computing families of solutions to similar problems.

– Differences in results must be meaningful.

SPDEs: Transient

Optimization:

- Size of a single forward problem

Lower Block

Bi-diagonal

Block

Tri-diagonal

t0

t0

tn

tn

Advanced Capabilities:

Readiness and Importance

Modeling Area Sufficient

Fidelity?

Other concerns Advanced

capabilities priority

Seismic

S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics

(Alegra)

A. Robinson, C. Ober

Yes, but some

concerns.

Constitutive models,

material responses

maturity.

Secondary now. Non-

intrusive most

attractive.

Multiphysics

(Charon)

J. Shadid

Reacting flow w/

simple transport,

device w/ drift

diffusion, …

Higher fidelity, more

accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better

timestepping. Failure

modeling.

Not high for now.

Advanced Capabilities:

Other issues

• Non-intrusive algorithms (e.g., Dakota):

– Task level parallel:

• A true peta/exa scale problem?

• Needs a cluster of 1000 tera/peta scale nodes.

• Embedded/intrusive algorithms (e.g., Trilinos):

– Cost of code refactoring:

• Non-linear application becomes “subroutine”.

• Disruptive, pervasive design changes.

• Forward problem fidelity:

– Not uniformly available.

– Smoothness issues.

– Material responses.

Advanced Capabilities:

Derived Requirements

• Large-scale problem presents collections of related subproblems with

forward problem sizes.

• Linear Solvers:

– Krylov methods for multiple RHS, related systems.

• Preconditioners:

– Preconditioners for related systems.

• Data structures/communication:

– Substantial graph data reuse.

Ax b AX B, Axi bi , Aixi bi

Ai A0 Ai

pattern(Ai) pattern(A j)

Accelerator-based Scalability Concerns

Global Scope Single Instruction Multiple

Thread (SIMT) is too Restrictive

105

If FLOPS are free,

why are we making them cheaper?

106

Larry Wall:

Easy things should be easy, hard

things should be possible.

Why are we making easy things

easier and hard things impossible?

107

Explicit/SIMT vs. Implicit/Recursive Algorithms

Problem Difficulty

Easy Hard

T
im

e
to

 S
o
lu

ti
o

n

Implicit/Recursive:

• Implicit formulations.

• Multilevel prec.

Explicit/SIMT:

• Explicit formulations.

• Jacobi prec.

Problems with Accelerator-based Scalability

• Global SIMT is the only approach that really works well on GPUs, but:

– Many of our most robust algorithms have no apparent SIMT

replacement.

– Working on it, but a lot to do, and fundamental issues at play.

• SMs might be useful to break SIMT mold, but:

– Local store is way too small.

– No market reason to make it bigger.

• Could consider SIMT approaches, but:

– Broader apps community moving the other way:

• Climate: Looking at implicit formulations.

• Embedded UQ: Coupled formulations.

• Accelerator-based apps at risk?

– Isolation from the broader app trends.

– Accelerators good, but in combination with strong multicore CPU.

Summary

• Some app targets will change:

– Advanced modeling and simulation: Gives a better answer.

– Kernel set changes (including redundant computation).

• Resilience requires an integrated strategy:

– Most effort at the system/runtime level.

– C/R (with localization) will continue at the app level.

– Resilient algorithms will mitigate soft error impact.

– Use of validation in solution hierarchy can help.

• Building the next generation of parallel applications requires enabling

domain scientists:

– Write sophisticated methods.

– Do so with serial fragments.

– Fragments hoisted into scalable, resilient fragment.

• Success of manycore will require breaking out of global SIMT-only.

Quiz (True or False)

1. MPI-only has the best parallel performance.

2. Future parallel applications will not have MPI_Init().

3. Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.

4. All future programmers will need to write parallel code.

5. DRY is not possible across CPUs and GPUs

6. CUDA and OpenCL may be footnotes in computing history.

7. Extended precision is too expensive to be useful.

8. Resilience will be built into algorithms.

9. A solution with error bars complements architecture trends.

10.Global SIMT is sufficient parallelism for scientific computing.

