SSReflect - Logics & Basic tactics

Laurence Rideau
12 March

MAP INTERNATIONAL
SPRING SCH@OL

ON FORMALIZATION OF
MATHEMATICS 2012

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH

SSR Tactics Structure

SSReflect — Reminder

(SSR = Small Scale Reflection)
SSREFLECT: extension of COQ
o developed while formalizing the Four Color Theorem (2004),
@ now used for the Odd Order Theorem.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

SSReflect — Reminder

(SSR = Small Scale Reflection)
SSREFLECT: extension of COQ
o developed while formalizing the Four Color Theorem (2004),
@ now used for the Odd Order Theorem.

Changes with standard CoQ:

@ Vernacular (Commands) and Gallina are mostly unchanged
(e.g., Definition, Lemma, forall, match with);

@ standard tactics are still available
@ some tactics are superseded (e.g., apply, rewrite)

@ new libraries are provided (e.g., nat, seq)

Laurence Rideau SSReflect - Logics & Basic tactics

o Simplify and generalize the syntax of tactics.

SSR Tactics Structure

Design Decisions

@ Simplify and generalize the syntax of tactics.

@ Add some ways to structure the scripts,
so that breakages are easier to understand.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Design Decisions

@ Simplify and generalize the syntax of tactics.

@ Add some ways to structure the scripts,
so that breakages are easier to understand.

@ Force the user to explicitly name things.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Design Decisions

@ Simplify and generalize the syntax of tactics.

@ Add some ways to structure the scripts,
so that breakages are easier to understand.

@ Force the user to explicitly name things.

@ Ease the use of boolean reflection.

Laurence Rideau SSReflect - Logics & Basic tactics

© Logics

© Tactics, Tacticals

© Proof Structure

© Logics
@ First Order Logic
@ Booleans

© Tactics, Tacticals

© Proof Structure

SSR Tactics Structure FOL Bool

Minimal Propositional Logic

Propositional variables: P Q R ...

Propositions: (even 4) (x < 10) (7 <= 2)
Implication: ->

Formulas: (P -=> Q) -> (Q -> R) -> P -> R

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic

@ Propositional variables: P Q R ...

@ Propositions: (even 4) (x < 10) (7 <= 2)
@ Implication: ->

e Formulas: (P -=> Q) -> (Q -=> R) -> P -> R
@ Propositional are of sort Prop : (P : Prop).

@ Declaring variables: Variables P Q R :Prop.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic

@ Propositional variables: P Q R ...

@ Propositions: (even 4) (x < 10) (7 <= 2)
@ Implication: ->

e Formulas: (P -=> Q) -> (Q -=> R) -> P -> R
@ Propositional are of sort Prop : (P : Prop).

@ Declaring variables: Variables P Q R :Prop.

@ Any term of type P (p : P) is a proof of P.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

State and Proof a theorem

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

State and Proof a theorem

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

P Prop 1 amed hypotheses (Context)
Q : Prop
R : Prop

(P—Q)—(Q —R)— P— R }current goal
—

Assumptions Conclusion

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

State and Proof a theorem

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

P Prop 1 amed hypotheses (Context)
Q : Prop
R : Prop

(P—Q)—(Q —R)— P— R }current goal
—

Assumptions Conclusion

Tactic: any operation that allows the simplification, decomposition
into subgoals, or resolution of a goal.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq.

P : Prop
Q : Prop
R : Prop
Hpq : (P — Q)

(R—R)—P—=R

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

P : Prop

Q : Prop

R : Prop
Hpq : (P — Q)
Hgr : (Q — R)
p:P

R

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.

P : Prop

Q : Prop

R : Prop

Hpq: (P — Q)
p:P

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.
apply: (Hpq).

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.

apply: Hpq.
exact: p.

Proof completed.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.
exact: (Hpq p).

Proof completed.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

apply: Hqr.
exact: (Hpq p).
Qed.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) -> P ->R

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) -> P ->R
e as a goal: move=>P Q R.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) -> P ->R
e as a goal: move=>P Q R.
e as an hypothesis named H:
apply:H. apply: (H A B). or...

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) ->P >R
e as a goal: move=>P Q R.
e as an hypothesis named H:
apply:H. apply: (H A B). or...
@ forall n:nat, 0 <= n

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) ->P >R
e as a goal: move=>P Q R.
e as an hypothesis named H:
apply:H. apply: (H A B). or...
@ forall n:nat, 0 <= n

@ move=>n.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

@ forall (P Q R :Prop), (P ->Q)->(Q ->R) ->P >R
e as a goal: move=>P Q R.
e as an hypothesis named H:
apply:H. apply: (H A B). or...
@ forall n:nat, 0 <= n
@ move=>n.
e apply: H. apply: (H a).

