Flyspeck

Lessons learned from the Flyspeck Project

Thomas C. Hales

February 23, 2011

e The Kepler conjecture asserts that the densest packing of
congruent balls in R? is achieved by the familiar
“cannonball” arrangement.

e The Kepler Conjecture was formulated in the booklet
“The six-cornered snowflake,” presented as a gift on New
Year’s day 1611 to Kepler’s patron Lord Wacker von
Wackenfels.

Flyspeck

Flyspeck | 2012

Kepler asks why a snowflake has six sides. This leads to
honeycombs, pomegranates, and then sphere packings.

Flyspeck
e The first proof was presented (by Ferguson and H. in
1998) and published in 2006.

e A project called Flyspeck seeks to give a formal proof of
the theorem, which involves a computer verification of
every single logical inference in the proof, all the way
back to the fundamental axioms of mathematics.

e FLYSPECK comes from F.*P.*K, for the Formal Proof of
the Kepler Conjecture.

e The Flyspeck project 1s about 80% complete.

The Flyspeck project is about 80% complete. The project has
five parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers.

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress (Solovyev). I will describe
progress on this part today.

5. The integration of text part of the proof with computer
parts.

Flyspeck

2.

The HOL Light proof assistant (J. Harrison)
1.

A member of the HOL family of proof assistants.

It has an unusually small kernel (about 400 lines of code)
which has been self-verified.

. The type system is simple.

There is no layer between HOL Light and Ocaml. To
write proofs is to program in Ocaml. Anyone can (and
does) contribute new tactics at any time.

. There 1is no reflection for verified algorithms. Verification

occurs with each separate execution of an algorithm.

It has a large collection of theorems in elementary
mathematics: point-set topology, real and complex
analysis.

Flyspeck

First lesson: international collaboration works!

Adams, Mark, Bauer, Gertrud,
Dang Tat Dat, Hales, Thomas C.,
Harrison, John, Hoang Le Truong,
Nipkow, Tobias Nguyen Duc Tam
Nguyen Tat Thang, Nguyen Quang Truong,
Obua, Steven Rute, Jason,
Solovyev, Alexey, Ta Thi Hoi An,
Thi Trieu Diep, Tran Nam Trung,
Vu Khac Ky, Vu Thanh,

Vuong Anh Quyen

Flyspeck

Flyspeck 2012

INTERNATIONAL WORKSHOP

on Formal Proofs and Flyspeck Project
Hanol, June 8- July 31, 2009

INTERNATIONA WORKSHOP

on Formal Proofsand Flyspeck Project
Hanoi, June 8- July 31, 2009

Further Lessons learned

1. Follow good software development practices for a
medium sized project, including version control, a stable
module system, careful control of mutable state, a
manager (Mark Adams).

2. Structure the project around a clean mathematical text.

3. Search for theorem names is a major difficulty. There are
over 15,000 theorems in HOL Light + FLYSPECK and
many dozens of specialized tactics. Better tools are
needed.

4. Keep each lemma short and crisp: productivity plummets
once lemmas reach a certain level of complexity.

11

Flyspeck

Further lessons. Formal proofs should not merely replicate a
body of mathematics. They should transform and improve
proofs. Attention to the formal proof of the Kepler conjecture
has led to a proof last year of two other long-standing
conjectures.

Conjecture 1 (Fejes Toth’s full contact conjecture (1969),
Theorem (H., 2011)). In 3-space a packing of equal balls
such that each enclosed ball is touched by 12 others consists

of hexagonal layers.

(The corresponding problem in the plane is trivial. If each unit
disk in the plane touches 6 others then it must be the regular
hexagonal packing of disks.)

12

Flyspeck

o

Flyspeck
Conjecture 2 (K. Bezdek’s strong dodecahedral conjecture

(2000), Theorem (H., 2011)). In every packing of congruent
balls in R3, the surface area of every Voronoi cell is at least

that of the (circumscribing) regular dodecahedron.

(The strong dodecahedral conjecture implies the weak
dodecahedral conjecture, which was proved by S.
McLaughlin in 1998, and published in 2010.)

13

Lesson about code verification: The surest way to guarantee
that a piece of code will not execute a bug is to delete the
code.

1. Nipkow used this principle repeatedly in the verification
of the plane graph generator: De-optimize, de-optimize!

2. The total amount of code for the computer part of the
Kepler conjecture has been reduced from about 187,000
lines to fewer than 10,000 lines.

3. At the same time, execution times have gone from over 3
months to under 1 day.

A variant of the same lession: the fastest way to formalize a
difficult theorem is to simplify the proof.

