
L
ON FORMALIZATION OF
SPRING SCH

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH
MATHEMATICS 2012

MAP INTERNATIONAL

Big operations

Yves Bertot
14 March

Iterating binary operations

Binary operations abound in mathematics

Big operations generalize to n-ary applications

Many features or big operations are common

A systematic treatement of the infrastructure

Yves Bertot Big operations

Notations

Special cases \sum (i < n) f i, \prod (j <= k < n) g i

well typed if f g : nat -> nat, f : ’I n -> nat

Possibility to filter \sum (i < n | odd i) f i

Ways to choose the operator and starting value
\big[op/id] (i < n | P i) f i

\sum (i < | odd i) f i =

\big[addn/0] (i < n | odd i) f i

Yves Bertot Big operations

Ranges

\sum (i < n) F i

the type of i in F i is ’I n : this brings information
The elements are taken in increasing order

\sum (i < n | P i) F i

\sum (i \in odd5) F i if odd5 is a collective predicate on
a finite type

\prod i F i if the domain of F is a finite type

\sum (m <= i < n) F i

\big[op/v] (i <- s) F i

Finite types, intervals, and sequences come with a natural
order

Yves Bertot Big operations

Plain operators

Some theorems don’t rely on any property from the operator

Empty ranges : big nil, big ord0, big geq

Predicate not satisfied: big hasC, big pred0

Detaching the leftmost value : big cons, big ltn

Range format switching : big nth

Widening range: big *widen, big *narrow

Exchanging function and predicate : eq big, eq bigl,
eq bigr

Look for section Extensionality in bigop.v

Yves Bertot Big operations

Example

Section test.

Variables (op1 : nat -> nat -> nat) (v : nat).

Lemma cmp_op3 : \big[op1/v]_(1 <= i < 3) i = op1 1 (op1 2 v).

rewrite big_ltn.

===============

op1 1 \big[op1/v]_(2 <= i < 3) i = op1 (op 2 v).

subgoal 2 is: 1 < 3

rewrite big_ltn; last by []

===============

op1 1 (op1 2 \big[op1/v]_(3 <= i < 3) i) = op1 (op2 v)

rewrite big_geq; last by []

op1 1 (op1 2 v) = op1 1 (op1 2 v)

Yves Bertot Big operations

Monoid structures

Cut range in two, start from the right,

big cat, big cat nat

big nat recr, big ord recr, only without filter

Replacing all absent elements with the neutral

big mkcond

big_mkcond : forall ... ,

\big[*%M/1]_(i <- r | P i) F i =

\big[*%M/1]_(i <- r) (if P i then F i else 1).

Yves Bertot Big operations

Example with monoid structures

Lemma s3’ : \sum_(i < 3) i = 3.

rewrite big_ord_recr.

===============

addn_monoid

(\big[addn_monoid/0]_(i < 2)

widen_ord (m:=3) (leqnSn 2) i)

ord_max = 3

rewrite big_ord_recr /=.

===============

\sum_(i < 1) i + 1 + 2 = 3

Yves Bertot Big operations

Abelian structures

Divide arbitrarily, partition, re-order, pick one element

big_split : forall ... (op : Monoid.com_law idx) ...,

\big[op/idx]_(i <- r | P i) op (F1 i) (F2 i) =

op (\big[op/idx]_(i <- r | P i) F1 i)

(\big[op/idx]_(i <- r | P i) F2 i)

Exchange big operations

exchange_big : forall ...,

\big[op/idx]_(i | P i) \big[op/idx]_(j | Q j) F i j =

\big[op/idx]_(j | Q j) \big[op/idx]_(i | P i) F i j.

Yves Bertot Big operations

Example with re-indexing

Lemma sumnP : forall n, \sum_(i < n) i = (n * n.-1) %/2.

suff <- : 2 * \sum_(i < n) i = n * n.-1 by rewrite mulKn.

Continue in a demonstration!!

Yves Bertot Big operations

Distributivity

Distributivity concerns the exchange of two operations

Multiplication by a scalar, but also by a big sum.

(a1,1 + a1,2 + a1,3)(a2,1 + a2,2 + a2,3) =∑
f ∈{1,2,3}{1,2}}

∏
i∈{1,2}

a(i , f (i))

We can range over all functions because it is also a fintype.

Scalar: big distrr, sums: big distr big

Also with dependent choices

Yves Bertot Big operations

Properties

Properties satisfied by elements and preserved by operators
are satisfied

big_prop : forall ... ,

Pb idx ->

(forall x y : R, Pb x -> Pb y -> Pb (op1 x y)) ->

(forall i : I, P i -> Pb (F i)) ->

Pb (\big[op1/idx]_(i <- r | P i) F i)

Similar theorem big rel to relate two big operations

Advised use: elim/big prop: and elim/big rel:

Caveat: the name of these theorems will change in future
versions of SSReflect.

Yves Bertot Big operations

Morphisms

When phi is a morphism between two monoid structures

big_morph: forall ... ,

{morph phi : x y / op1 x y >-> op2 x y} ->

phi idx1 = idx2 ->

phi (\big[op1/idx1]_(i <- r | P i) F i) =

\big[op2/idx2]_(i <- r | P i) phi (F i)

Demonstration if time allows

Yves Bertot Big operations

think big

Available for any list, binary operation, and value

Specific theorems require specific properties

big nat recr requires associativity

Properties are attached to operators using canonical
structures

For associativity: Monoid.law.
Canonical Structure op2Mon : Monoid.law 0 :=

Monoid.Law op2A op20n op2n0.
op2A, op20n and op2n0 would have to be proofs that some
operation (op2) is associative and that some element (0) is left
neutral and right neutral for this operation.

Demonstration if time allows.

Yves Bertot Big operations

