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SSR Tactics Structure

SSReflect – Reminder

(SSR = Small Scale Reflection)

SSReflect: extension of Coq

developed while formalizing the Four Color Theorem (2004),

now used for the Odd Order Theorem.

Changes with standard Coq:

Vernacular (Commands) and Gallina are mostly unchanged
(e.g., Definition, Lemma, forall, match with);

standard tactics are still available

some tactics are superseded (e.g., apply, rewrite)

new libraries are provided (e.g., nat, seq)
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SSR Tactics Structure

Design Decisions

Simplify and generalize the syntax of tactics.

Add some ways to structure the scripts,
so that breakages are easier to understand.

Force the user to explicitly name things.

Ease the use of boolean reflection.
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SSR Tactics Structure

Outline

1 Logics

2 Tactics, Tacticals

3 Proof Structure
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SSR Tactics Structure FOL Bool

Outline

1 Logics
First Order Logic
Booleans

2 Tactics, Tacticals

3 Proof Structure

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

Minimal Propositional Logic

Propositional variables: P Q R . . .

Propositions: (even 4) (x < 10) (7 <= 2)

Implication: ->

Formulas: (P -> Q) -> (Q -> R) -> P -> R

Propositional are of sort Prop : (P : Prop).

Declaring variables: Variables P Q R :Prop.

Any term of type P (p : P) is a proof of P.

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

Minimal Propositional Logic

Propositional variables: P Q R . . .

Propositions: (even 4) (x < 10) (7 <= 2)

Implication: ->

Formulas: (P -> Q) -> (Q -> R) -> P -> R

Propositional are of sort Prop : (P : Prop).

Declaring variables: Variables P Q R :Prop.

Any term of type P (p : P) is a proof of P.

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

Minimal Propositional Logic

Propositional variables: P Q R . . .

Propositions: (even 4) (x < 10) (7 <= 2)

Implication: ->

Formulas: (P -> Q) -> (Q -> R) -> P -> R

Propositional are of sort Prop : (P : Prop).

Declaring variables: Variables P Q R :Prop.

Any term of type P (p : P) is a proof of P.

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

State and Proof a theorem

Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

...
P : Prop
Q : Prop
R : Prop

 named hypotheses (Context)

(P → Q) → (Q → R) → P → R } current goal︸ ︷︷ ︸ ︸︷︷︸
Assumptions Conclusion

Tactic: any operation that allows the simplification, decomposition
into subgoals, or resolution of a goal.
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq.

P : Prop
Q : Prop
R : Prop
Hpq : (P → Q)

(Q → R) → P → R
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.

P : Prop
Q : Prop
R : Prop
Hpq : (P → Q)
Hqr : (Q → R)
p : P

R
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.

P : Prop
Q : Prop
R : Prop
Hpq : (P → Q)
p : P

Q
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.
apply: (Hpq).

P : Prop
Q : Prop
R : Prop
Hpq : (P → Q)
p : P

P
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.
apply: Hpq.
exact: p.

Proof completed.
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SSR Tactics Structure FOL Bool

Proof

Theorem command:
Lemma imp_trans :(P -> Q) -> (Q -> R) -> P -> R.
Proof. (* start the proof of a Lemma *)

move=> Hpq Hqr p.
apply: Hqr.
exact: (Hpq p).
Qed.
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SSR Tactics Structure FOL Bool

Minimal Propositional Logic with universal quantifier

forall (P Q R :Prop), (P ->Q)-> (Q -> R) -> P -> R

as a goal: move=>P Q R.

as an hypothesis named H:
apply:H. apply:(H A B). or . . .

forall n:nat, 0 <= n

move=>n.

apply:H. apply:(H a).
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SSR Tactics Structure FOL Bool

Propositional Logic, Conjunction

Conjunction : A /\ B

case: ab. (* Break the (ab :A /\ B) hypothesis *)

ab : A /\ B

G
→

A -> B -> G
split. (* Prove a conjunction :A /\B *)

A /\ B
→

A B
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SSR Tactics Structure FOL Bool

Propositional Logic, Disjunction

Disjunction : A \/ B

case: ab. (* Break the (ab :A \/ B) hypothesis *)

ab : A \/ B

G
→

A -> G B -> G

left. (* Prove a disjunction :A \/ B *)

(* by choosing the left part *)

A \/ B
→

A

right. (* Prove a disjunction :A \/ B *)

(* by choosing the right part *)
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SSR Tactics Structure FOL Bool

Propositional Logic, Negation

Negation : ~B

~B is defined as (B -> False)

move=>B. (* To prove the goal (~B)*)

. . .

