SSReflect - Logics & Basic tactics

Laurence Rideau 12 March

MAP INTERNATIONAL SPRING SCHOOL ON FORMALIZATION OF MATHEMATICS 2012

SOPHIA ANTIPOLIS, FRANCE / 12-16 MARCH

SSReflect - Reminder

(SSR = Small Scale Reflection)

SSREFLECT: extension of COQ

- developed while formalizing the Four Color Theorem (2004),
- now used for the Odd Order Theorem.

SSReflect – Reminder

(SSR = Small Scale Reflection)

SSREFLECT: extension of COQ

- developed while formalizing the Four Color Theorem (2004),
- now used for the Odd Order Theorem.

Changes with standard COQ:

- Vernacular (Commands) and Gallina are mostly unchanged (e.g., Definition, Lemma, forall, match with);
- standard tactics are still available
- some tactics are superseded (e.g., apply, rewrite)
- new libraries are provided (e.g., nat, seq)

• Simplify and generalize the syntax of tactics.

- Simplify and generalize the syntax of tactics.
- Add some ways to structure the scripts, so that breakages are easier to understand.

- Simplify and generalize the syntax of tactics.
- Add some ways to structure the scripts, so that breakages are easier to understand.
- Force the user to explicitly name things.

- Simplify and generalize the syntax of tactics.
- Add some ways to structure the scripts, so that breakages are easier to understand.
- Force the user to explicitly name things.
- Ease the use of boolean reflection.

SSR Tactics Structure

Outline

Outline

- First Order Logic
- Booleans
- 2 Tactics, Tacticals
- Proof Structure

Minimal Propositional Logic

- Propositional variables: P Q R
- Propositions: (even 4) (x < 10) (7 <= 2)
- Implication: ->
- Formulas: (P -> Q) -> (Q -> R) -> P -> R

Minimal Propositional Logic

- Propositional variables: P Q R ...
- Propositions: (even 4) (x < 10) (7 <= 2)
- Implication: ->
- Formulas: (P -> Q) -> (Q -> R) -> P -> R
- Propositional are of sort Prop : (P : Prop).
- Declaring variables: Variables P Q R : Prop.

Minimal Propositional Logic

- Propositional variables: P Q R ...
- Propositions: (even 4) (x < 10) (7 <= 2)
- Implication: ->
- Formulas: (P -> Q) -> (Q -> R) -> P -> R
- Propositional are of sort Prop : (P : Prop).
- Declaring variables: Variables P Q R : Prop.
- Any term of type P (p : P) is a proof of P.

State and Proof a theorem

```
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R. Proof. (* start the proof of a Lemma *)
```

State and Proof a theorem

State and Proof a theorem

Tactic: any operation that allows the simplification, decomposition into subgoals, or resolution of a goal.

```
Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)
```

move=> Hpq.

$$P: Prop$$

$$Q: Prop$$

$$R: Prop$$

$$Hpq: (P \rightarrow Q)$$

$$(Q \rightarrow R) \rightarrow P \rightarrow R$$

```
Theorem command:

Lemma imp_trans : (P -> Q) -> (Q -> R) -> P -> R.

Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

\begin{array}{c}
P: Prop\\Q: Prop\\R: Prop\\Hpq: (P \rightarrow Q)\\Hqr: (Q \rightarrow R)\end{array}
```

p:P R

```
Theorem command:
Lemma imp_trans : (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R.
Proof. (* start the proof of a Lemma *)
move=> Hpq Hqr p.
apply: Hqr.
                        P: Prop
                        Q: Prop
                        R : Prop
                        Hpq: (P \rightarrow Q)
                     \frac{p:P}{Q}
```

```
Theorem command:
Lemma imp_trans : (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R.
Proof. (* start the proof of a Lemma *)
move=> Hpq Hqr p.
apply: Hqr.
apply: (Hpq).
                      P: Prop
                       Q: Prop
                      R: Prop
                      Hpq: (P \rightarrow Q)
                     p : P
                       Ρ
```

```
Theorem command:

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.

Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

apply: Hqr.

apply: Hpq.

exact: p.
```

Proof completed.

```
Theorem command:

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.

Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

apply: Hqr.

exact: (Hpq p).
```

Proof completed.

```
Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)
move=> Hpq Hqr p.
apply: Hqr.
exact: (Hpq p).
Qed.
```

• forall (P Q R :Prop), (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R

Minimal Propositional Logic with universal quantifier

• forall (P Q R :Prop), (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R • as a goal: move=>P Q R.

• forall (P Q R :Prop), (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R • as a goal: move=>P Q R. • as an hypothesis named H: apply: H. apply: (H A B). or ...

