Big operations

Yves Bertot
14 March

MAP INTERNATIONAL
SPRING SCH@OL

ON FORMALIZATION OF
MATHEMATICS 2012

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH

I 4 A MICROSOFT RESEARCH
1577 5 A

lterating binary operations

@ Binary operations abound in mathematics
o Big operations generalize to n-ary applications
@ Many features or big operations are common

@ A systematic treatement of the infrastructure

Yves Bertot Big operations

Notations

@ Special cases \sum_(i < n) f i, \prod_ (j <=k < n) g i
o well typed if f g : nat -> nat, f : I n -> nat
@ Possibility to filter \sum_(i < n | odd i) f i

@ Ways to choose the operator and starting value
\biglop/id]l (i < n | P i) f i

@ \sum_(i < | odd i) f i =
\big[addn/0] (i < n | odd i) f i

Yves Bertot Big operations

Ranges

\sum_(i < n) F i
o thetype of i in F iis *I_n : this brings information
o The elements are taken in increasing order

\sum_(i <n | Pi) F i

\sum_(i \in odd5) F i if odd5 is a collective predicate on
a finite type

\prod_i F i if the domain of F is a finite type

\biglop/v]_(i <- 8) F i

Finite types, intervals, and sequences come with a natural
order

°
@ \sum_(m <= i < n) F i
°
°

Yves Bertot Big operations

Plain operators

@ Some theorems don't rely on any property from the operator

Empty ranges : bignil, big ord0, big_geq
Predicate not satisfied: big_hasC, big pred0
Detaching the leftmost value : big_cons, big 1tn
Range format switching : big_nth

Widening range: big_*widen, big_*narrow
Exchanging function and predicate : eq_big, eq-bigl,
eq_bigr

Look for section Extensionality in bigop.v

Yves Bertot Big operations

Example

Section test.
Variables (opl : nat -> nat -> nat) (v : nat).

Lemma cmp_op3 : \biglopl/v]_(1 <=1i < 3) i =o0pl 1 (opl 2 v).
rewrite big_ltn.

opl 1 \biglopl/vl_(2 <= i < 3) i = opl (op 2 v).

subgoal 2 is: 1 < 3
rewrite big_ltn; last by []

opl 1 (opl 2 \biglopl/v]_(3 <= i < 3) i) = opl (op2 v)

rewrite big_geq; last by []
opl 1 (opl 2 v) = opl 1 (opl 2 v)

Yves Bertot Big operations

Monoid structures

e Cut range in two, start from the right,

e big cat, big_cat_nat
e big nat_recr, big_ord_recr, only without filter

@ Replacing all absent elements with the neutral

o big mkcond
big_mkcond : forall ... ,

\big[*/M/1]_(i <- r | P i) F i =
\big[*%M/1]1_(i <= r) (if P i then F i else 1).

Yves Bertot Big operations

Example with monoid structures

Lemma s3’ : \sum_(i < 3) i = 3.
rewrite big_ord_recr.

addn_monoid
(\bigl[addn_monoid/0]_(i < 2)
widen_ord (m:=3) (leqnSn 2) i)
ord_max = 3
rewrite big_ord_recr /=.

\sum_(i < 1) i +1 +2 =3

Yves Bertot Big operations

Abelian structures

@ Divide arbitrarily, partition, re-order, pick one element

big_split : forall ... (op : Monoid.com_law idx)
\biglop/idx]_(i <~ r | P i) op (F1 i) (F2 i)
op (\biglop/idx]_(i <~ r | P i) F1 i)
(\biglop/idx]_(i <- r | P i) F2 i)

@ Exchange big operations
exchange_big : forall ...,

\biglop/idx]_(i | P i) \biglop/idx]_(j | Q j) F i
\biglop/idx]1_(j | Q j) \biglop/idx]_(i | P i) F

Yves Bertot Big operations

-

.

Example with re-indexing

Lemma sumnP : forall n, \sum_(i < n) i = (n * n.-1) %/2.
suff <- : 2 * \sum_(i < n) i = n * n.-1 by rewrite mulKn.
Continue in a demonstration!!

Yves Bertot Big operations

Distributivity

Distributivity concerns the exchange of two operations

Multiplication by a scalar, but also by a big sum.
(a1 +a12+a13)(a1 +ap+ax3) =

> I ac. ()

fe{1,2,3}{1:21 ie{1,2}

We can range over all functions because it is also a fintype.

Scalar: big_distrr, sums: big distr_big

Also with dependent choices

Yves Bertot Big operations

Properties

@ Properties satisfied by elements and preserved by operators
are satisfied

big_prop : forall ...

>

Pb idx ->
(forall x y : R, Pb x => Pb y -> Pb (opl x y)) —>
(forall i : I, Pi ->Pb (F 1)) —>

Pb (\biglop1/idx]_(i <- r | P i) F i)

@ Similar theorem big rel to relate two big operations
@ Advised use: elim/big prop: _and elim/big rel: _

o Caveat: the name of these theorems will change in future
versions of SSREFLECT.

Yves Bertot Big operations

Morphisms

@ When phi is a morphism between two monoid structures

big_morph: forall ... ,
{morph phi : x y / opl x y >> op2 x y} —>
phi idx1l = idx2 ->
phi (\biglop1/idx1]_(i <~ r | P i) F i) =
\big[op2/idx2] _(i <- r | P i) phi (F i)

@ Demonstration if time allows

Yves Bertot Big operations

think big

@ Available for any list, binary operation, and value
@ Specific theorems require specific properties
e big nat_recr requires associativity
@ Properties are attached to operators using canonical
structures

e For associativity: Monoid.law.
Canonical Structure op2Mon : Monoid.law 0 :=
Monoid.Law op2A op20n op2n0.
e op2A, op20n and op2n0 would have to be proofs that some
operation (op2) is associative and that some element (0) is left
neutral and right neutral for this operation.

@ Demonstration if time allows.

Yves Bertot Big operations