~B
→

b : B

False
Then apply:H. (* for a (H :~C) in the context*)
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SSR Tactics Structure FOL Bool

Existential Quantifier

Existential: exists n:nat, P n

(* P is a predicate on nat (P :nat ->Prop)*)

exists 2. (*To prove an exists, give a witness *)

. . .

exists n:nat, P n
→

. . .

P 2

case: Hex.

(* To break the (Hex:exists n, P n)hypothesis *)

(* combined with (move=>n Hn.)*)

Hex: exists n, P n

G
→

n : nat

Hn : P n

G
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SSR Tactics Structure FOL Bool

Outline

1 Logics
First Order Logic
Booleans

2 Tactics, Tacticals

3 Proof Structure
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SSR Tactics Structure FOL Bool

Booleans

Inductive bool := true | false.

Operators: ”&&”, ”||”, ”~~”, ”==>”, ”(+)”.

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

Booleans

Inductive bool := true | false.

Operators: ”&&”, ”||”, ”~~”, ”==>”, ”(+)”.

Laurence Rideau SSReflect - Logics & Basic tactics



SSR Tactics Structure FOL Bool

Booleans

Inductive bool := true | false.

Operators: ”&&”, ”||”, ”~~”, ”==>”, ”(+)”.

b1 b2 b1 && b2 b1 || b2 b1 ==> b2 b1 (+) b2

T T T T T F
T F F T F T
F T F T T T
F F F F T F
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SSR Tactics Structure FOL Bool

Booleans

Inductive bool := true | false.

Operators: ”&&”, ”||”, ”~~”, ”==>”, ”(+)”.

Some notations

"[ && b1 , b2 , .. , bn & c ]" :=

(b1 && (b2 && .. (bn && c).. ))

"[ || b1 , b2 , .. , bn | c ]" :=

(b1 || (b2 || .. (bn || c).. ))
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SSR Tactics Structure FOL Bool

Booleans

Inductive bool := true | false.

Operators: ”&&”, ”||”, ”~~”, ”==>”, ”(+)”.

is true : bool -> Prop.

fun b : bool => b = true.
Notation : "x ’is_true’" := (is_true x)
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SSR Tactics Structure FOL Bool

Booleans in proofs

Reason by case on a boolean:
case: a.

...
a : bool

b : bool

a (+) b = (a && ~~b)|| (~~a && b)

→

...
b : bool

true (+)b = (true && ~~b)|| (~~true && b)

...
b : bool

false (+)b = (false && ~~b)|| (~~false && b)
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SSR Tactics Structure FOL Bool

Booleans in proofs(2)

Compute, simplify:
rewrite /=.

...

b : bool

true (+)b = (true && ~~ b)|| (~~ true && b)

→

...
b : bool

~~ b = ~~ b || false
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SSR Tactics Structure FOL Bool

Booleans in proofs(2)

Compute, simplify:
rewrite /=.

...

b : bool

true (+)b = (true && ~~ b)|| (~~ true && b)

→

...
b : bool
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SSR Tactics Structure

Outline

1 Logics
First Order Logic
Booleans

2 Tactics, Tacticals

3 Proof Structure
Forward reasoning
Proof control flow
Subgoal selectors
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SSR Tactics Structure

Tactics / Tacticals

Tactic: any operation that allows the simplification,
decomposition into subgoals, or resolution of a goal.

Tactical: any function of tactics (eg. ; the composition of
two tactics).
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SSR Tactics Structure

Tactics and Tacticals

move=>

by tactical

apply:

exact:

case:

elim:

rewrite
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SSR Tactics Structure

Introduction Tactic

move=>a b c.

pops the top 3 elements of the goal, and
it puts them into the context with names a, b, and c .

move=>_.

pops the first top element of the goal, without putting it in
the context.

move=>a _ c.
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SSR Tactics Structure

Tactical by and Tactics apply / exact

”by []” tries to solve the current goal by some trivial means;
it fails if it doesn’t succeed.

”by any tactic” applies the argument tactic, then tries to
solve the current goal.

”apply:H” applies H to the goal.
...
H: P -> Q

Q

→ ...