14

Flyspeck

An example of proof refactoring - Perimeter estimate. The
perimeter of a convex spherical polygon on the unit sphere is
at most 2.

Proof. Move one vertex at a time, increasing perimeter, until
all vertices line on the equator. The equator has 27. []

Proof. Take the polar polygon. Perimeter and area are dual
concepts under polarity. The upper bound 27 on the perimeter
is dual to the the lower bound 0 on area. []

e Trade-off: deformations arguments are very messy in
HOL Light (especially without compactness), but the
second proof introduces a new concept.

e This one lemma accounts for 10% of what remains in the
text formalization.

15

Flyspeck

Flyspeck

Final lesson: the Flyspeck project was not nearly ambitious
enough.

1. Existing tools have been adequate (but less than optimal)
for the formalization of the 300-page text part of the
proof.

2. We are still thinking at the wrong level of magnitude
when it comes to formalization of mathematics. (We
thought a lecture class with 1000 students was large until

Thrun and Norvig taught a lecture class at Stanford with
160,000 enrolled students.)

16

The Flyspeck project is about 80% complete. The project has
five parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers.

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyeyv.

4. The third computer program (nonlinear inequality
proving) is work in progress (Solovyev). I will
describe progress on this part today.

5. The integration of text part of the proof with computer
parts.

17

Flyspeck

Last year, I did the preliminary work of cleaning up the
existing computer code for nonlinear inequality proving.

I have an informal proofs of a collection of about 500
foramlly specified nonlinear inequalities. They were
mostly automatically generated.

Testing of inequalities is done with a gradient descent
program, developed at U. Maryland.

Interval arithmetic verification is done by code developed
for the 1998 proof of the Kepler conjecture.

This 1s now a few thousand lines of C++ code.

Additional C++ code to test and verify a particular
inequality is automatically generated from the formal
specification. It automatically converts inequalities into
an optimized form, splits piecewise analytic functions,. ..

18

Flyspeck

The main part of the C++ code was translated into about
IK lines of OCaml.

At this point, late last year, I turned to the project over to
Solovyev for formalization.

The process is similar to that with the linear programming
part of the proof. I cleaned up the procedure and
implemented it in Ocaml, then Solovyev stepped in and
did the formalization of linear programming, optimizing
arithmetic in HOL Light for fast execution.

Solovyev now has automated nonlinear inequality
proving in HOL Light. What follows is a report of his
recent work.

19

Flyspeck

Problem Domain for Nonlinear inequalities
e [) = product of compact intervals in R", (n < 6).

e f; analytic function on U, fori = 1,..., k, such that
D C U Us;.

e Prove that for all x € D, there exists ¢ such that x € U;
and f;(x) < 0.

e In most cases, the analytic functions f; are expressed in
terms of field operations on R, /- and arctan.

20

Flyspeck

Definitions Flyspeck
A(xt, ..., %) = x1xa(—x1 + X0 + x3 — X4 + X5 + Xp)

+ xox5(x1 — X2 + X3 + Xa — X5 + Xp)

+ x3x6(x1 + X2 — X3 + Xa + X5 — Xp)

— X2X3X4 — X1X3X5 — X1X2X6 — X4X5X6,

0A

Ay()’la---a}’6):A()’127---7y62)7 A4:8—X47

. s
dih (y1,- .., ye) = 5 — arctan, (\/4y12Ay(y1, cs ¥6)s —Da(yis - 7)/62)) :
—

Simple Flyspeck inequalities
Let D ={x € R® | 2 < x; < 2.52}.
Vx. x € D =>dih (x) < 1.893,

Vx.x € D = A, (x) > 0. |
source: Solovyev thesis overview, March 2012

21

e Arithmetic is floating point with IEEE-754 directed
rounding.

e Real numbers are represented by interval arithmetic.

e Analytic functions f are approximated with Taylor
expansions with rigorously computed error terms:

@) = f(2%) = V) - (z =2 < 3 miseie;

0

€ = |@; — a7

e The domain D is partitioned into smaller rectangles as
needed until the Taylor approximations are accurate
enough to yield the desired inequalities.

22

Flyspeck

Flyspeck

e The code 1s optimized in various ways. For example, if
the function f is increasing in 7, then f(x) < 0 on D
provided that f(x) < 0 on along the right-hand boundary
of D.

e The Taylor expansions are generated by symbolic
differentiation using the chain rule, product rule, and so
forth. A few primitive functions (y/+, 1/-, arctan and
some common polynomials) are hand-coded.