• forall (P Q R : Prop), $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R$ • as a goal: move=>P Q R. • as an hypothesis named H: apply: H. apply: (H A B). or ... • forall n:nat, 0 <= n

• forall (P Q R : Prop), $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R$ • as a goal: move=>P Q R. • as an hypothesis named H: apply: H. apply: (H A B). or ... • forall n:nat, 0 <= n • move=>n.

• forall (P Q R : Prop), $(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R$ • as a goal: move=>P Q R. • as an hypothesis named H: apply: H. apply: (H A B). or ... • forall n:nat, 0 <= n • move > n.

• apply: H. apply: (H a).

SSR Tactics Structure

FOL Bool

Propositional Logic, Conjunction

● Conjunction : A /\ B

Propositional Logic, Conjunction

- Conjunction : A /\ B
 - case: ab. (* Break the (ab : A /\ B) hypothesis *)

Propositional Logic, Conjunction

● Conjunction : A /\ B • case: ab. (* Break the (ab : A /\ B) hypothesis *) $\frac{ab : A \land B}{G} \longrightarrow \overline{A \rightarrow B \rightarrow G}$

Propositional Logic, Conjunction

.

• Conjunction :
$$A / B$$

• case: ab. (* Break the (ab : A / B) hypothesis *)

$$\frac{ab : A / B}{G} \rightarrow \frac{A - B - B}{A - B - B} G$$
• split. (* Prove a conjunction : A / B *)

Propositional Logic, Conjunction

Propositional Logic, Disjunction

• Disjunction : $A \setminus B$

Propositional Logic, Disjunction

• Disjunction : A \/ B

```
• case: ab. (* Break the (ab : A \/ B) hypothesis *)
```

SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

• Disjunction : $A \setminus B$ • case: ab. (* Break the (ab : $A \setminus B$) hypothesis *) $\frac{ab : A \setminus B}{G} \rightarrow \frac{A \to G}{A \to G} = B \to G$
Propositional Logic, Disjunction

• Disjunction : $A \setminus B$ • case: ab. (* Break the (ab : $A \setminus B$) hypothesis *) ab : $A \setminus B$ \rightarrow $\overline{A \rightarrow}$ G B -> G G • left. (* Prove a disjunction :A \/ B *) (* by choosing the left part *)

Propositional Logic, Disjunction

• Disjunction : $A \setminus B$ • case: ab. (* Break the (ab : $A \setminus B$) hypothesis *) $ab : A \setminus B$ \rightarrow $\overline{A \rightarrow}$ G B -> G G • left. (* Prove a disjunction :A \/ B *) (* by choosing the left part *)

$$\underline{\qquad} A \setminus B \rightarrow \underline{\qquad} A$$

Propositional Logic, Disjunction

• Disjunction : $A \setminus B$ • case: ab. (* Break the (ab : $A \setminus B$) hypothesis *) ab : A \/ B \rightarrow $\overline{A \rightarrow G}$ B -> G • left. (* Prove a disjunction :A \/ B *) (* by choosing the left part *) $\underline{\blacksquare}$ $A \setminus A \to \underline{\blacksquare}$ • right. (* Prove a disjunction :A \/ B *)

(* by choosing the right part *)

SSR Tactics Structure F

FOL Bool

Propositional Logic, Negation

• Negation : ~B

- Negation : ~B
 - ~B is defined as (B -> False)

- Negation : ~B
 - ~B is defined as (B -> False)
 - move=>B. (* To prove the goal (~B)*)

- Negation : ~B
 - ~B is defined as (B -> False)
 - move=>B. (* To prove the goal (~B)*)

- Negation : ~B
 - ~B is defined as (B -> False)
 - move=>B. (* To prove the goal (~B)*)

FOL Bool

Existential Quantifier

Existential: exists n:nat, P n (* P is a predicate on nat (P :nat ->Prop)*)

Existential Quantifier

Existential: exists n:nat, P n
 (* P is a predicate on nat (P :nat ->Prop)*)
 exists 2. (*To prove an exists, give a witness *)

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n (* P is a predicate on nat (P :nat ->Prop)*) • exists 2. (*To prove an exists, give a witness *) . . . P 2

exists n:nat, P n

Existential Quantifier

• case: Hex.

(* To break the (Hex:exists n, P n)hypothesis *)

(* combined with (move=>n Hn.)*)

SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n (* P is a predicate on nat (P :nat ->Prop)*) • exists 2. (*To prove an exists, give a witness *) P 2 exists n:nat, P n • case: Hex. (* To break the (Hex:exists n, P n)hypothesis *) (* combined with (move=>n Hn.)*) n : nat Hex: exists n, P n Hn : P n G

G

Outline

- First Order Logic
- Booleans
- 2 Tactics, Tacticals
- Proof Structure

FOL Bool

Booleans

• Inductive bool := true | false.

- Inductive bool := true | false.
- Operators: "&&", " | |", "~~", "==>", " (+)".

