Designing a QR Factorization for Multicore and Multi-GPU Architectures using Runtime Systems

Emmanuel AGULLO (INRIA HiePACS team) Julien LANGOU (University of Colorado Denver)

Joint work with University of Tennessee and INRIA Runtime

Vers la simulation numérique pétaflopique sur architectures parallèles hybrides

École CEA-EDF-INRIA, Sophia, France, June 6-10, 2011

University of Colorado Denver | Anschutz Medical Campus

Motivation

Algorithm / Software design

"Must rethink the design of our software."

J. Dongarra, yesterday's talk.

QR factorization

"One algorithmic idea in numerical linear algebra is more important than all the others: QR factorization." L. N. Trefethen and D. Bau, Numerical Linear Algebra, <u>SIAM</u>, 1997.

Motivation

Algorithm / Software design

"Must rethink the design of our software."

J. Dongarra, yesterday's talk.

QR factorization

"One algorithmic idea in numerical linear algebra is more important than all the others: QR factorization." L. N. Trefethen and D. Bau, Numerical Linear Algebra, <u>SIAM</u>, 1997.

High-level algorithm

Runtime System

Device kernels

AGULLO - LANGOU

QR Factorization Over Runtime Systems

High-level algorithm

Runtime System

Device kernels

CPU core

AGULLO - LANGOU

QR Factorization Over Runtime Systems

High-level algorithm

High-level algorithm

High-level algorithm

Objective of the talk

Show that this 3-layers programmation paradigm:

- increases productivity;
- * enables performance portability.

Showing everything you have ever wondered about QR factorization.

Objective of the talk

Show that this 3-layers programmation paradigm:

- increases productivity;
- * enables performance portability.

© Knowing everything you have ever wondered about QR factorization.

Outline

- 1. QR factorization
- 2. Runtime System for multicore architectures
- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

Outline

1. QR factorization

2. Runtime System for multicore architectures

- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

High-level algorithm

QR factorization

Device kernels	
CPU core	GPU

Motivation for tile algorithms

Need to design new algorithm in order to

- ★ reduce communication
- ★ enhance parallelism

QR factorization

1D tile QR - binary tree

Reduce Algorithms: Introduction The QR factorization of a long and skinny matrix with its data partitioned

vertically across several processors arises in a wide range of applications.

Reduce Algorithms: Introduction

Example of applications:

- a) in linear least squares problems which the number of equations is extremely larger than the number of unknowns
- b) in block iterative methods (iterative methods with multiple right-hand sides or iterative eigenvalue solvers)
- c) in dense large and more square QR factorization where they are used as the panel factorization step

Reduce Algorithms: Introduction

Example of applications:

- a) in block iterative methods (iterative methods with multiple right-hand sides or iterative eigenvalue solvers),
- b) in dense large and more square QR factorization where they are used as the panel factorization step, or more simply
- c) in linear least squares problems which the number of equations is extremely larger than the number of unknowns.

The main characteristics of those three examples are that

- a) there is only one column of processors involved but several processor rows,
- b) all the data is known from the beginning,
- c) and the matrix is dense.

Various methods already exist to perform the QR factorization of such matrices:

- a) Gram-Schmidt (mgs(row),cgs),
- b) Householder (qr2, qrf),
- c) or CholeskyQR.

We present a new method:

Allreduce Householder (rhh_qr3, rhh_qrf).

The CholeskyQR Algorithm

SYRK:	$C := A^T A$	(mn²)
CHOL:	R := chol(C)	(n³/3)
TRSM:	Q := A/R	(mn²)

Bibligraphy

- A. Stathopoulos and K. Wu, A block orthogonalization procedure with constant synchronization requirements, *SIAM Journal on Scientific Computing*, 23(6):2165-2182, 2002.
- · Popularized by iterative eigensolver libraries:
 - 1) PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),
 - 2) HYPRE (Lawrence Livermore National Lab.) through BLOPEX,
 - Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U. Hetmaniuk),
 - 4) PRIMME (A. Stathopoulos, Coll. William & Mary).

Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK:	C:= A ^T A	(mn²)	1.	$\overline{C_i} \leftarrow \overline{A_i^T}_{A_i}$
2: MPI_Reduce: 3: CHOL:	C:= sum _{procs} C R := chol(C)	(on proc 0) (n³/3)	2. 3-4	$\begin{array}{c} \\ \\ \leftarrow\\ \\ c_1 \\ +\\ \\ c_2 \\ +\\ \\ c_3 \\ +\\ \\ c_4 \\ \end{array}$
4: MPI_Bdcast	Broadcast the R fa	actor on proc 0 ocessors	5.	
5: TRSM:	Q := A/R	(mn²)		Q _i A _i

In this experiment, we fix the problem: m=100,000 and n=50.

Efficient enough?

(... and, OK, you might want to add an MPI user defined datatype to send only the upper part of R)

Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK:	C:= A ^T A	(mn²)	
2: MPI_Reduce:	C:= sum _{procs} C	(on proc 0)	
3: CHOL:	R := chol(C)	(n³/3)	
4: MPI_Bdcast	Broadcast the R factor on proc 0		
	to all the other processors		
5: TRSM:	Q := A/R	(mn²)	

This method is extremely fast. For two reasons:

1. first, there is only one or two communications phase,

2. second, the local computations are performed with fast operations.

