
L
ON FORMALIZATION OF
SPRING SCH

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH
MATHEMATICS 2012

MAP INTERNATIONAL

Reflection & Views

Pierre-Yves Strub
13 March 2012

The Prop / bool duality

SSreflect slogan:

1. write boolean predicates reflecting decidable propositions,

2. use an interleaving of computation steps and deduction
step.

Outline

Changing the point of view (apply/V, case/V)

Boolean reflection (reflect, apply: (iffP V))

Boolean equivalence (apply/V1/V2)

Alternate induction principle (elim/V)

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

move=> a h; move: (P2Q _ h); move=> {h} h

P : T -> Prop

Q : T -> Prop

P2Q : forall x, P x -> Q x

===========================

forall a, P a -> G

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

move=> a h; move: (P2Q _ h); move=> {h} h

P : T -> Prop

Q : T -> Prop

P2Q : forall x, P x -> Q x

a : T

h : P a

===========================

G

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

move=> a h; move: (P2Q _ h); move=> {h} h

P : T -> Prop

Q : T -> Prop

P2Q : forall x, P x -> Q x

a : T

h : P a

===========================

Q a -> G

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

move=> a h; move: (P2Q _ h); move=> {h} h

P : T -> Prop

Q : T -> Prop

P2Q : forall x, P x -> Q x

a : T

h : Q a

===========================

G

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

The tactic move/V: h => h does the same: it applies the
correspondence lemma V (a view lemma) to assumption h.

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

The tactic move/V: h => h does the same: it applies the
correspondence lemma V (a view lemma) to assumption h.

move/P2Q: h => h

...

a : T

h : P a

================

G

Changing the point of view
For assumptions

Interpreting an assumption is applying a correspondence
lemma before generalizing it or doing a case analysis.

The tactic move/V: h => h does the same: it applies the
correspondence lemma V (a view lemma) to assumption h.

move/P2Q: h => h

...

a : T

h : P a

================

G

...

a : T

h : Q a

================

G

Changing the point of view
For assumptions

Views are applied modulo view hints. For instance, for double
implications, the two following view hints are predefined:

I iffLR : forall P Q, (P <-> Q)-> P -> Q

I iffRL : forall P Q, (P <-> Q)-> Q -> P

Changing the point of view
For assumptions

Views are applied modulo view hints. For instance, for double
implications, the two following view hints are predefined:

I iffLR : forall P Q, (P <-> Q)-> P -> Q

I iffRL : forall P Q, (P <-> Q)-> Q -> P

move/P2Q: h => h

...

P2Q :

forall x, P x <-> Q x

a : T

h : P a

=========================

G

Changing the point of view
For assumptions

Views are applied modulo view hints. For instance, for double
implications, the two following view hints are predefined:

I iffLR : forall P Q, (P <-> Q)-> P -> Q

I iffRL : forall P Q, (P <-> Q)-> Q -> P

move/P2Q: h => h [move/(iffLR (P2Q _))]

...

P2Q :

forall x, P x <-> Q x

a : T

h : P a

=======================

G

...

P2Q :

forall x, P x <-> Q x

a : T

h : Q a

=======================

G

Changing the point of view
For assumptions

Views can be applied before doing a case analysis.

Changing the point of view
For assumptions

Views can be applied before doing a case analysis.

case/V: h

...

P : nat -> Prop

Q : nat -> Prop

V : forall n, Q n ->

(P n) \/ (P n.+1)

a : nat

h : Q a

=========================

G

Changing the point of view
For assumptions

Views can be applied before doing a case analysis.

case/V: h

...

P : nat -> Prop

Q : nat -> Prop

V : forall n, Q n ->

(P n) \/ (P n.+1)

a : nat

h : Q a

=========================

G

...

h : Q a

===============

P a -> G

...

h : Q a

================

P a.+1 -> G

Changing the point of view
For goals

Finally, a view can be applied to a goal using the apply/V

tactic.

