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Comprehension

Collections of objects satisfying a common requirement P are
usually denoted by:

{x | P(x) holds}

Examples:

I {n | n is smaller than m}
I {l | l is duplicate-free}
I ...



Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

I The first component of t is a natural number n;

I The second component of t is a proof that n < 5.

This is called a dependent pair since:
(the type of) the second component depends on the first.



Dependent pairs

In order to model: {n : nat | n < 5}, we forge a type
whose elements t are pairs:

In Coq this can be defined as:

Inductive I5 :=

Ordinal5 : forall m : nat, m < 5 -> I5.

which is exactly the same as:

Inductive I5 := Ordinal5 m of (m < 5).



Dependent pairs

This is the definition of the type:

Inductive I5 := Ordinal5 m of (m < 5).

This is an example of definition of one of its elements:

Variables (x : nat)(px5 : x < 5).

Definition i5x : I5 := @Ordinal5 x px5.



Finite ordinals

The type ordinal of finite ordinals is defined as:

Inductive ordinal (n : nat) := Ordinal m of m < n

and (ordinal n) models the natural numbers smaller that n.



Equality of dependent pairs

{n : nat | n < 5}

I An inhabitant tn of this type is a pair (n, pn)

I Comparing two inhabitants t1 and t2 means comparing
them component-wise:

t1 = t2 iff (n1 = n2) ∧ (pn1 = pn2)

I The proof component should be irrelevant here.

But in Coq this is not true in general...



Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.

I p2 : (n2 < 5) = true.
I .

Comparing inhabitants of the rich type boils down to
comparing the values.
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Equality of boolean values

Fortunately, we can prove the theorem for bool:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

And now:

I In the library (n < 5) has type bool.

I Now the sigma type is: {n : nat | (n < 5) = true}

I Compare (n1, p1) with (n2, p2) when n1 = n2.
I p2 : (n2 < 5) = true.
I p1 : (n2 < 5) = true.

Using the theorem, we prove that p1 = p2 and hence t1 = t2.

Comparing inhabitants of the rich type boils down to
comparing the values.



Infrastructure

Dependent pairs of type:
{x : T | P x} where P : T -> bool

are hence of special interest because of this nice property of
type bool.

In the library, there is a special infrastructure for types that
can be seen as {x : T | P x}, called subType.



More than pairs

How to deal with the abstract algebra like abstractions, as in:

“Let G be a semi-group.”

meaning:
G is a set equipped with an associative binary operation.



Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

In Coq, record types generalize the previous dependent pairs



Record types

Structure semiGroup := SemiGroup {
dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.
I semiGroup is the name of the type

I SemiGroup is the name of the constructor

The constructor builds new objects of type semiGroup.
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Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

Definition natSemiGroup : semiGroup :=

@SemiGroup nat addn addnA.



Record types

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : forall x y z : dom,

binop x (binop y z) = binop (binop x y) z

}.

Definition natSemiGroup : semiGroup :=

SemiGroup addnA.



Record types

dom, binop and binopA are called projections.

Structure semiGroup := SemiGroup {

dom : Type;

binop : dom -> dom -> dom;

binopA : associative binop

}.

Hence:

I (dom natSemiGroup) is nat

I (binop natSemiGroup) is addn

I (binopA natSemiGroup) is addnA
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Records as interfaces

Record types can be used as rich interfaces, in order to
abstract notations and properties shared by the instances.

Let us play with a toy example.

And we quickly meet the limitations of this approach...
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Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================

g (if (a == 0) then b else c) = g d

rewrite ha.



Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================
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Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

=================================

g (if (0 == 0) then b else c) = g d

rewrite hbd.



Unification

Unification happens when the system has to figure out that
two terms are the same.

g : nat -> nat

c : nat

d : nat

ha : a = 0

hbd : g b = g d

================

g d = g d



Unification

It also happens when the system has to figure out that
terms with holes can be identified (finding a substitution).

a : nat

b : nat

========================

(a + b).+1 - (a + b) = 1

rewrite subSnn.