Another advantage of this method is that the resulting code is exactly four lines,

so the method is simple and relies heavily on other libraries.

Despite all those advantages,

4. this method is highly unstable.

AGULLO - LANGOU

QR Factorization Over Runtime Systems

AGULLO - LANGOU

QR Factorization Over Runtime Systems

On two processes

time

Latency but also possibility of fast

panel factorization.

- DGEQR3 is the recursive algorithm (see Elmroth and Gustavson, 2000), DGEQRF and DGEQR2 are the LAPACK routines.
- Times include QR and DLARFT.
- Run on Pentium III.

AGULLO - LANGOU

QR Factorization Over Runtime Systems

When only R is wanted: The MPI_Allreduce

In the case where only R is wanted, instead of constructing our own tree, one can simply use MPI_Allreduce with a user defined operation. The operation we give to MPI is basically the Algorithm 2. It performs the operation:

This **binary** operation is **associative** and this is all MPI needs to use a user-defined operation on a user-defined datatype. Moreover, if we change the signs of the elements of R so that the diagonal of R holds positive elements then the binary operation **Rfactor** becomes **commutative**.

The code becomes two lines:

lapack_dgeqrf(mloc, n, A, lda, tau, &dlwork, lwork, &info); MPI_Allreduce(MPI_IN_PLACE, A, 1, MPI_UPPER, LILA_MPIOP_QR_UPPER, mpi_comm);

QR factorization

Grid 5000

Latency (ms)	Orsay	Toulouse	Bordeaux	Sophia
Orsay	0.07	7.97	6.98	6.12
Toulouse		0.03	9.03	8.18
Bordeaux			0.05	7.18
Sophia				0.06
Throughput (Mb/s)	Orsay	Toulouse	Bordeaux	Sophia
~				
Orsay	890	78	90	102
Orsay Toulouse	890	78 890	90 77	102 90
Orsay Toulouse Bordeaux	890	78 890	90 77 890	102 90 83

AGULLO - LANGOU

QR Factorization Over Runtime Systems

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Consider **architecture:** parallel case: *P* processing units **problem:** QR factorization of a *m*-by-*n* TS matrix (TS = $m/P \ge n$) (main) assumption: one processor has at least mn/P part of the matrix and one processor performs at least $\frac{2mn^2}{p}$ flops

\Rightarrow 1D tile QR algorithm with a binary tree

theory:

-	TSQR	ScaLAPACK-like	Lower bound
# flops	$\frac{2mn^2}{P} + \frac{2n^3}{3}\log P$	$\frac{2mn^2}{P} - \frac{2n^3}{3P}$	$\Theta\left(\frac{mn^2}{P}\right)$
# words	$\frac{n^2}{2}\log P$	$\frac{n^2}{2}\log P$	$\frac{n^2}{2}\log P$
# messages	log P	2n log P	log P

Communication for tile algorithms

- ★ tall and skinny matrix, parallel distributed case
 ⇒ 1D tile QR algorithm with a flat tree
- tall and skinny matrix, sequential case
- * general matrix, sequential case
- * general matrix, parallel distributed case

Consider

architecture: sequential case: one processing unit with cache of size (*W*) **problem:** QR factorization of a *m*-by-*n* TS matrix (TS = $m \ge n$ and $W \ge \frac{3}{2}n^2$)

\Rightarrow 1D tile QR algorithm with a flat tree

theory:

-	flat tree	LAPACK-like	Lower bound
# flops	$2mn^2$	$2mn^2$	$\Theta(mn^2)$
# words	mn	$\frac{m^2n^2}{2W}$	mn
# messages	$\frac{mn}{W}$	$\frac{mn^2}{2W}$	$\frac{mn}{W}$

Communication for tile algorithms

★ tall and skinny matrix, parallel distributed case

\Rightarrow 1D tile QR algorithm with a flat tree

* tall and skinny matrix, sequential case

\Rightarrow 1D tile QR algorithm with a flat tree

- * general matrix, sequential case
- * general matrix, parallel distributed case

2D tile QR

2D tile QR

1. dgeqrt(A[0][0], T[0][0]);

1. dgeqrt(A[0][0], T[0][0]);

dgeqrt(A[0][0], T[0][0]);
 dlarfb(A[0][0], T[0][0], A[0][1]);

1. dgeqrt(A[0][0], T[0][0]); 2. dlarfb(A[0][0], T[0][0], A[0][1]);