Changing the point of view
For goals

Finally, a view can be applied to a goal using the apply/V

tactic.

apply/PQ

P : Prop

Q : Prop

P2Q : P <-> Q

================

P

Changing the point of view
For goals

Finally, a view can be applied to a goal using the apply/V

tactic.

apply/PQ [apply: (iffRL P2Q)]

P : Prop

Q : Prop

P2Q : P <-> Q

================

P

P : Prop

Q : Prop

P2Q : P <-> Q

================

Q

Changing the point of view
Specialization

move/(_ x1 .. xn)=> h specializes the introduced
hypothesis by applying x1 .. xn to it.

Changing the point of view
Specialization

move/(_ x1 .. xn)=> h specializes the introduced
hypothesis by applying x1 .. xn to it.

move/(_ x)=> h

P : nat -> Prop

x : nat

=========================

(forall n, P (2 * n)) -> G

Changing the point of view
Specialization

move/(_ x1 .. xn)=> h specializes the introduced
hypothesis by applying x1 .. xn to it.

move/(_ x)=> h

P : nat -> Prop

x : nat

=========================

(forall n, P (2 * n)) -> G

P : nat -> Prop

x : nat

h : P (2 * x)

=================

G

Outline

Changing the point of view (apply/V, case/V)

Boolean reflection (reflect, apply: (iffP V))

Boolean equivalence (apply/V1/V2)

Alternate induction principle (elim/V)

Boolean reflection
Double implication

Boolean reflection is an equivalence property between a
predicate (in Prop) and a boolean predicate:

Lemma andE:

forall b1 b2, (b1 /\ b2) <-> (b1 && b2).

SSreflect uses a dedicated predicate for boolean reflection:

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

Boolean reflection
Double implication

Boolean reflection is an equivalence property between a
predicate (in Prop) and a boolean predicate:

Lemma andE:

forall b1 b2, (b1 /\ b2) <-> (b1 && b2).

SSreflect uses a dedicated predicate for boolean reflection:

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

Boolean reflection
The reflect predicate

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

Boolean reflection
The reflect predicate

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

reflect P b states that P is logically equivalent to
is_true b: an inhabitant of reflect P b is either:

I ReflectT p with p : P and b = true, or

I ReflectF p with p : ~P and b = false.

Boolean reflection for conjunction is expressed as:

Lemma andP: forall b1 b2,

reflect (b1 /\ b2) (b1 && b2).

Boolean reflection
The reflect predicate

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

case: (andP b1 b2)

b1 : bool

b2 : bool

============================

if b1 && b2 then G1 else G2

Boolean reflection
The reflect predicate

Inductive reflect (P : Prop) : bool -> Type :=

| ReflectT : P -> reflect P true

| ReflectF : ~ P -> reflect P false

case: (andP b1 b2) [P = b1 /\ b2]

b1 : bool

b2 : bool

=====================

(b1 /\ b2) -> G1

[b1 && b2 = true]

b1 : bool

b2 : bool

=====================

~(b1 /\ b2) -> G2

[b1 && b2 = false]

Boolean reflection
reflect and views

The reflect predicate is compatible with views.
The view mechanism guesses with direction to use.

case/andP

a : bool

b : bool

=============

a && b -> G

Boolean reflection
reflect and views

The reflect predicate is compatible with views.
The view mechanism guesses with direction to use.

case/andP

a : bool

b : bool

=============

a && b -> G

a : bool

b : bool

=============

a -> b -> G

Boolean reflection
reflect and views

The reflect predicate is compatible with views.
The view mechanism guesses with direction to use.

apply/andP

a : bool

b : bool

=============

a /\ b

Boolean reflection
reflect and views

The reflect predicate is compatible with views.
The view mechanism guesses with direction to use.

apply/andP

a : bool

b : bool

=============

a /\ b

a : bool

b : bool

=============

a && b

Boolean reflection
Some reflect statements

For logical operators:

orP : reflect (b1 \/ b2)(b1 || b2)

andP : reflect (b1 /\ b2)(b1 && b2)

negP : reflect (~ b)(~~ b)

negPf : reflect (b = false)(~~ b)

norP : reflect (~~ b1 \/ ~~ b2)(~~ (b1 && b2))

nandP : reflect (~~ b1 /\ ~~ b2)(~~ (b1 || b2))

Boolean reflection
Some reflect statements

For equalities:

Fixpoint eqn m n :=

match m, n with

| 0 , 0 => true

| m’.+1 , n’.+1 => eqn m’ n’

| _ , _ => false

end.

