
L
ON FORMALIZATION OF
SPRING SCH

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH
MATHEMATICS 2012

MAP INTERNATIONAL

Canonical Structures

Assia Mahboubi
13 March 2012

Comprehension

Collections of objects satisfying a common requirement P are
usually denoted by:

{x | P(x) holds}

Examples:

I {n | n is smaller than m}
I {l | l is duplicate-free}
I ...

Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

I The first component of t is a natural number n;

I The second component of t is a proof that n < 5.

This is called a dependent pair since:
(the type of) the second component depends on the first.

Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

In Coq this can be defined as:

Inductive I5 :=

Ordinal5 : forall m : nat, m < 5 -> I5.

which is exactly the same as:

Inductive I5 := Ordinal5 m of (m < 5).

Dependent pairs

This is the definition of the type:

Inductive I5 := Ordinal5 m of (m < 5).

This is an example of definition of one of its elements:

Variables (x : nat)(px5 : x < 5).

Definition i5x : I5 := @Ordinal5 x px5.

Finite ordinals

The type ordinal of finite ordinals is defined as:

Inductive ordinal (n : nat) := Ordinal m of m < n

and (ordinal n) models the natural numbers smaller that n.

Equality of dependent pairs

{n : nat | n < 5}

I An inhabitant tn of this type is a pair (n, pn)

I Comparing two inhabitants t1 and t2 means comparing
them component-wise:

t1 = t2 iff (n1 = n2) ∧ (pn1 = pn2)

I The proof component should be irrelevant here.

But in Coq this is not true in general...

Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.

I p2 : (n2 < 5) = true.
I .

Comparing inhabitants of the rich type boils down to
comparing the values.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.

I p2 : (n2 < 5) = true.
I .

Comparing inhabitants of the rich type boils down to
comparing the values.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.
I p2 : (n2 < 5) = true.
I p1 : (n1 < 5) = true .

Comparing inhabitants of the rich type boils down to
comparing the values.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.
I p2 : (n2 < 5) = true.
I p1 : (n2 < 5) = true.

Comparing inhabitants of the rich type boils down to
comparing the values.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.
I p2 : (n2 < 5) = true.
I p1 : (n2 < 5) = true.

Using the theorem, we prove that p1 = p2 and hence t1 = t2.

Comparing inhabitants of the rich type boils down to
comparing the values.

Infrastructure

Dependent pairs of type:
{x : T | P x} where P : T -> bool

are hence of special interest because of this nice property of
type bool.

In the library, there is a special infrastructure for types that
can be seen as {x : T | P x}, called subType.

More than pairs

How to deal with the abstract algebra like abstractions, as in:

“Let G be a semi-group.”

meaning:
G is a set equipped with an associative binary operation.

Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

In Coq, record types generalize the previous dependent pairs

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.
I semiGroup is the name of the type

I SemiGroup is the name of the constructor

The constructor builds new objects of type semiGroup.

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.
I semiGroup is the name of the type

I SemiGroup is the name of the constructor

The constructor builds new objects of type semiGroup.

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.
I semiGroup is the name of the type

I SemiGroup is the name of the constructor

The constructor builds new objects of type semiGroup.

Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

Definition natSemiGroup : semiGroup :=

@SemiGroup nat addn addnA.

Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

Definition natSemiGroup : semiGroup :=

SemiGroup addnA.

Record types

dom, binop and binopA are called projections.

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : associative binop

}.

Hence:

I (dom natSemiGroup) is nat

I (binop natSemiGroup) is addn

I (binopA natSemiGroup) is addnA

Record types

dom, binop and binopA are called projections.

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : associative binop

}.

Hence:

I (dom natSemiGroup) is nat

I (binop natSemiGroup) is addn

I (binopA natSemiGroup) is addnA

Records as interfaces

Record types can be used as rich interfaces, in order to
abstract notations and properties shared by the instances.

Let us play with a toy example.

And we quickly meet the limitations of this approach...

Records as interfaces

Record types can be used as rich interfaces, in order to
abstract notations and properties shared by the instances.

Let us play with a toy example.

And we quickly meet the limitations of this approach...

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================

g (if (a == 0) then b else c) = g d

rewrite ha.

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================

g (if (0 == 0) then b else c) = g d

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================

g (if (0 == 0) then b else c) = g d

rewrite hbd.

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

================

g d = g d

Unification

It also happens when the system has to figure out that
terms with holes can be identified (finding a substitution).

a : nat

b : nat

========================

(a + b).+1 - (a + b) = 1

rewrite subSnn.

Lemma subSnn : forall n : nat, n.+1 - n = 1.