_

- Inductive bool := true | false.
- Operators: "&&", " | |", "~~", "==>", " (+)".

b_1	b_2	$b_1 \&\& b_2$	$b_1 \mid\mid b_2$	$b_1 ==> b_2$	$b_1 (+) b_2$
Т	Т	Т	Т	Т	F
Т	F	F	Т	F	Т
F	Т	F	Т	Т	Т
F	F	F	F	Т	F

- Inductive bool := true | false.
- Operators: "&&", " | |", "~~", "==>", " (+)".

- Some notations
 - "[&& b1 , b2 , ..., bn & c]" := (b1 && (b2 && ... (bn && c)...))
 - "[|| b1 , b2 , .. , bn | c]" := (b1 || (b2 || .. (bn || c)..))

- Inductive bool := true | false.
- Operators: "&&", " | |", "~~", "==>", " (+)".

```
• is_true : bool -> Prop.
• fun b : bool => b = true.
• Notation : "x 'is_true'" := (is_true x)
```

Booleans in proofs

• Reason by case on a boolean:

case: a.

Booleans in proofs

 Reason by case on a boolean: 	
case: a.	
:	
a : bool	\rightarrow
b : bool	,
a (+) b = (a && ~~b) (~~a && b)	
:	
b : bool	

true (+)b = (true && ~~b)|| (~~true && b)

Booleans in proofs

Reason by case on a boolean: case: a. : bool а \rightarrow b : bool a (+) b = (a && ~~b) || (~~a && b). b : bool true (+)b = (true && \tilde{b}) || (\tilde{true} && b) . b : bool false (+)b = (false && ~~b) || (~false && b)

FOL Bool

• Compute, simplify: rewrite /=.

FOL Bool

 \rightarrow

```
Booleans in proofs(2)
```

• Compute, simplify: rewrite /=.

b : bool

ŝ

true (+)b = (true && ~~ b) || (~~ true && b)
:
b : bool
~~ b = ~~ b || false

Outline

Logics
 First Order Logic
 Booleans

2 Tactics, Tacticals

3 Proof Structure

- Forward reasoning
- Proof control flow
- Subgoal selectors

Tactics / Tacticals

- Tactic: any operation that allows the simplification, decomposition into subgoals, or resolution of a goal.
- Tactical: any function of tactics (eg. ; the composition of two tactics).

SSR Tactics Structure

Tactics and Tacticals

- o move=>
- by
- apply:
- exact:
- case:
- elim:
- rewrite

tactical

Introduction Tactic

• move=>a b c.

pops the top 3 elements of the goal, and it puts them into the context with names *a*, *b*, and *c*.

• move=>_.

pops the first top element of the goal, without putting it in the context.

• move=>a _ c.

SSR Tactics Structure

Tactical by and Tactics apply / exact

• "by []" tries to solve the current goal by some trivial means; it fails if it doesn't succeed.

Tactical by and Tactics apply / exact

- "by []" tries to solve the current goal by some trivial means; it fails if it doesn't succeed.
- "by any_tactic" applies the argument tactic, then tries to solve the current goal.
- "apply: H" applies H to the goal.

Tactical by and Tactics apply / exact

- "by []" tries to solve the current goal by some trivial means; it fails if it doesn't succeed.
- "by any_tactic" applies the argument tactic, then tries to solve the current goal.
- "apply: H" applies H to the goal.

 $\frac{\stackrel{\cdot}{\mathbb{H}: P \rightarrow Q}}{\mathbb{Q}} \longrightarrow \frac{\vdots}{\mathbb{P}}$

Tactical by and Tactics apply / exact

- "by []" tries to solve the current goal by some trivial means; it fails if it doesn't succeed.
- "by any_tactic" applies the argument tactic, then tries to solve the current goal.
- "apply: H" applies H to the goal.

$$\frac{H: P \rightarrow Q}{Q} \longrightarrow \frac{H}{P}$$

٠

• "exact:H" performs "by apply: H"

Performs a case analysis / inductive elimination on the element given as an argument.

Performs a case analysis / inductive elimination on the element given as an argument.

Inductive nat := 0 | S of nat

Performs a case analysis / inductive elimination on the element given as an argument.

Inductive nat := 0 | S of nat Lemma P_of_n forall n : nat, P n. move=>n.

Performs a case analysis / inductive elimination on the element given as an argument.

Inductive nat := 0 | S of nat Lemma P_of_n forall n : nat, P n. move=>n.

case:n.
Tactics case: / elim:

Performs a case analysis / inductive elimination on the element given as an argument.

Inductive nat := 0 | S of nat Lemma P_of_n forall n : nat, P n. move=>n.

elim:n.