Lemma subSnn : forall n : nat, n.+1 - n = 1.



Hints for unification

It also happens when the system has to figure out that two
terms with holes can be identified.

a : nat

b : nat

========================

1 = 1

rewrite subSnn.

Lemma subSnn : forall n : nat, n.+1 - n = 1.



Unification

Unification happens when the system has to figure out that
two terms are the same.

c : nat

d : nat

================

c + d = d + c

rewrite addnC.

Lemma addnC : commutative addn.

Definition commutative S T (op : S -> S -> T) :=

forall x y, op x y = op y x.



Unification

Unification happens when the system has to figure out that
two terms are the same.

c : nat

d : nat

================

d + c = d + c

Lemma addnC : commutative addn.

Definition commutative S T (op : S -> S -> T) :=

forall x y, op x y = op y x.



Unification

Back to the previous failure example:

x : nat

y : nat

z : nat

=======================

x + (y + z) = x + y + z

apply: binopA.

binopA : forall s : semiGroup, associative binop

which expands to:

forall (s : semiGroup)(x y z : dom s),

binop s x (binop s x y) = binop s (binop s x y) z



Unification

In order to succeed, the system should find a way to identify:

addn addn addnx ( y z ) =

binop ? binop ? binop ?x ( y z =

(addn x y ) z

binop ?( x zy ))
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In order to succeed, the system should find a way to identify:

addn addn addnx ( y z ) =

binop ? binop ? binop ?x ( y z =

(addn x y ) z

binop ?( x zy ))

hence it should identify:
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Unification

In order to succeed, the system should find a way to identify:

nat

dom ?

->

->

nat

dom ?

->

->

nat

dom ?

addn :

binop ? :

and

But there is no way to invent such a (? : semiGroup)...



Inference of structures

Let us register the concrete instance we found as a Canonical

instance.

Previously we had:

Definition natSemiGroup : semiGroup :=

SemiGroup addnA.

And now we turn this into:

Canonical natSemiGroup : semiGroup :=

SemiGroup addnA.



Hints for unification
The Canonical data-base provides extra information for
problems involving a record projection:

addn addn addnx ( y z ) =

binop ? binop ? binop ?x ( y z =

(addn x y ) z

binop ?( x zy ))

The system should identify:

nat

dom ?

->

->

nat

dom ?

->

->

nat

dom ?

addn :

binop ? :

and

But we have registered a canonical solution for this problem:
binop ? ≡ addn ⇒ ? ≡ natSemiGroup



Hints for unification

The Canonical data-base provides extra information for
problems involving a record projection:

Structure my_struct := MyStruct {

p1 : T1;

p2 : T2;

...}.

Canonical my_instance : my_struct :=

Mystruct my_t1 my_t2 ....

stores the canonical solutions to the unification problems:

p1 ? ≡ my_t1 ⇒ ? ≡ my_struct

p2 ? ≡ my_t2 ⇒ ? ≡ my_struct

. . .
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From the library: the eqType structure

Structure eqType := EqType {

sort : Type;

eq_op : sort -> sort -> bool;

_ : forall x y, reflect (x = y) (eq_op x y)}.

Notation "x == y" := (eq_op x y).

This makes the notation (_ == _) available and shared by all
the declared instances of eqType.



Combining structures

A Canonical declaration can also consist in a generic pattern
for the construction of new instances from generic ones:

I The type of pairs of eqType has a canonical structure of
eqType

I The type of lists of eqType has a canonical structure of
eqType

I ...

Canonical instances of a structure share notations and theory.



Conclusion

I record types are used as interfaces

I unification and hence type inference can be aided by the
canonical structures mechanism.

I in fact you can program this like in a prolog engine

I it is a very powerful mean of generic programming inside
the proof assistant

I see tomorrow lessons on big operations and the algebraic
hierarchy