Laurence Rideau SSReflect - Logics & Basic tactics

o Conjunction : A /\'B

SSR Tactics Structure FOL Bool

Propositional Logic, Conjunction

e Conjunction : A /\'B
e case: ab. (x Break the (ab :A /\ B) hypothesis x)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Conjunction

e Conjunction : A /\'B
e case: ab. (x Break the (ab :A /\ B) hypothesis x)

ab : A /\'B
_ab A /ND N
G A->B ->G

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Conjunction

e Conjunction : A /\'B
e case: ab. (x Break the (ab :A /\ B) hypothesis *)

ab : A /\B
s a————] —
G A->B -—>G
e split. (% Prove a conjunction :A /\B x)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Conjunction

e Conjunction : A /\'B
e case: ab. (x Break the (ab :A /\ B) hypothesis x)

ab : A /\B
s a————] —
G A->B -—>G
e split. (% Prove a conjunction :A /\B x)

L/\B & B

Laurence Rideau SSReflect - Logics & Basic tactics

@ Disjunction : A \/B

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

@ Disjunction : A \/B
e case: ab. (x Break the (ab :A \/ B) hypothesis *)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

@ Disjunction : A \/B
e case: ab. (x Break the (ab :A \/ B) hypothesis *)

ab : A \/B
————— —
G A->aG B ->G

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

@ Disjunction : A \/B
e case: ab. (x Break the (ab :A \/ B) hypothesis *)

ab : A \/B
————— —
G A->aG B ->G

e left. (* Prove a disjunction :A \/ B %)
(* by choosing the left part *)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

@ Disjunction : A \/B
e case: ab. (x Break the (ab :A \/ B) hypothesis *)

ab : A \/B
————— —
G A->aG B ->G

e left. (* Prove a disjunction :A \/ B %)
(* by choosing the left part *)

L\/B &

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

@ Disjunction : A \/B
e case: ab. (x Break the (ab :A \/ B) hypothesis *)

ab : A \/B
————— —
G A->aG B ->G

e left. (* Prove a disjunction :A \/ B %)
(* by choosing the left part *)

L\/B &

e right. (% Prove a disjunction :A \/ B %)
(* by choosing the right part *)

Laurence Rideau SSReflect - Logics & Basic tactics

@ Negation : “B

SSR Tactics Structure FOL Bool

Propositional Logic, Negation

@ Negation : "B
e "B is defined as (B ->False)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Negation

@ Negation : "B
e "B is defined as (B ->False)
e move=>B. (* To prove the goal ("B)*)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Negation

@ Negation : "B
e "B is defined as (B ->False)
e move=>B. (* To prove the goal ("B)*)

- b: B
= =
“B False

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Propositional Logic, Negation

@ Negation : "B
e "B is defined as (B ->False)
e move=>B. (* To prove the goal ("B)*)

- b: B

False
o Then apply:H. (xfor a (H :7C) in the context*)

Laurence Rideau SSReflect - Logics & Basic tactics

Existential: exists n:nat, P n

(x P is a predicate on nat (P :nat ->Prop)*)

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n

(* P is a predicate on nat (P :nat ->Prop)x*)

@ exists 2. (*To prove an exists, give a witness *)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n

(* P is a predicate on nat (P :nat ->Prop)x*)

@ exists 2. (*To prove an exists, give a witness *)

_)
exists n:nat, P n P 2

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n

(* P is a predicate on nat (P :nat ->Prop)x*)

@ exists 2. (*To prove an exists, give a witness *)

_)
exists n:nat, P n P 2

@ case: Hex.
(* To break the (Hex:exists n, P n)hypothesis *)
(* combined with (move=>n Hn.)*)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n

(* P is a predicate on nat (P :nat ->Prop)x*)

@ exists 2. (*To prove an exists, give a witness *)

_)
exists n:nat, P n P 2

@ case: Hex.

(* To break the (Hex:exists n, P n)hypothesis *)
(* combined with (move=>n Hn.)*)

n : nat
- Hn : P n

Hex: exists n, P n

G

Laurence Rideau SSReflect - Logics & Basic tactics

© Logics
@ First Order Logic
@ Booleans

© Tactics, Tacticals

© Proof Structure

@ Inductive bool := true | false.

@ Inductive bool := true | false.

° OperatOrS' ” &&n, ” I IH, ” ~~n, n==>n . ” (+)H .