23

Flyspeck

Basic constructors

Represent a numeral using an arbitrary base b > 2. When the base b is

fixed, define constants

= Di(n) = bn +i.
—_—_—

Example
If b= 10, then we can write 123 = D3(D2(D1(0))).

source: Solovyev thesis overview, March 2012

24

Addition of “digits”
If i +j = k < b, then

= Di(m) + Dj(n) = Dx(m + n)

If i+ j = k > b, then

= Di(m) + Dj(n) = Dy_p(SUC (m + n))

Addition of numerals
@ Store all theorems for addition of “digits” in a hash table.

@ The names of the constants are used as key values: the theorem with
the left hand side D;(m) 4 D»(n) has the key value "D1D2".

@ The addition of numerals is implemented in the usual way.

source: Solovyev thesis overview, March 2012

25

Table: Performance results for 1000 multiplication operations

Flyspeck

Size of operands

HOL Light mult. Base 16 mult. Base 256 mult.

5 decimal digits
10 decimal digits
15 decimal digits
20 decimal digits
25 decimal digits

2.220 s 0.428 s
7.216 s 1.292 s
16.081 s 3.880 s
59.160 s 6.092 s
85.081 s 10.645 s

0.148 s
0.376 s
1.316 s
2.256 s
3.592 s

source: Solovyev thesis overview,

26

March 2012

Representation of Formal Floating Point Numbers

Flyspeck

Constants

num_exp . num — num — num,

min_exp : num,

float : bool — num — num — real. !
Definition
= num_exp n e = nx b®

b is a numeral: base of the natural number arithmetic. |
Definition

- float s n e = (_&1)ifs then 1 else 0 &(num_exp n e)/&(bmin_exp)

In other words, float F n e = Un’lTb_;,, float T n e = —float F n e.
J
source: Solovyev thesis overview, March 2012

27

Flyspeck

Operations with Floating Point Numbers

@ Operations yield inequalities.

@ The precision of each operation is controlled by a special (informal)
parameter.

Truncation Theorems for num_exp: Example

= Nexp 1234 10 < neyp 13 12
F Nexp 1234 10 > neyp 12 12

Right hand sides contain at most 2 digits in the first argument (base 10 is
assumed).

>

source: Solovyev thesis overview, March 2012

28

Flyspeck

x|y
To find an upper bound for x/y (assuming all numbers are non-negative),
it is enough to find z such that x < zx y, then x/y < z.

VX
To find an upper bound for /X, it is enough to find z such that x < z x z,

then /x < z.
—

source: Solovyev thesis overview, March 2012

29

Elementary Functions: Arctangent

Flyspeck

Constants
- halfatn x = ~
C1+V1I+x2
= halfatn4 = halfatn o halfatn o halfatn o halfatn
\ _ (—1Y halfatna(x)>*1
- halfatndc(x,j) = 1
Properties

- Vx. atn(x) = 2 x atn(halfatn(x))
- Vx. |halfatn(x)| < 1

n
FVnxveyere 2765 <o A |16 Z halfatnd(x,j) | — v| < e
j=0

Nep+er <e = |atn(x) —v| < e.

source: Solovyev thesis overview, March 2012

30

Formal Interval Arithmetic Flyspeck

Definition
interval_arith : real — (real, real) — bool

— interval _arith x (lo, hi) <= lo < x A x < hi

Example

Add intervals F1.23 < x <13 and F05 <y <1.7.
The result is (base 10, precision is 2 digits): - 1.7 < x+ y < 3.

Intervals with variables
a<x<bklo<f(x)<hi

This theorem is equivalent to the theorem

FVx.a<x< b= lo<f(x)<hi

~ source: Solovyev thesis overview, March 2012

31

Flyspeck

OCaml Definition of the Solution Certificate

Certificate =

| Cell_pass

| Cell_glue of int * Certificate * Certificate
| Cell_mono of bool * int * Certificate

source: Solovyev thesis overview, March 2012

32

. Flyspeck
Formal Taylor Intervals for Polynomials P

Computation Procedure
@ Formally compute first and second derivatives of a polynomial.
@ Generate a theorem for computing a formal Taylor interval based on
expressions for derivatives.