 $\label{eq:constraints} \begin{array}{l} \mbox{for} (k=0); k<TLES; k+1 \} \{ & \mbox{degret}(k|k|, Tk[|k|], k|k|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \{ & \mbox{degret}(k|k|, A|k|||k|, A|k|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \{ & \mbox{degret}(k|k|, A|m||k|, A|k|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ & \mbox{degret}(k|k|, A|m||k|, A|k|](n), A|k|[n], A|m|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ \mbox{degret}(k|k|, T|m||k|, A|k|[n], A|k|[n], A|m|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ \mbox{degret}(k|k|, T|m||k|, A|k|[n], A|m|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ \mbox{degret}(k|k|, T|m|](k), A|k|[n], A|m|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ \mbox{degret}(k|m|](k), T|m|](k), A|k|[n], A|m|](n); \\ \mbox{for} (n=k+1; n<TLES; n++) \\ \mbox{for} (n=k+1; n) \\ \mbox{for} (n=k+1$

for (I = 0; k < TLES; k++) {
 digetT(k[k], T[k][k]);
 for (n = k+1; n < TLES; n++) {
 district[k][k], T[k][k], A[k][n]);
 for (m = k+1; n < TLES; m++]
 dtsart(k][k], T[m][k], T[m][k]);
 for (n = k+1; n < TLES; n++)
 dsarb(A[m][k], T[m][k], A[k][n], A[m][n]);
 }
 }
 }
}</pre>

Lower bounds

- 1. Extends previous lower bounds on the volume of communication for matrix-matrix multiplication from
 - Hong and Kung (81) sequential case: $\Omega(\frac{n^3}{\sqrt{M}})$
 - ▶ Irony,Toledo,Tiskin (04) parallel case: $\Omega(\frac{n^2}{\sqrt{P}})$

2. For LU, observe that:

$$\begin{pmatrix} I & 0 & -B \\ A & I & 0 \\ 0 & 0 & I \end{pmatrix} = \begin{pmatrix} I & & \\ A & I & \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & -B \\ & I & A \cdot B \\ & & I \end{pmatrix}$$

therefore lower bound for matrix-matrix multiply (latency, bandwidth and operations) also holds for LU.

Lower bounds

- 1. Extends previous lower bounds on the volume of communication for matrix-matrix multiplication from
 - Hong and Kung (81) sequential case: $\Omega(\frac{n^3}{\sqrt{M}})$
 - ▶ Irony,Toledo,Tiskin (04) parallel case: $\Omega(\frac{n^2}{\sqrt{P}})$
- 2. For LU, observe that:

$$\left(\begin{array}{ccc}I&0&-B\\A&I&0\\0&0&I\end{array}\right)=\left(\begin{array}{ccc}I&\\A&I\\0&0&I\end{array}\right)\left(\begin{array}{ccc}I&0&-B\\&I&A\cdot B\\&&I\end{array}\right)$$

therefore lower bound for matrix-matrix multiply (latency, bandwidth and operations) also holds for LU.

2D tile QR - binary tree

	2D tile QR binary tree		ScaLAPACK Algorith	m	Lower bound
# flops	$\left(\frac{4}{3}\right)\cdot\left(n^3/P\right)$	~	$\left(\frac{4}{3}\right)\cdot\left(n^3/P\right)$	✓	$\mathcal{O}\left(n^{3}/P\right)$
# words	$\left(\frac{3}{4} \cdot \log P\right) \cdot \left(n^2/\sqrt{P}\right)$	✓	$\left(\frac{3}{4} \cdot \log P\right) \cdot \left(n^2/\sqrt{P}\right)$	✓	$\mathcal{O}\left(n^2/\sqrt{P}\right)$
# messages	$\left(\frac{3}{8} \cdot \log^3 P\right) \cdot \left(\sqrt{P}\right)$	✓	$\left(\frac{5}{4}\cdot\log^2 P\right)\cdot(n)$	×	$\mathcal{O}\left(\sqrt{P}\right)$
	2D tile QR binary tree	✓	ScaLAPACK	×	

Performance models of parallel CAQR and ScaLAPACK's parallel QR factorization PDGEQRF on a square $n \times n$ matrix with *P* processors, along with lower bounds on the number of flops, words, and messages. The matrix is stored in a 2-D $P_r \times P_c$ block cyclic layout with square $b \times b$ blocks. We choose b, P_r , and P_c optimally and independently for each algorithm. Everything (messages, words, and flops) is counted along the critical path.

AGULLO - LANGOU

	2D tile QR flat tree		LAPACK Alg DGEQF	orithm የF	Lower bound
# flops	$\left(rac{4}{3} ight)\cdot\left(n^3 ight)$	✓	$\left(\frac{4}{3}\right)\cdot\left(n^3\right)$	\checkmark	$\mathcal{O}\left(n^{3} ight)$
# words	$3 \cdot \frac{n^3}{\sqrt{W}}$	✓	$\frac{1}{3} \cdot \frac{n^4}{W}$	✓	$\mathcal{O}\left(\frac{n^3}{\sqrt{W}}\right)$
# messages	$12 \cdot \frac{n^3}{W^{3/2}}$	✓	$\frac{1}{2} \cdot \frac{n^3}{W}$	×	$\mathcal{O}\left(\frac{n^3}{W^{3/2}}\right)$
	2D tile QR flat tree	✓	LAPACK	×	

Performance models of sequential CAQR and blocked sequential Householder QR on a square $n \times n$ matrix with fast memory size *W*, along with lower bounds on the number of flops, words, and messages.

$$\begin{split} \mathsf{M}_{\mathsf{fast}} &= 1 \; (\mathsf{MB}) \\ \mathsf{M}_{\mathsf{slow}} &= 1 \; (\mathsf{GB}) \\ \alpha &= 0 \; (\mathsf{SEC}) \\ \beta &= 10^8 \; (\mathsf{GB}/\mathsf{SEC}) \\ \gamma &= 10^{10} \; (\mathsf{GFLOPS}/\mathsf{SEC}) \end{split}$$

