Canonical Structures

Assia Mahboubi
13 March 2012

MAP INTERNATIONAL
SPRING SCH@OL

ON FORMALIZATION OF
MATHEMATICS 2012

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH

Comprehension

Collections of objects satisfying a common requirement P are
usually denoted by:

{x | P(x) holds}
Examples:
» {n | nis smaller than m}
» {I'| Iis duplicate-free}

> ...

Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

» The first component of t is a natural number n;

» The second component of t is a proof that n < 5.

This is called a dependent pair since:
(the type of) the second component depends on the first.

Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

In Coq this can be defined as:

Inductive I5 :=
Ordinal5 : forall m : nat, m < 5 -> I5.

which is exactly the same as:

Inductive I5 := Ordinal5 m of (m < 5).

Dependent pairs

This is the definition of the type:
Inductive I5 := Ordinal5 m of (m < 5).

This is an example of definition of one of its elements:

Variables (x : nat)(px5 : x < 5).

Definition ibx : I5 := @O0rdinalb x px5.

Finite ordinals

The type ordinal of finite ordinals is defined as:
Inductive ordinal (n : nat) := Ordinal m of m < n

and (ordinal n) models the natural numbers smaller that n.

Equality of dependent pairs

{n : nat|n<5}

» An inhabitant t, of this type is a pair (n, p,)

» Comparing two inhabitants t; and t, means comparing
them component-wise:

ti =1t iff (n=m)A(pn = pPn,)
» The proof component should be irrelevant here.

But in Coq this is not true in general...

Equality of boolean values

Fortunately, we can prove the theorem for bool:

Vixy : bool) (prp2 : x=1y), pp=p2

And now:

» In the library (n < 5) has type bool.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

Vixy : bool) (prp2 : x=1y), pp=p2

And now:
» In the library (n < 5) has type bool.
» Now the sigma type is: {n : nat | (n <5) = true}

Equality of boolean values

Fortunately, we can prove the theorem for bool:

Vixy : bool) (prp2 : x=1y), pp=p2

And now:
» In the library (n < 5) has type bool.
» Now the sigma type is: {n : nat | (n <5) = true}

» Compare (ny, p1) with (ny, py) when ny = ns.
» p2 o (m<5) = true.
» p1 (M <5) = true.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

Vixy : bool) (prp2 : x=1y), pp=p2

And now:
» In the library (n < 5) has type bool.
» Now the sigma type is: {n : nat | (n <5) = true}

» Compare (ny, p1) with (ny, py) when ny = ns.
» p2 o (m<5) = true.
» p1 (M <bB) = true.

Equality of boolean values

Fortunately, we can prove the theorem for bool:

V(xy : bool) (p1p2 : x=y), pr=p>

And now:
» In the library (n < 5) has type bool.
» Now the sigma type is: {n : nat | (n <5) = true}

» Compare (ny, p1) with (na, p2) when ny = n,.
» p2 (M <b) = true.
» p1 o (m<5) = true.

Using the theorem, we prove that p; = p, and hence t; = t,.

Comparing inhabitants of the rich type boils down to
comparing the values.

Infrastructure

Dependent pairs of type:

{x : T | P x}whereP : T -> bool
are hence of special interest because of this nice property of
type bool.

In the library, there is a special infrastructure for types that
can beseenas {x : T | P x}, called subType.

More than pairs

How to deal with the abstract algebra like abstractions, as in:
“Let G be a semi-group.”

meaning:
G is a set equipped with an associative binary operation.

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z
.

In Coq, record types generalize the previous dependent pairs

Record types

Structure _ := SemiGroup {

dom : Type;
binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z

» semiGroup is the name of the type

Record types

Structure semiGroup := _ {
dom : Type;
binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z

» semiGroup is the name of the type

» SemiGroup is the name of the constructor

Record types

Structure semiGroup := _ {
dom : Type;
binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z

» semiGroup is the name of the type

» SemiGroup is the name of the constructor

The constructor builds new objects of type semiGroup.

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z

Definition natSemiGroup : semiGroup :=
0SemiGroup nat addn addnA.

Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;
binopA : forall x y z : dom,
binop x (binop y z) = binop (binop x y) z

Definition natSemiGroup : semiGroup :=
SemiGroup addnA.

Record types

dom, binop and binopA are called projections.

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;

binopA : associative binop

T

Record types

dom, binop and binopA are called projections.

Structure semiGroup := SemiGroup {
dom : Type;
binop : dom -> dom -> dom;
binopA : associative binop
T
Hence:
» (dom natSemiGroup) is nat
» (binop natSemiGroup) is addn

» (binopA natSemiGroup) is addnA

Records as interfaces

Record types can be used as rich interfaces, in order to
abstract notations and properties shared by the instances.