Lemma eqnP :

forall (n m : nat), reflect (n = m) (eqn n m).

Boolean reflection
Some reflect statements

For equalities (with eqType). Ssreflect comes with a
predefined type for types having a decidable equality.

A type T : eqType comes with boolean predicate eq_op T of
type T -> T -> bool (and written _ == _), along with a
proof of reflection:

eqP T : forall (x y : T), reflect (x = y)(x == y)

Boolean reflection
Some reflect statements

Variable (T : eqType) (p : T -> bool).

Fixpoint all (s : seq T) :=

if s is x :: s’ then a x && all s’ else true.

Fixpoint seqmem (z : T) (s : seq T) :=

if s is x :: s’

then (x == z) || (seqmem z s’)

else false.

Lemma allP:

reflect (forall x, seqmem x s -> p x) (all s).

Boolean reflection
Proving reflect P b

How to prove reflect P b ?

1. By case analysis on B.

Lemma idP: reflect b b.

Proof.

case: b.

apply ReflectT.

apply ReflectF.

Qed.

Boolean reflection
Proving reflect P b

How to prove reflect P b ?

2. Using iffP

Lemma iffP:

reflect P b -> (P -> Q) -> (Q -> P)

-> reflect Q b.

apply: (iffP idP)

P : Prop

Q : Prop

b : bool

============

reflect P b

Boolean reflection
Proving reflect P b

How to prove reflect P b ?

2. Using iffP

Lemma iffP:

reflect P b -> (P -> Q) -> (Q -> P)

-> reflect Q b.

apply: (iffP idP)

P : Prop

Q : Prop

b : bool

============

reflect P b

...

=========

b -> P

...

=========

P -> b

Boolean reflection
reflect as a function

SSreflect provides a coercion elimT from a boolean b to a
proposition P, provided that reflect P b.

Boolean reflection
reflect as a function

SSreflect provides a coercion elimT from a boolean b to a
proposition P, provided that reflect P b.

rewrite (eqP h)

b1 : bool

b2 : bool

h : b1 == b2

============

G b1

Boolean reflection
reflect as a function

SSreflect provides a coercion elimT from a boolean b to a
proposition P, provided that reflect P b.

rewrite (eqP h) [rewrite (elimT eqP) h]

b1 : bool

b2 : bool

h : b1 == b2

============

G b1

b1 : bool

b2 : bool

h : b1 == b2

============

G b2

Outline

Changing the point of view (apply/V, case/V)

Boolean reflection (reflect, apply: (iffP V))

Boolean equivalence (apply/V1/V2)

Alternate induction principle (elim/V)

Interpreting equivalences
apply/V1/V2

From a logical point of view, there is no difference between

I being equal boolean values (b1 = b2), and

I being equivalent (coerced) boolean values (b1 <-> b2).

In practice, using equalities instead of double implication is
preferable as it allows the use of rewrite:

Interpreting equivalences
apply/V1/V2

From a logical point of view, there is no difference between
I being equal boolean values (b1 = b2), and
I being equivalent (coerced) boolean values (b1 <-> b2).

In practice, using equalities instead of double implication is
preferable as it allows the use of rewrite:

leq_eqVlt :

forall m n, (m <= n) = (m == n) || (m < n)

rewrite leq_eqVlt

m : nat

n : nat

================

G && (m <= n)

Interpreting equivalences
apply/V1/V2

From a logical point of view, there is no difference between
I being equal boolean values (b1 = b2), and
I being equivalent (coerced) boolean values (b1 <-> b2).