2D tile QR - binary tree

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- Any tree is possible for the panel factorization
- We (Julien) used tile algorithms to minimize communication,
- We (Emmanuel) now explain them in the context of maximizing parallelism

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- * We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- * Any tree is possible for the panel factorization
- * We (Julien) used tile algorithms to minimize communication,
- We (Emmanuel) now explain them in the context of maximizing parallelism

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- * We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- * Any tree is possible for the panel factorization
- * We (Julien) used tile algorithms to minimize communication,
- We (Emmanuel) now explain them in the context of maximizing parallelism

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- * We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- * Any tree is possible for the panel factorization
- * We (Julien) used tile algorithms to minimize communication,
- We (Emmanuel) now explain them in the context of maximizing parallelism

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- * We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- * Any tree is possible for the panel factorization
- * We (Julien) used tile algorithms to minimize communication,
- We (Emmanuel) now explain them in the context of maximizing parallelism

- Tile algorithms enable to reduce communication in the sequential case, and in the parallel case wrt existing software
- * We can derive communication lower bounds for our problems
- We can attain (polylogarithmically) (assymptotically) communication lower bounds with tile algorithms
- * Any tree is possible for the panel factorization
- * We (Julien) used tile algorithms to minimize communication,
- * We (Emmanuel) now explain them in the context of maximizing parallelism

- * 70's LINPACK, vector operations: Level-1 BLAS operation
- * 80's LAPACK, block, cache-friendly: Level-3 BLAS operation
- 90's ScaLAPACK, distributed memory:

PBLAS Message passing

- * 70's LINPACK, vector operations: Level-1 BLAS operation
- * 80's LAPACK, block, cache-friendly: Level-3 BLAS operation
- 90's ScaLAPACK, distributed memory:
 PBLAS Message passing

- * 70's LINPACK, vector operations: Level-1 BLAS operation
- * 80's LAPACK, block, cache-friendly: Level-3 BLAS operation
- 90's ScaLAPACK, distributed memory: PBLAS Message passing

- * 70's LINPACK, vector operations: Level-1 BLAS operation
- * 80's LAPACK, block, cache-friendly: Level-3 BLAS operation
- 90's ScaLAPACK, distributed memory:

PBLAS Message passing

LAPACK QR factorization

- ★ Block algorithm
- \rightarrow (Movie L1)
 - ★ Fork-join parallelism
 - * Multithreaded BLAS

(Movie L4);

LAPACK QR factorization

- ★ Block algorithm
- \rightarrow (Movie L1)
 - ⋆ Fork-join parallelism
 - ★ Multithreaded BLAS

 \rightarrow (Movie L4);

LAPACK QR factorization

- ★ Block algorithm
- \rightarrow (Movie L1)
 - * Fork-join parallelism
 - Multithreaded BLAS
 - \rightarrow (Movie L4);

LAPACK QR factorization

★ Block algorithm

\rightarrow (Movie L1)

- * Fork-join parallelism
- ★ Multithreaded BLAS

 \rightarrow (Movie L4);

LAPACK QR factorization

- ★ Block algorithm
- * Fork-join parallelism
- ★ Multithreaded BLAS
- ightarrow (Movie L4);

LAPACK QR factorization

- ⋆ Fork-join parallelism
- ★ Multithreaded BLAS

 \rightarrow (Movie L4):

Intel Xeon E7340 quad-socket quad-core (16 cores total)

LAPACK QR factorization

- ★ Block algorithm
- ⋆ Fork-join parallelism
- ★ Multithreaded BLAS

 \rightarrow (Movie L4)

Need for tile algorithms !

Three-layers paradigm

High-level algorithm

2D Tile QR - flat tree

Runtime System

Device kernels	
CPU core	GPU

Tile QR

DAG - 2D tile QR - flat tree


```
for (k = 0; k < TILES; k++) {
    dgeqrt(A[k][k], T[k][k]);
    for (n = k+1; n < TILES; n++) {
        dlarfb(A[k][k], T[k][k], A[k][n]);
    for (m = k+1; m < TILES; n++){
        dtsqrt(A[k][k], A[m][k], T[m][k]);
        for (n = k+1; n < TILES; n++)
        dtsqrtb(A[m][k], T[m][k], A[k][n], A[m][n]);
    }
    }
}</pre>
```

Tile QR

DAG - 2D tile QR - flat tree


```
for (k = 0; k < TILES; k++) {
    dgeqrt(A[k][k], T[k][k]);
    for (n = k+1; n < TILES; n++) {
        dlarfb(A[k][k], T[k][k], A[k][n]);
    for (m = k+1; m < TILES; n++){
        dtsqrt(A[k][k], A[m][k], T[m][k]);
        for (n = k+1; n < TILES; n++)
        dtsqrtb(A[m][k], T[m][k], A[k][n], A[m][n]);
    }
    }
}</pre>
```