Let us play with a toy example.

Records as interfaces

Record types can be used as rich interfaces, in order to
abstract notations and properties shared by the instances.

Let us play with a toy example.

And we quickly meet the limitations of this approach...

Unification

Unification happens when the system has to figure out that

two terms are the same.

g : nat -> nat
C . nat
d : nat

g (if (a == 0) then b else ¢c) =g d

rewrite ha.

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat
C . nat
d : nat

g (if (0 == 0) then b else c) =g d

Unification

Unification happens when the system has to figure out that

two terms are the same.

g : nat -> nat
C . nat
d : nat

g (if (0 == 0) then b else c) =g d

rewrite hbd.

Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat
C . nat
d : nat

Unification

It also happens when the system has to figure out that
terms with holes can be identified (finding a substitution).

a : nat

b : nat .
rewrite subSnn.

(a+Db).+1 - (a+Db) =1

Lemma subSnn : forall m : nmat, n.+1 - n = 1.

Hints for unification

It also happens when the system has to figure out that two
terms with holes can be identified.

a nat
b : nat

rewrite subSnn.
1 =1

Lemma subSnn : forall n : nat, n.+1 - n = 1.

Unification

Unification happens when the system has to figure out that
two terms are the same.

C : nat

d : nat
rewrite addnC.

c+d=d+c
Lemma addnC : commutative addn.

Definition commutative ST (op : S -> S -> T) :=
forall x y, op Xy = op y X.

Unification

Unification happens when the system has to figure out that
two terms are the same.

C : nat
d : nat

d+c=d+c
Lemma addnC : commutative addn.

Definition commutative ST (op : S -> S -> T) :=
forall x y, op Xy = op y X.

Unification

Back to the previous failure example:

X : nat
y : nat
z . nat apply: binopA.

x+(y+z)=x+y+z

binopA : forall s : semiGroup, associative binop
which expands to:

forall (s : semiGroup)(x y z : dom s),
binop s x (binop s x y) = binop s (binop s x y) z

Unification

In order to succeed, the system should find a way to identify:

addn x (addn y z)

addn (addn X y) z

binop ? x (binop ? y z) binop ? (binop ? x y) z

Unification

In order to succeed, the system should find a way to identify:

addn x (addn y z) = addn (addn X y) z

binop ? x (binop ? 'y | z) binop ? (binop ? 'x y) =z

Unification

In order to succeed, the system should find a way to identify:

() = ()
() = ()

DA

Unification

In order to succeed, the system should find a way to identify:

() ()
() ()

hence it should identify:
nat -> nat ->

nat
and

dom 7 -> dom ? -> dom 7

it
N)
yel
Q

Unification

In order to succeed, the system should find a way to identify:

addn : nat -> nat -> nat

and

binop 7 : dom ? -> dom ? -> dom ?

But there is no way to invent such a (? : semiGroup)...

Inference of structures

Let us register the concrete instance we found as a Canonical
instance.

Previously we had:

Definition natSemiGroup : semiGroup :=
SemiGroup addnA.

And now we turn this into:

Canonical natSemiGroup : semiGroup :=
SemiGroup addnA.

Hints for unification

problems involving a record projection:

() = ()
() = ()

The Canonical data-base provides extra information for

The system should identify:

nat ->
and

dom ? -> dom ? -> dom 7
But we have registered a canonical solution for this problem
binop 7 = addn

=

? = natSemiﬁ_]GrOL_lp

DA

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {
pl : T1;

p2 : T2;

X

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {
pl : T1;

p2 : T2;

X

Canonical my_instance : my_struct :=
Mystruct my_tl my_t2

Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {
pl : T1;

p2 : T2;

X

Canonical my_instance : my_struct :=
Mystruct my_tl my_t2
stores the canonical solutions to the unification problems:

pl 7=my_tl = 7 =nmy_struct
P2 ?7=my_t2 = 7 =my_struct

From the library: the eqType structure

Structure eqType := EqType {

sort : Type;

eq_op : sort -> sort -> bool;

_ & forall x y, reflect (x = y) (eq_op x y)}.

Notation "x == y" := (eq_op x y).

This makes the notation (_ == _) available and shared by all
the declared instances of eqType.

Combining structures

A Canonical declaration can also consist in a generic pattern
for the construction of new instances from generic ones:

» The type of pairs of eqType has a canonical structure of
eqlype

» The type of lists of eqType has a canonical structure of
eqType

> ...

Canonical instances of a structure share notations and theory.

Conclusion

» record types are used as interfaces

» unification and hence type inference can be aided by the
canonical structures mechanism.

» in fact you can program this like in a prolog engine

» it is a very powerful mean of generic programming inside
the proof assistant

» see tomorrow lessons on big operations and the algebraic
hierarchy