P

"exact:H” performs ”by apply: H”
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SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := O | S of nat

Lemma P_of_n forall n : nat , P n.
move=>n.
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SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := O | S of nat

Lemma P_of_n forall n : nat , P n.
move=>n.

case:n.

1.
P 0

2.
forall n : nat, P (S n)
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SSR Tactics Structure

Tactics case: / elim:

Performs a case analysis / inductive elimination on the element
given as an argument.

Inductive nat := O | S of nat

Lemma P_of_n forall n : nat , P n.
move=>n.

elim:n.

1.
P 0

2.
forall n, P n -> P (S n)
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SSR Tactics Structure

Basic Rewriting tactic

Tactic ”rewrite items . . .” modifies subterms of the goal:

”/name” unfolds a definition

”-/name” folds a definition

”term” rewrites (left to right) with a lemma or an hypothesis
which conclusion is an equality

Eqab: a = b

P a
→

Eqab: a = b

P b

”-term” rewrites right to left
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Basic Rewriting tactic

Tactic ”rewrite items . . .” modifies subterms of the goal:

”/name” unfolds a definition

”-/name” folds a definition

”term” rewrites (left to right) with a lemma or an hypothesis
which conclusion is an equality

Eqab: a = b

P a
→

Eqab: a = b

P b

”-term” rewrites right to left
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SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

”?”: as many times as possible, possibly none,

”!”: as many times as possible, at least once,

”n?”: at most n times,

”n!”: exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).
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SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

”?”: as many times as possible, possibly none,

”!”: as many times as possible, at least once,

”n?”: at most n times,

”n!”: exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

Proof.

a : nat

b : nat

2 * (a + b) = (b + a) + (a + b)
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SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

”?”: as many times as possible, possibly none,

”!”: as many times as possible, at least once,

”n?”: at most n times,

”n!”: exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

rewrite -!addnA.

a : nat

b : nat

2 * (a + b) = b + (a + (a + b))
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SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

”?”: as many times as possible, possibly none,

”!”: as many times as possible, at least once,

”n?”: at most n times,

”n!”: exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

rewrite {2} addnC.

a : nat

b : nat

2 * (a + b) = (b + a) + (b + a)
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SSR Tactics Structure

Multiple Rewriting and Occurrence selection

rewrite -multiplicityterm

”?”: as many times as possible, possibly none,

”!”: as many times as possible, at least once,

”n?”: at most n times,

”n!”: exactly n times.

rewrite -{number}term

Lemma dbl a b : 2 * (a + b) = (b + a) + (a + b).

rewrite -!addnA {2} addnC.

a : nat

b : nat

2 * (a + b) = (b + (a + (b + a)
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SSR Tactics Structure Forward Control flow Subgoals

Outline

1 Logics

2 Tactics, Tacticals

3 Proof Structure
Forward reasoning
Proof control flow
Subgoal selectors
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SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning

have

suffices (suff)
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SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate goal
performs a logical cut.

Variable f : nat -> nat.
Variable P : nat -> Prop.

Lemma P_of_3: P 3.

Proof.
have H: exists x, f x = 3.

1.
exists x, f x = 3

2.
H: exists x, f x = 3

P 3
Tactic ”suff” also performs a logical cut, but it produces the two
subgoals in the opposite order.
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SSR Tactics Structure Forward Control flow Subgoals

Forward Reasoning: have / suffices

have H : intermediate goal
performs a logical cut.

Variable f : nat -> nat.
Variable P : nat -> Prop.

Lemma P_of_3: P 3.

Proof.
have H: exists x, f x = 3.

1.
exists x, f x = 3
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H: exists x, f x = 3

P 3

Tactic ”suff” also performs a logical cut, but it produces the two
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SSR Tactics Structure Forward Control flow Subgoals

Proof control flow

Tabulation (depending on the number of subgoals number)

Bullets -, +, *

Proof terminators : by , exact:
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SSR Tactics Structure Forward Control flow Subgoals

Proof control flow

Tabulation (depending on the number of subgoals number)

Bullets -, +, *

Proof terminators : by , exact:
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SSR Tactics Structure Forward Control flow Subgoals

A proof example
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SSR Tactics Structure Forward Control flow Subgoals

Subgoal Selectors

Solving one subgoal with a single tactic:

tactic ; first by tactic
tactic ; last by tactic

Changing the order of subgoals:

tactic ; first last (or last first)
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