Tile QR

DAG - 2D tile QR - flat tree


```
for (k = 0; k < TILES; k++) {
    dgeqrt(A[k][k], T[k][k]);
    for (n = k+1; n < TILES; n++) {
        dlarfb(A[k][k], T[k][k], A[k][n]);
    for (m = k+1; m < TILES; m++){
        dtsqrt(A[k][k], A[m][k], T[m][k]);
        for (n = k+1; n < TILES; n++)
        dtsqrtb(A[m][k], T[m][k], A[k][n], A[m][n]);
    }
    }
}</pre>
```

Tile QR

DAG - 2D tile QR - flat tree

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Tile QR

DAG - 2D tile QR - flat tree

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Tile QR

DAG - 2D tile QR - flat tree

for (n = k+1; n < TILES; n++)

dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);

AGULLO - LANGOU

QR Factorization Over Runtime Systems
DAG - 2D tile QR - flat tree

for (n = k+1; n < TILES; n++)
</pre>

dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);

AGULLO - LANGOU

QR Factorization Over Runtime Systems

QR factorization

Tile QR

QR factorization

Tile QR

DAG - 2D tile QR - flat tree

AGULLO - LANGOU

QR Factorization Over Runtime Systems

DAG - 2D tile QR - flat tree

AGULLO - LANGOU

QR Factorization Over Runtime Systems

2D tile QR - flat tree - summary

$$\label{eq:FOR_k} \begin{split} & \text{FOR} \; k = 0..TILES-1 \\ & \text{A[k][k], T[k][k]} \leftarrow \text{DGRORT(A[k][k])} \\ & \text{FOR} \; m = k+1..TILES-1 \\ & \text{A[k][k], A[m][k], T[m][k]} \leftarrow \text{DTSORT(A[k][k], A[m][k], T[m][k])} \\ & \text{FOR} \; n = k+1..TILES-1 \\ & \text{A[k][n]} \leftarrow \text{DLARF6d[k][k], T[k][k], A[k][n])} \\ & \text{FOR} \; m = k+1..TILES-1 \\ & \text{A[k][n]} \leftarrow \text{DSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])} \\ & \text{A[k][n]} \leftarrow \text{DSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])} \end{split}$$

- ⋆ Fine granularity;
- ★ Tile layout;
- * Different numerical properties;

★ DAG to schedule.

2D tile QR - flat tree - summary

$$\begin{split} & \text{FOR } k = 0..TILES-1 \\ & \text{A}[k][k], T[k][k] = DGRORT(A[k][k]) \\ & \text{FOR } m = k+1..TILES-1 \\ & \text{A}[k][k], A[m][k], T[m][k]) \leftarrow \text{DTSORT}(A[k][k], A[m][k], T[m][k]) \\ & \text{FOR } n = k+1..TILES-1 \\ & \text{A}[k][n] = DLARFB(A[k][k], T[k][k], A[k][n]) \\ & \text{FOR } m = k+1..TILES-1 \\ & \text{A}[k][n], A[m][n] \leftarrow \text{DSSRFB}(A[m][k], T[m][k], A[k][n], A[m][n]) \end{split}$$

- ⋆ Fine granularity;
- ★ Tile layout;
- * Different numerical properties;
- ★ DAG to schedule.

Outline

1. QR factorization

2. Runtime System for multicore architectures

- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

High-level algorithm

2D Tile QR - flat tree

Runtime System

Intrusive (static) scheduler

Device kernels	
CPU core	GPU

Implementation with a static pipeline (Plasma 2.0)

- Work partitioned in one dimension (by block-columns).
- Cyclic assignment of work across all steps of the factorization (pipelining of factorization steps).
- ★ Process tracking by a global progress table.
- * Stall on dependencies (busy waiting).

★ Plasma 1 core

* Plasma 4 cores

Intel Xeon - 16 cores machine

- ★ Node:
 - quad-socket quad-core Intel64 processors (16 cores).
- ★ Intel Xeon processor:
 - quad-core;
 - frequency: 2,4 GHz.
- ★ Theoretical peak:
 - 9.6 Gflop/s/core;
 - 153.6 Gflop/s/node.
- ★ System and compilers:
 - Linux 2.6.25;
 - Intel Compilers 11.0.

Runtime System for multicore architectures

Performance

Intel64-16 cores - QR

Agullo - Langou

Gflop/s

QR Factorization Over Runtime Systems

IBM Power6 - 32 cores machine

- ★ Node:
 - 16 dual-core Power6 processors (32 cores).
- ★ Power6 processor:
 - dual-core;
 - each core 2-way SMT;
 - L1: 64kB data + 64 kB instructions;
 - L2: 4 MB per core, accessible by the other core;
 - L3: 32 MB per processor, one controller per core (80 MB/s);
 - frequency: 4,7 GHz.
- ★ Theoretical peak:
 - 18.8 Gflop/s/core;
 - 601.6 Gflop/s/node.
- * System and compilers:
 - AIX 5.3;
 - xlf version 12.1;
 - xlc version 10.1.

Runtime System for multicore architectures

Performance

Power6-32 cores - QR

High-level algorithm

Runtime System

DAG vs Fork-Join

A few runtime systems

- * Cilk/Cilk++ [Fork-join];
- ★ SMP Superscalar (SMPSs) [DAG] GPUSs StarSs;
- ★ StarPU;
- * Quark (Plasma, since version 2.1);
- ⋆ DAGuE (dPlasma);
- ★ SuperMatrix;
- * Intel Threading Building Blocks;
- ★ Charm++;
- * ...