Hints for unification

It also happens when the system has to figure out that two
terms with holes can be identified.

a : nat

b : nat

========================

1 = 1

rewrite subSnn.

Lemma subSnn : forall n : nat, n.+1 - n = 1.

Unification

Unification happens when the system has to figure out that
two terms are the same.

c : nat

d : nat

================

c + d = d + c

rewrite addnC.

Lemma addnC : commutative addn.

Definition commutative S T (op : S -> S -> T) :=

forall x y, op x y = op y x.

Unification

Unification happens when the system has to figure out that
two terms are the same.

c : nat

d : nat

================

d + c = d + c

Lemma addnC : commutative addn.

Definition commutative S T (op : S -> S -> T) :=

forall x y, op x y = op y x.

Unification

Back to the previous failure example:

x : nat

y : nat

z : nat

=======================

x + (y + z) = x + y + z

apply: binopA.

binopA : forall s : semiGroup, associative binop

which expands to:

forall (s : semiGroup)(x y z : dom s),

binop s x (binop s x y) = binop s (binop s x y) z

Unification

In order to succeed, the system should find a way to identify:

addn addn addnx (y z) =

binop ? binop ? binop ?x (y z =

(addn x y) z

binop ?(x zy))

Unification

In order to succeed, the system should find a way to identify:

addn addn addnx (y z) =

binop ? binop ? binop ?x (y z =

(addn x y) z

binop ?(x zy))

Unification

In order to succeed, the system should find a way to identify:

addn addn addnx (y z) =

binop ? binop ? binop ?x (y z =

(addn x y) z

binop ?(x zy))

Unification

In order to succeed, the system should find a way to identify:

addn addn addnx (y z) =

binop ? binop ? binop ?x (y z =

(addn x y) z

binop ?(x zy))

hence it should identify:

nat

dom ?

->

->

nat

dom ?

->

->

nat

dom ?

addn :

binop ? :

and

Unification

In order to succeed, the system should find a way to identify:

nat

dom ?

->

->

nat

dom ?

->

->

nat

dom ?

addn :

binop ? :

and

But there is no way to invent such a (? : semiGroup)...

Inference of structures

Let us register the concrete instance we found as a Canonical

instance.

Previously we had:

Definition natSemiGroup : semiGroup :=

SemiGroup addnA.

And now we turn this into:

Canonical natSemiGroup : semiGroup :=

SemiGroup addnA.

Hints for unification
The Canonical data-base provides extra information for
problems involving a record projection:

addn addn addnx (y z) =

binop ? binop ? binop ?x (y z =

(addn x y) z

binop ?(x zy))

The system should identify:

nat

dom ?

->

->

nat

dom ?

->

->

nat

dom ?

addn :

binop ? :

and

But we have registered a canonical solution for this problem:
binop ? ≡ addn ⇒ ? ≡ natSemiGroup

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {

p1 : T1;

p2 : T2;

...}.

Canonical my_instance : my_struct :=

Mystruct my_t1 my_t2

stores the canonical solutions to the unification problems:

p1 ? ≡ my_t1 ⇒ ? ≡ my_struct

p2 ? ≡ my_t2 ⇒ ? ≡ my_struct

. . .

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {

p1 : T1;

p2 : T2;

...}.

Canonical my_instance : my_struct :=

Mystruct my_t1 my_t2

stores the canonical solutions to the unification problems:

p1 ? ≡ my_t1 ⇒ ? ≡ my_struct

p2 ? ≡ my_t2 ⇒ ? ≡ my_struct

. . .

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {

p1 : T1;

p2 : T2;

...}.

Canonical my_instance : my_struct :=

Mystruct my_t1 my_t2

stores the canonical solutions to the unification problems:

p1 ? ≡ my_t1 ⇒ ? ≡ my_struct

p2 ? ≡ my_t2 ⇒ ? ≡ my_struct

. . .

From the library: the eqType structure

Structure eqType := EqType {

sort : Type;

eq_op : sort -> sort -> bool;

_ : forall x y, reflect (x = y) (eq_op x y)}.

Notation "x == y" := (eq_op x y).

This makes the notation (_ == _) available and shared by all
the declared instances of eqType.

Combining structures

A Canonical declaration can also consist in a generic pattern
for the construction of new instances from generic ones:

I The type of pairs of eqType has a canonical structure of
eqType

I The type of lists of eqType has a canonical structure of
eqType

I ...

Canonical instances of a structure share notations and theory.

Conclusion

I record types are used as interfaces

I unification and hence type inference can be aided by the
canonical structures mechanism.

I in fact you can program this like in a prolog engine

I it is a very powerful mean of generic programming inside
the proof assistant

I see tomorrow lessons on big operations and the algebraic
hierarchy