SSR Tactics Structure FOL Bool

Booleans

@ Inductive bool := true | false.

o Operators: "&&", " [|7, "~~", "==>", " (+)".
bl‘bg‘bl&&bz‘blez‘bl ==> bz‘bl(-i-)bz
T| T T T T F
T | F F T F T
F| T F T T T
F|F F F T F

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Booleans
@ Inductive bool := true | false.
o Operators: "&&", " [|", "=~ "==>" " (+)"

@ Some notations
o "[&& bl , b2, .. , bn & c 1"
(b1 && (b2 && .. (bn && c)..))
e "[|l 1, b2, .. ,bn | c]I"
M1 [l M2 1l .. (o Il .. N

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Booleans
@ Inductive bool := true | false.
° Operators: ”&&H , " I IH , "N~ , " ==>H , ”n (+)” .

@ is_true : bool -> Prop.

o fun b : bool => b = true.
o Notation : "x ’is_true’" := (is_true x)

Laurence Rideau SSReflect - Logics & Basic tactics

@ Reason by case on a boolean:
case: a.

SSR Tactics Structure FOL Bool

Booleans in proofs

@ Reason by case on a boolean:

case: a.
a : bool _
b : bool

a ()b = (a && “"b)I| (""a && Db)

b : bool
true (+)b = (true && ~“"b) || (""true && b)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure FOL Bool

Booleans in proofs

@ Reason by case on a boolean:

case: a.
a : bool _
b : bool

a (b= (a & “"p)I| (""a && b)

b : bool
true (+)b = (true && ~“"b) || (""true && b)

b : bool
false (+)b = (false && ~"b) || ("~false && b)

Laurence Rideau SSReflect - Logics & Basic tactics

o Compute, simplify:
rewrite /=.

SSR Tactics Structure FOL Bool

Booleans in proofs(2)

o Compute, simplify:
rewrite /=.

b : bool
true (+)b = (true && ~~ b)|| (77 true && b)

b : bool
" b=""Db || false

Laurence Rideau SSReflect - Logics & Basic tactics

© Logics
@ First Order Logic
@ Booleans

© Tactics, Tacticals

© Proof Structure
@ Forward reasoning
@ Proof control flow
@ Subgoal selectors

SSR Tactics Structure

Tactics / Tacticals

@ Tactic: any operation that allows the simplification,
decomposition into subgoals, or resolution of a goal.

@ Tactical: any function of tactics (eg. ; the composition of
two tactics).

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics and Tacticals

move=>
by
apply:
exact:
case:
elim:

rewrite

Laurence Rideau

SSReflect - Logics & Basic tactics

tactical

SSR Tactics Structure

Introduction Tactic

@ move=>a b c.
pops the top 3 elements of the goal, and
it puts them into the context with names a, b, and c.
@ move=>_.
pops the first top element of the goal, without putting it in
the context.

@ move=>a _ C.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactical by and Tactics apply / exact

@ "by []" tries to solve the current goal by some trivial means;
it fails if it doesn't succeed.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactical by and Tactics apply / exact

@ "by []" tries to solve the current goal by some trivial means;
it fails if it doesn't succeed.

@ "by any_tactic” applies the argument tactic, then tries to
solve the current goal.

@ "apply: H" applies H to the goal.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactical by and Tactics apply / exact

@ "by []" tries to solve the current goal by some trivial means;
it fails if it doesn't succeed.

@ "by any_tactic” applies the argument tactic, then tries to
solve the current goal.

@ "apply: H" applies H to the goal.

i—I:P—>Q —
Q P

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactical by and Tactics apply / exact

"by []" tries to solve the current goal by some trivial means;
it fails if it doesn't succeed.

"by any_tactic” applies the argument tactic, then tries to
solve the current goal.

1

"apply: H' applies H to the goal.

i—I:P—>Q —
Q. P

"exact:H" performs "by apply: H"

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := 0 | S of nat

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := 0 | S of nat
Lemma P_of_n forall n : nat, P n.
move=>n.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := 0 | S of nat
Lemma P_of_n forall n : nat, P n.
move=>n.
case:n.
1. 2.
PO forall n : nat, P (S n)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := 0 | S of nat
Lemma P_of_n forall n : nat, P n.
move=>n.
elim:n.
1. 2.
PO forall n, Pn -> P (S n)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Basic Rewriting tactic

Tactic "rewrite items..." modifies subterms of the goal:

@ "/name" unfolds a definition

@ "—/name” folds a definition

e "term" rewrites (left to right) with a lemma or an hypothesis
which conclusion is an equality

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Basic Rewriting tactic

Tactic "rewrite items..." modifies subterms of the goal:

@ "/name" unfolds a definition

@ "—/name” folds a definition

e "term" rewrites (left to right) with a lemma or an hypothesis
which conclusion is an equality

Eqab:a =b Eqab:a =b
e % e
P a Pb

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Basic Rewriting tactic

Tactic "rewrite items..." modifies subterms of the goal:

@ "/name" unfolds a definition

@ "—/name” folds a definition

e "term" rewrites (left to right) with a lemma or an hypothesis
which conclusion is an equality

Eqab:a =b Eqab:a =b
———— % ————
P a Pb
@ "—term’ rewrites right to left

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.

rewrite —{number}term

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.
rewrite —{number}term

Lemma dbl a b : 2 *x (a + b) = (b + a) + (a + b).