In practice, using equalities instead of double implication is
preferable as it allows the use of rewrite:

leq_eqVlt :

forall m n, (m <= n) = (m == n) || (m < n)

rewrite leq_eqVlt

m : nat

n : nat

================

G && (m <= n)

m : nat

n : nat

===========================

G && ((m == n) || (m < n))

Interpreting equivalences
apply/V1/V2

apply/V1/V2:

I applies the goals of the form p1 = p2

with p1, p2 boolean expressions,

I transforms the goal into a double implication,

I applies view V1 (resp. V2) to p1 (resp. p2).

Interpreting equivalences
apply/V1/V2

apply/V1/V2:

I applies the goals of the form p1 = p2

with p1, p2 boolean expressions,

I transforms the goal into a double implication,

I applies view V1 (resp. V2) to p1 (resp. p2).

apply/idP/idP

==========

p1 = p2

Interpreting equivalences
apply/V1/V2

apply/V1/V2:

I applies the goals of the form p1 = p2

with p1, p2 boolean expressions,

I transforms the goal into a double implication,

I applies view V1 (resp. V2) to p1 (resp. p2).

apply/idP/idP

==========

p1 = p2

==========

p1 -> p2

==========

p2 -> p1

Interpreting equivalences
apply/V1/V2

apply/norP/idP

b1 b2 b3 : bool

=================

~~(b1 || b2) = b3

Interpreting equivalences
apply/V1/V2

apply/norP/idP

b1 b2 b3 : bool

=================

~~(b1 || b2) = b3

b1 b2 b3 : bool

=================

~~b1 /\ ~~b2 -> b3

b1 b2 b3 : bool

=================

b3 -> ~~b1 /\ ~~b2

Outline

Changing the point of view (apply/V, case/V)

Boolean reflection (reflect, apply: (iffP V))

Boolean equivalence (apply/V1/V2)

Alternate induction principle (elim/V)

Interpreting eliminations
elim/V

elim/V allows to specify an alternative induction principle.

Interpreting eliminations
elim/V

elim/V allows to specify an alternative induction principle.

Standard (uninterpreted) elimination uses the generated
induction principle, derived from the inductive definition.

forall (P : nat -> Prop),

P 0 -> (forall n, P n -> P n.+1) ->

forall n, P n.

Interpreting eliminations
elim/V

elim/V allows to specify an alternative induction principle.

Standard (uninterpreted) elimination uses the generated
induction principle, derived from the inductive definition.

Variables P : nat -> Prop.

elim: n

n : nat

============

P n

Interpreting eliminations
elim/V

elim/V allows to specify an alternative induction principle.

Standard (uninterpreted) elimination uses the generated
induction principle, derived from the inductive definition.

Variables P : nat -> Prop.

elim: n

n : nat

============

P n

============

P 0

============

forall n,

P n -> P n.+1

Interpreting eliminations
elim/V

Stronger induction principle are derivable:

forall (P : nat -> Prop),

(forall n, (forall p, p < n -> P p) -> P n) ->

forall n, P n.

Interpreting eliminations
elim/V

Stronger induction principle are derivable:

forall (P : nat -> Prop),

(forall n, (forall p, p < n -> P p) -> P n) ->

forall n, P n.

Variables P : nat -> Prop.

elim/nat_sind: n

n : nat

============

P n

Interpreting eliminations
elim/V

Stronger induction principle are derivable:

forall (P : nat -> Prop),

(forall n, (forall p, p < n -> P p) -> P n) ->

forall n, P n.

Variables P : nat -> Prop.

elim/nat_sind: n

n : nat

============

P n

===========================

forall n,

(forall p, p < n -> P p) ->

P n

	Changing the point of view (`apply/V`, `case/V`)
	Boolean reflection (`reflect`, `apply: (iffP V)`)
	Boolean equivalence (`apply/V1/V2`)
	Alternate induction principle (`elim/V`)