A few runtime systems

- * Cilk/Cilk++ [Fork-join];
- * SMP Superscalar (SMPSs) [DAG] GPUSs StarSs;
- ★ StarPU;
- * Quark (Plasma, since version 2.1);
- ⋆ DAGuE (dPlasma);
- ★ SuperMatrix;
- Intel Threading Building Blocks;
- ★ Charm++;
- * ...

Runtime System for multicore architectures

DAG vs Fork-Join (Kurzak et al.'09)

Fork-Join model - Cilk - 2D

```
cilk void daeart(double *RV1, double *T);
cilk void dtsqrt(double *R, double *V2, double *T);
cilk void dlarfb(double *V1, double *T, double *C1);
void dssrfb(double *V2, double *T, double *C1, double *C2);
cilk void dssrfb (int m, int n, int k)
  dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
  if (m == TILES-1 \&\& n == k+1 \&\& k+1 < TILES)
     spawn dgegrt(A[k+1][k+1], T[k+1][k+1]);
  if (n = k+1 \& \& m+1 < T|LES)
     spawn dtsqrt(A[k][k], A[m+1][k], T[m+1][k]);
}
spawn dgegrt(A[0][0], T[0][0]);
sync:
for (k = 0; k < TILES; k++) {
  for (n = k+1; n < TILES; n++)
     spawn dlarfb(A[k][k], T[k][k], A[k][n]);
  if (k+1 < TILES)
     spawn dtsqrt(A[k][k], A[k+1][k], T[k+1][k]);
  sync;
  for (m = k+1; m < TILES; m++) {
     for (n = k+1; n < TILES; n++)
       spawn dssrfb (m, n, k);
     sync;
  }
```


Runtime System for multicore architectures

DAG vs Fork-Join (Kurzak et al.'09)

Fork-Join model - Cilk - 1D

```
void daeart(double *RV1, double *T);
void dtsgrt(double *R, double *V2, double *T);
void dlarfb(double *V1, double *T, double *C1);
void dssrfb(double *V2, double *T, double *C1, double *C2);
cilk void qr panel(int k)
  int m;
  dgegrt(A[k][k], T[k][k]);
  for (m = k+1; m < TILES; m++)
     dtsqrt(A[k][k], A[m][k], T[m][k]);
}
cilk void gr update(int n, int k)
  int m;
  dlarfb(A[k][k], T[k][k], A[k][n]);
  for (m = k+1; m < TILES; m++)
     dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
  if (n = k+1)
     spawn gr panel(k+1);
spawn gr panel(0);
svnc:
for (k = 0; k < TILES; k++) {
  for (n = k+1; n < TILES; n++)
     spawn gr update(n, k);
  sync:
```

AGULLO - LANGOU

DAG - SMPSs

#pragma css task \
 inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
inout(R[¬], V2[NB][NB]) output(T[NB][NB])
void dtsqrt(double *R, double *V2, double *T);

```
#pragma css task \
    input(V1[\], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);
```

```
#pragma css task \
    input(V2[NB][NB], T[NB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);
```

```
#pragma css start
for (k = 0: k < TILES: k++) {</pre>
```

```
dgeqrt(A[k][k], T[k][k]);
```

```
for (m = k+1; m < TILES; m++)
    dtsqrt(A[k][k]\, A[m][k], T[m][k]);</pre>
```

```
for (n = k+1; n < TILE5; n++) {
    diarfb(A[k][k]], T[k][k], A[k][n]);
    for (m = k+1; m < TILE5; m++)
        dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
    }
}</pre>
```

```
#pragma css finish
```

AGULLO - LANGOU

Traces [Kurzak et al.'09]

Performance - Intel 16 cores [Kurzak et al.'09]

AGULLO - LANGOU

Outline

- 1. QR factorization
- 2. Runtime System for multicore architectures
- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

High-level algorithm

Runtime System

High-level algorithm

Runtime System

High-level algorithm

Runtime System

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

CUDA tsmqr kernel:

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1. $D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$ 2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$ 3. $A_{mi} = A_{mi} - V_{j}D^{2}_{work}.$

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

CUDA tsmqr kernel:

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1. $D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$ 2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$ 3. $A_{mi} = A_{mi} - V_{j}D^{2}_{work}.$

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1.
$$D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$$

2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$
3. $A_{mi} = A_{mi} - V_{i}D^{2}_{work}.$

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1.
$$D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$$

2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$
3. $A_{mi} = A_{mi} - V_{i}D^{2}_{work}.$

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1.
$$D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$$

2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$
3. $A_{mi} = A_{mi} - V_{i}D^{2} ...$

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1.
$$D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$$

2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$
3. $A_{mi} = A_{mi} - V_{i}D^{2}_{mi}.$
GPU kernels

- Kernels for update (ormqr and tsmqr)
 Fully on GPU
- Kernels for panel factorization (geqrt and tsqrt)
 Hybrid implementation CPU + GPU

CUDA tsmqr kernel:

$$\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right) = \left[I - \left(\begin{array}{c}I\\V_{j}\end{array}\right)T_{j}\left(\begin{array}{c}I\\V_{j}\end{array}\right)^{T}\right]\left(\begin{array}{c}A_{ki}^{j}\\A_{mi}\end{array}\right),$$