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.
rewrite —{number}term

Lemma dbl a b : 2 *x (a + b) = (b + a) + (a + b).

Proof.
a : nat
b : nat

2% (a+Db)=(+a) + (a+hb)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.
rewrite —{number}term

Lemma dbl a b : 2 *x (a + b) = (b + a) + (a + b).

rewrite -!addnA.
a : nat
b : nat

2% (a+Db)=b+ (a+ (a+Db))

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.
rewrite —{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).
rewrite {2}addnC.

a : nat
b : nat

2% (a+Db)=(+a) + (b+a)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

@ "7": as many times as possible, possibly none,

" oan
!

° : as many times as possible, at least once,

@ "n?": at most n times,

@ "n!": exactly n times.
rewrite —{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).
rewrite -!'addnA {2}addnC.

a : nat
b : nat

2% (a+Db)=(+ (a+ (b+a)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Outline

@ Logics
© Tactics, Tacticals

© Proof Structure
@ Forward reasoning
@ Proof control flow
@ Subgoal selectors

Laurence Rideau SSReflect - Logics & Basic tactics

@ have

e suffices (suff)

SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate_goal
performs a logical cut.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate_goal
performs a logical cut.

Variable f : nat -> nat.
Variable P : nat -> Prop.
Lemma P_of_3: P 3.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate_goal
performs a logical cut.

Variable f : nat -> nat.
Variable P : nat -> Prop.
Lemma P_of_3: P 3.
Proof.

have H: exists x, f x = 3.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate_goal
performs a logical cut.

Variable f : nat -> nat.

Variable P : nat -> Prop.

Lemma P_of_3: P 3.

Proof.

have H: exists x, f x = 3.

1) H: exists x, f x = 3
exists x, £f x = 3 ' P 3

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate_goal
performs a logical cut.

Variable f : nat -> nat.
Variable P : nat -> Prop.

Lemma P_of_3: P 3.

Proof.
have H: exists x, f x = 3.

Tactic "suff" also performs a logical cut, but it produces the two
subgoals in the opposite order.

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Proof control flow

e Tabulation (depending on the number of subgoals number)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Proof control flow

e Tabulation (depending on the number of subgoals number)

e Bullets -, +, *

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Proof control flow

e Tabulation (depending on the number of subgoals number)
o Bullets -, +, *

@ Proof terminators : by , exact:

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

A proof example

Emacs@zeniba-2

RO X 4P X P LW e 0

case El: (abezoutn _ _) => [[]| k1] []| k2]].
- rewrite !muln0 !gexpn0 mulgl => H1.
move/eqP: (sym equal FO); rewrite -H1 ordergl eqn mull.
by case/andP; move/eqP.
- rewrite muln0 gexpn0 mulgl => HI1.
have Fl: t %| t * § k2.+1 - 1.
apply: (@dvdn_trans (orderg x)); first by rewrite FO; exact: dvdn mull.
rewrite orderg_dvd; apply/eqP; apply: (mulgl x).
rewrite -{1}(gexpnl x) mulgl gexpn_add leq_add_sub //.
by move: Pl; case t.
rewrite dvdn_subr in Fl; last by exact: dvdn_mulr.
+ rewrite H1 FO -{2} (mulnl (p "~ 1)); congr (_ * _).
by apply/eqP; rewrite -dvdnl.
+ by move: P1l; case: (t) => [| []| s1]].
- rewrite muln0 gexpn0 mullg => EI.D

-1:-—- f.v All L15 (coqg Holes)

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Subgoal Selectors

@ Solving one subgoal with a single tactic:

e tactic ; first by tactic
e tactic ; last by tactic

Laurence Rideau SSReflect - Logics & Basic tactics

SSR Tactics Structure Forward Control flow Subgoals

Subgoal Selectors

@ Solving one subgoal with a single tactic:

e tactic ; first by tactic
e tactic ; last by tactic

@ Changing the order of subgoals:
o tactic ; first last (or last first)

Laurence Rideau SSReflect - Logics & Basic tactics

	Logics
	First Order Logic
	Booleans

	Tactics, Tacticals
	Proof Structure
	Forward reasoning
	Proof control flow
	Subgoal selectors