@ Generate a procedure which instantiates the generated theorem for
different domains and formally evaluates all numerical computations.

source: Solovyev thesis overview, March 2012

33

Flyspeck

Test Polynomial Problems

Prove m < p(x) for all x € [a, b].
o schwefel: (x1 — x3)% + (2 — 1)? + (x1 — x3)? + (x3 — 1)?,
m = —5.8806 x 10710, [a, b] = [(—10, —10, —10), (10, 10, 10)]
@ caprasse:
—X1X§’ + 4X2X§X4 + 4X1X3XZ + 2x2x2’ + 4x1x3 + 4X§ — 10xox4 — 10X§ + 2,
m = —3.1801, [a, b] = [(—0.5,—-0.5,—0.5,—0.5), (0.5,0.5,0.5,0.5)]
o lv: x1x22 + X1X32 + xle —1.1x3+1, m= —20.801,
[a, b] = [(—2,-2,—-2,-2),(2,2,2,2)]
o magnetism: xZ + 2x3 + 2x3 + 2xZ + 2x2 + 2x2 + 2x% — xq,
m = —0.25001,
[a, b] = [(—-1,-1,-1,-1,—-1,—-1,—-1),(1,1,1,1,1,1,1)]

@ heart: —xlxg + 3x1x6x72 — X3x$’ + 3X3X7X62 — X2X53 + 3X2X5X82 — X4x§’ +

3xgxgx2 — 0.9563453, m = —1.7435,
[a, b] = [(-0.1,0.4,-0.7,-0.7,0.1,-0.1,-0.3, —1.1),
(0.4,1,-0.4,0.4,0.2,0.2,1.1, —0.3)]

source: Solovyev thesis overview, March 2012

34

Performance Tests: Polynomial Inequalities

Table: Test Results for Polynomial Inequalities in PVS and HOL Light

Flyspeck

Inequality ID # variables

PVS Bernstein (s)

HOL Light (s)

schwefel
caprasse
lv
magnetism
heart

OoO~NPBH P W

10.23
11.44
4.75
160.44
79.68

93.72
11.83

2.21
11.97
23.21

Note: arithmetic computations in PVS are done by native machine
arithmetic. HOL Light verification procedure is completely formal.

source:

Solovyev thesis overview,

35

March 2012

Flyspeck

@ Univariate inequalities in PVS based on Taylor interval arithmetic.
http://shemesh.larc.nasa.gov/people/cam/publications/

@ Multivariate polynomial inequalities in PVS based on Bernstein

polynomials.
http://shemesh.larc.nasa.gov/people/cam/Bernstein/

Inspired by Roland Zumkeller's optimization program Sergei.
http://code.google.com/p/sergei/

source: Solovyev thesis overview, March 2012

36

Verification of Flyspeck Inequalities

Flyspeck

D={xeR®|2<x <252}

Test 1
Verify Vy. y e D =0 < Ay(y).
o Certificate size (the number of Cell_pass elements): 27.

@ Formal verification time (float precision = 10): 26.189 seconds.

Test 2
Verify Vy. y € D =dih (y) < 1.893.
o Certificate size: 4317.

@ Formal verification time (float precision = 15): about 13.5 hours.

Test 3

More complicated Flyspeck inequalities.
o Certificate sizes: 8000-67000.

source: Solovyev thesis overview, March 2012

37

Flyspeck
Optimization Strategies

@ Cached arithmetic (low level and high level).
@ Verification of groups of inequalities (on common subdomains).

@ Adaptive arithmetic precision.

source: Solovyev thesis overview, March 2012

38

Benchmarks from Obua’s Thesis.

Flyspeck

Finally, the "Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.

source: Obua’s thesis

39

Benchmarks

Inconsistent Time
1 Yes 154
2 Yes 21.9
3 Yes 17.6
4 Yes 39.8
5 Yes 194
6 Yes 23.1
7 Yes 26.9
8 Yes 24.3
9 Yes 41.5
10 Yes 40.7
11 Yes 37.7
12 Yes 30.4
13 Yes 30.9
14 Yes 47.3
15 Yes 53.5
16 Yes 66.8
17 Yes 56.1
18 ? 47.3
19 Yes 15.9
20 Yes 12.7
21 Yes 20.0
22 Yes 20.8
23 Yes 22.9
24 Yes 23.6
25 Yes 24.3

N7

~Aa N

source: Obua’s thesis

40

Flyspeck

Performance Tests

Each Flyspeck linear program can be completely formally verified in about
5 seconds. There are about 50,000 linear programs in the Flyspeck project.

Linear program ID # vars # ineqs HOL arith Base 256 arith
18288526809 743 519 4.048 s 2772 s
168941837467 750 5901 5.096 s 3.196 s
25168582633 784 700 8.392 s 4.308 s
72274026085 824 773 7.656 s 5.120 s
28820130324 875 848 0.292 s 5.680 s
202732667936 012 875 0.045 s 5.816 s
156588677070 020 804 8.113 s 5.252 s
123040027899 1074 1002 11.549 s 6.664 s
110999880825 1114 1000 10.085 s 6.780 s
source: Solovyev thesis overview,

41

Flyspeck

March 2012

Thank You!

Flyspeck | 2012