1.
$$D^{1}_{work} = A^{j}_{ki} + V^{T}_{j}A_{mi};$$

2. $D^{2}_{work} = T_{j}D^{1}_{work}; A^{j}_{ki} = A^{j}_{ki} - D^{2}_{work};$
3. $A_{mi} = A_{mi} - V_{i}D^{2}_{mi}.$

Architecture

- $\star\,$ AMD Opteron 8358 SE CPU, 4 \times 4, 2.4GHz, 4 $\times\,$ 8GB
- \star NVIDIA Tesla S1070 GPU, 4 \times 240, 1.3GHz, 4 \times 4GB
- ★ single precision:
 - peak: 3067Gflop/s (307.2 + 2760)
 - sgemm: 1908Gflop/s (256 + 1652)
- double precision:
 - peak: 498.6Gflop/s (153.6 + 345)
 - dgemm: 467.2Gflop/s (131.2 + 336)

Tuning

ib:

32

64

7-96

128

192

₩ 224

× 256

Performance

Performance

Three-layers paradigm

High-level algorithm

Runtime System				
StarPU				
Device kernels				
CPU core	GPU			

GPU-enabled runtime systems

- ★ Cilk/Cilk++;
- * SMP Superscalar (SMPSs) GPUSs StarSs;
- ⋆ StarPU;
- * Quark (Plasma, since version 2.1);
- ⋆ DAGuE (dPlasma);
- ★ SuperMatrix;
- Intel Threading Building Blocks;
- ★ Charm++;
- * ...

GPU-enabled runtime systems

- ★ Cilk/Cilk++;
- ★ SMP Superscalar (SMPSs) GPUSs StarSs;
- ★ StarPU;
- * Quark (Plasma, since version 2.1);
- ★ DAGuE (dPlasma);
- SuperMatrix;
- Intel Threading Building Blocks;
- ★ Charm++;
- * ...

GPU-enabled runtime systems

- ★ Cilk/Cilk++;
- * SMP Superscalar (SMPSs) GPUSs StarSs;
- ★ StarPU;
- * Quark (Plasma, since version 2.1);
- ⋆ DAGuE (dPlasma);
- ★ SuperMatrix;
- Intel Threading Building Blocks;
- ★ Charm++;
- * ...

The StarPU runtime system [Augonnet et al.]

- Data management:
 - Checks dependences;
 - Ensures coherency;
- ★ Supports:
 - SMP/Multicore Processors (x86, PPC, ...);
 - NVIDIA GPUs;
 - OpenCL devices;
 - Cell Processors (experimental).
- * Scheduling module.

2D Tile QR - flat tree - over StarPU

for (k = 0; k < min(MT, NT); k++) { starpu_Insert_Task(&cl_zgeqrt, k , k, ...);

for (n = k+1; n < NT; n++)starpu_Insert_Task(&cl_zunmqr, k, n, ...);

```
for (m = k+1; m < MT; m++) {
  starpu Insert Task(&cl ztsgrt, m, k, ...);
```

for (n = k+1; n < NT; n++)starpu Insert_Task(&cl_ztsmqr, m, n, k, ...);

AGULLO - LANGOU

2D Tile QR - flat tree - over StarPU

for (k = 0; k < min(MT, NT); k++) { starpu_Insert_Task(&cl_zgeqrt, k , k, ...);

```
for (n = k+1; n < NT; n++)
  starpu Insert Task(&cl zunmgr, k, n, ...);
```

```
for (m = k+1; m < MT; m++) {
  starpu Insert Task(&cl ztsgrt, m, k, ...);
```

```
for (n = k+1; n < NT; n++)
  starpu Insert_Task(&cl_ztsmqr, m, n, k, ...);
```

See code

AGULLO - LANGOU

Using Accelerators

StarPU

Relieving anti-dependencies (SMPSs trick reminder)

#pragma css task \
 inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
 inout(R[¬], V2[NB][NB]) output(T[NB][NB])
void dtsqrt(double *R, double *V2, double *T);

#pragma css task \
 input(V1[\], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

```
#pragma css task \
    input(V2[NB][NB], T[NB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);
```

```
#pragma css start
for (k = 0: k < TILES: k++) {</pre>
```

```
dgeqrt(A[k][k], T[k][k]);
```

```
for (m = k+1; m < TILES; m++)
    dtsqrt(A[k][k]\, A[m][k], T[m][k]);</pre>
```

```
for (n = k+1; n < TILE5; n++) {
    dlarfb(A[k][k]], T[k][k], A[k][n]);
    for (m = k+1; m < TILE5; m++)
    dssrfb(A[m][k], T[m][k], A[k][n], A[m][n]);
}</pre>
```

```
#pragma css finish
```


Using Accelerators

StarPU

Relieving anti-dependencies (using StarPU)

GFlop/s

Impact of the scheduling policy

Name	Folicy description		
heft-tmdp-pr	heft-tmdp with data PRefetch		
heft-tmdp	heft-tm with remote Data Penalty ($\alpha T_{data \ transfert} + T_{computation}$)		
heft-tm-pr	heft-tm with data PRefetch		
heft-tm	HEFT based on Task duration Models ($T_{data \ transfert} + T_{computation}$)		
greedy	Greedy policy		