Basic Rewriting tactic

Tactic "rewrite *items*..." modifies subterms of the goal:

- "/name" unfolds a definition
- "-/name" folds a definition
- "*term*" rewrites (left to right) with a lemma or an hypothesis which conclusion is an equality

Basic Rewriting tactic

Tactic "rewrite *items*..." modifies subterms of the goal:

- "/name" unfolds a definition
- "-/name" folds a definition
- "*term*" rewrites (left to right) with a lemma or an hypothesis which conclusion is an equality

$$\frac{\text{Eqab: a = b}}{\text{P a}} \longrightarrow \frac{\text{Eqab: a = b}}{\text{P b}}$$

Basic Rewriting tactic

Tactic "rewrite *items*..." modifies subterms of the goal:

- "/name" unfolds a definition
- "-/name" folds a definition
- "*term*" rewrites (left to right) with a lemma or an hypothesis which conclusion is an equality

$$\frac{\text{Eqab: a = b}}{\text{P a}} \longrightarrow \frac{\text{Eqab: a = b}}{\text{P b}}$$

• "-term" rewrites right to left

rewrite -*multiplicityterm*

- "?": as many times as possible, possibly none,
- "!": as many times as possible, at least once,
- "n?": at most n times,
- "n!": exactly n times.

- rewrite -*multiplicityterm*
 - "?": as many times as possible, possibly none,
 - "!": as many times as possible, at least once,
 - "n?": at most n times,
 - "n!": exactly n times.
- rewrite -{number}term

rewrite -*multiplicityterm*

- "?": as many times as possible, possibly none,
- "!": as many times as possible, at least once,
- "n?": at most n times,
- "n!": exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

- rewrite -*multiplicityterm*
 - "?": as many times as possible, possibly none,
 - "!": as many times as possible, at least once,
 - "n?": at most n times,
 - "n!": exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

Proof.

a : nat

b : nat

$$2 * (a + b) = (b + a) + (a + b)$$

```
rewrite -multiplicityterm
```

- "?": as many times as possible, possibly none,
- "!": as many times as possible, at least once,
- "n?": at most n times,
- "n!": exactly n times.

```
rewrite -\{number\}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

rewrite -! addnA.

a : nat

b : nat

2 * (a + b) = b + (a + (a + b))
```

```
rewrite -multiplicityterm
```

- "?": as many times as possible, possibly none,
- "!": as many times as possible, at least once,
- "n?": at most n times,
- "n!": exactly n times.

```
rewrite -{number}term
```

```
Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).
```

rewrite {2}addnC.

a : nat

b : nat

$$2 * (a + b) = (b + a) + (b + a)$$

```
rewrite -multiplicityterm
```

- "?": as many times as possible, possibly none,
- "!": as many times as possible, at least once,
- "n?": at most n times,
- "n!": exactly n times.

```
rewrite -{number}term
Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).
rewrite -!addnA {2}addnC.
a : nat
b : nat
```

Outline

O Proof Structure

- Forward reasoning
- Proof control flow
- Subgoal selectors

Forward Reasoning

- have
- suffices (suff)

have H : *intermediate_goal* performs a logical cut.

have H : intermediate_goal performs a logical cut.

Variable f : nat -> nat. Variable P : nat -> Prop.

Lemma P_of_3: P 3.

have H : intermediate_goal performs a logical cut.

Variable f : nat -> nat. Variable P : nat -> Prop. Lemma P_of_3: P 3. Proof. have H: exists x, f x = 3.

have H : intermediate_goal performs a logical cut.

Variable f : nat -> nat. Variable P : nat -> Prop.

Lemma P_of_3: P 3.

Proof. have H: exists x, f x = 3.

1.
$$\underbrace{\text{H: exists x, f x = 3}}_{\text{P 3}}$$
 2. $\underbrace{\text{H: exists x, f x = 3}}_{\text{P 3}}$

have H : intermediate_goal performs a logical cut.

```
Variable f : nat -> nat.
Variable P : nat -> Prop.
Lemma P_of_3: P 3.
Proof.
have H: exists x, f x = 3.
```

Tactic "suff" also performs a logical cut, but it produces the two subgoals in the opposite order.

Proof control flow

• Tabulation (depending on the number of subgoals number)

Forward Control flow Subgoals

Proof control flow

- Tabulation (depending on the number of subgoals number)
- Bullets -, +, *

Proof control flow

- Tabulation (depending on the number of subgoals number)
- Bullets -, +, *
- Proof terminators : by , exact:

A proof example

Subgoal Selectors

- Solving one subgoal with a single tactic:
 - tactic ; first by tactic
 - tactic ; last by tactic

Subgoal Selectors

- Solving one subgoal with a single tactic:
 - tactic ; first by tactic
 - tactic ; last by tactic
- Changing the order of subgoals:
 - tactic ; first last

(or last first)