Nome

Using Accelerators

StarPU

Impact of the Data Penalty on the total amount of data movement

Matrix order	9600	24960	30720	34560
heft-tmdp-pr	1.9 GB	16.3 GB	25.4 GB	41.6 GB
heft-tm-pr	3.8 GB	57.2 GB	105.6 GB	154.7 GB

Performance

AGULLO - LANGOU

Performance

+ 200Gflop/s but 12 cores = 150Gflop/s

AGULLO - LANGOU

Heterogeneity

Kernel	CPU	GPU	Speedup
sgeqrt	9 Gflops	60 Gflops	≈6
stsqrt	12 Gflops	67 Gflops	≈6
sormqr	8.5 Gflops	227 Gflops	≈27
stsmqr	10 Gflops	285 Gflops	≈27

* Task distribution observed on StarPU:

- sgeqrt: 20% of tasks on GPUs
- stsmqr: 92.5% of tasks on GPUs
- * Taking advantage of heterogeneity !
 - Only do what you are good for
 - Don't do what you are not good for

Outline

- 1. QR factorization
- 2. Runtime System for multicore architectures
- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

DAG of a 4x4 tile matrix

2D tile QR - hybrid binary/flat tree

DAG of a 4x4 tile matrix

2D tile QR - flat tree

2D tile QR - hybrid binary/flat tree

Enhancing parallelism

2D tile QR - hybrid binary/flat tree

First panel factorization and corresponding updates.

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Enhancing parallelism

2D tile QR - hybrid binary/flat tree

Second panel factorization and corresponding updates.

Enhancing parallelism

2D tile QR - hybrid binary/flat tree

Final panel factorization.

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Enhancing parallelism

2D tile QR - hybrid binary/flat tree

Final panel factorization.

AGULLO - LANGOU

QR Factorization Over Runtime Systems

Enhancing parallelism

16x2 tile matrix - 1 domain (flat tree)

Enhancing parallelism

16x2 tile matrix - 8 domains (hybrid tree)

Enhancing parallelism

16x2 tile matrix - 16 domains (binary tree)

Enhancing parallelism

32x4 tile matrix - 1 domain (flat tree)

Enhancing parallelism

32x4 tile matrix - 16 domains (hybrid tree)

Enhancing parallelism

Enhancing parallelism

32x4 tile matrix - 16 domains (hybrid tree)

Traces (8 cores)

N = 400 - 16 cores

M = 6400 - 16 cores

$M = 51200 - 200 \le N \le 3200$

Heterogeneous platform - double precision - N = 2*960

Outline

- 1. QR factorization
- 2. Runtime System for multicore architectures
- 3. Using Accelerators
- 4. Enhancing parallelism
- 5. Distributed Memory

Distributed Memory

Scalability - Cholesky 6 nodes ; 3 GPUs and 12 cores per node

Agullo - Langou

QR Factorization Over Runtime Systems

Distributed Memory

Scalability - Cholesky Total of 3 GPUs and 12 cores

129

Distributed Memory

Scalability: towards exascale ?

Conclusion

- ★ three-layers paradigm;
- * productivity and performance portability;
- * Cholesky, (CA-)QR and LU solvers;
- * to be released into the MAGMA library.

Perspectives

- high-level complex routines (eigensolvers, sparse solvers, ...)
- scalable runtime;
- high-performance kernels;
- * Autotuning framework;
- Clever scheduling algorithms;

Conclusion

- ★ three-layers paradigm;
- * productivity and performance portability;
- * Cholesky, (CA-)QR and LU solvers;
- * to be released into the MAGMA library.

Perspectives (and additional layers)

- * high-level complex routines (eigensolvers, sparse solvers, ...)
- ★ scalable runtime;
- high-performance kernels;
- Autotuning framework;
- Clever scheduling algorithms;

<u> [hanks</u>]

Conclusion

- ★ three-layers paradigm;
- * productivity and performance portability;
- * Cholesky, (CA-)QR and LU solvers;
- * to be released into the MAGMA library.

Perspectives (and additional layers)

- * high-level complex routines (eigensolvers, sparse solvers, ...)
- ★ scalable runtime;
- high-performance kernels;
- * Autotuning framework;
- Clever scheduling algorithms;

Thanks!

Conclusion

- ★ three-layers paradigm;
- * productivity and performance portability;
- * Cholesky, (CA-)QR and LU solvers;
- * to be released into the MAGMA library.

Perspectives (and additional layers)

- * high-level complex routines (eigensolvers, sparse solvers, ...)
- ★ scalable runtime;
- high-performance kernels;
- * Autotuning framework;
- Clever scheduling algorithms;

* Thanks!

Conclusion

- ★ three-layers paradigm;
- * productivity and performance portability;
- * Cholesky, (CA-)QR and LU solvers;
- * to be released into the MAGMA library.

Perspectives (and additional layers)

- * high-level complex routines (eigensolvers, sparse solvers, ...)
- ★ scalable runtime;
- high-performance kernels;
- ★ Autotuning framework;
- Clever scheduling algorithms;

Thanks!

* . . .