
Lessons learned from the Flyspeck Project

Thomas C. Hales

February 23, 2011

1

Flyspeck 2012

1

• The Kepler conjecture asserts that the densest packing of
congruent balls in R3 is achieved by the familiar
“cannonball” arrangement.

• The Kepler Conjecture was formulated in the booklet
“The six-cornered snowflake,” presented as a gift on New
Year’s day 1611 to Kepler’s patron Lord Wacker von
Wackenfels.

2

Flyspeck 2012

2

Kepler asks why a snowflake has six sides. This leads to
honeycombs, pomegranates, and then sphere packings.

3

Flyspeck 2012

3

• The first proof was presented (by Ferguson and H. in
1998) and published in 2006.

• A project called Flyspeck seeks to give a formal proof of
the theorem, which involves a computer verification of
every single logical inference in the proof, all the way
back to the fundamental axioms of mathematics.

• FLYSPECK comes from F.*P.*K, for the Formal Proof of
the Kepler Conjecture.

• The Flyspeck project is about 80% complete.

4

Flyspeck 2012

4

The Flyspeck project is about 80% complete. The project has
five parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers.

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress (Solovyev). I will describe
progress on this part today.

5. The integration of text part of the proof with computer
parts.

5

Flyspeck 2012

5

The HOL Light proof assistant (J. Harrison)

1. A member of the HOL family of proof assistants.

2. It has an unusually small kernel (about 400 lines of code)
which has been self-verified.

3. The type system is simple.

4. There is no layer between HOL Light and Ocaml. To
write proofs is to program in Ocaml. Anyone can (and
does) contribute new tactics at any time.

5. There is no reflection for verified algorithms. Verification
occurs with each separate execution of an algorithm.

6. It has a large collection of theorems in elementary
mathematics: point-set topology, real and complex
analysis.

6

Flyspeck 2012

6

First lesson: international collaboration works!
Adams, Mark, Bauer, Gertrud,
Dang Tat Dat, Hales, Thomas C.,
Harrison, John, Hoang Le Truong,
Nipkow, Tobias Nguyen Duc Tam
Nguyen Tat Thang, Nguyen Quang Truong,
Obua, Steven Rute, Jason,
Solovyev, Alexey, Ta Thi Hoi An,
Thi Trieu Diep, Tran Nam Trung,
Vu Khac Ky, Vu Thanh,
Vuong Anh Quyen

7

Flyspeck 2012

7

Flyspeck 2012

8

Flyspeck 2012

9

Flyspeck 2012

10

Further Lessons learned

1. Follow good software development practices for a
medium sized project, including version control, a stable
module system, careful control of mutable state, a
manager (Mark Adams).

2. Structure the project around a clean mathematical text.

3. Search for theorem names is a major difficulty. There are
over 15,000 theorems in HOL Light + FLYSPECK and
many dozens of specialized tactics. Better tools are
needed.

4. Keep each lemma short and crisp: productivity plummets
once lemmas reach a certain level of complexity.

8

Flyspeck 2012

11

Further lessons. Formal proofs should not merely replicate a
body of mathematics. They should transform and improve
proofs. Attention to the formal proof of the Kepler conjecture
has led to a proof last year of two other long-standing
conjectures.
Conjecture 1 (Fejes Tóth’s full contact conjecture (1969),
Theorem (H., 2011)). In 3-space a packing of equal balls
such that each enclosed ball is touched by 12 others consists
of hexagonal layers.

(The corresponding problem in the plane is trivial. If each unit
disk in the plane touches 6 others then it must be the regular
hexagonal packing of disks.)

9

Flyspeck 2012

12

Conjecture 2 (K. Bezdek’s strong dodecahedral conjecture
(2000), Theorem (H., 2011)). In every packing of congruent
balls in R3, the surface area of every Voronoi cell is at least
that of the (circumscribing) regular dodecahedron.

(The strong dodecahedral conjecture implies the weak
dodecahedral conjecture, which was proved by S.
McLaughlin in 1998, and published in 2010.)

10

Flyspeck 2012

13

Lesson about code verification: The surest way to guarantee
that a piece of code will not execute a bug is to delete the
code.

1. Nipkow used this principle repeatedly in the verification
of the plane graph generator: De-optimize, de-optimize!

2. The total amount of code for the computer part of the
Kepler conjecture has been reduced from about 187,000
lines to fewer than 10,000 lines.

3. At the same time, execution times have gone from over 3
months to under 1 day.

A variant of the same lession: the fastest way to formalize a
difficult theorem is to simplify the proof.

11

Flyspeck 2012

14

An example of proof refactoring - Perimeter estimate. The
perimeter of a convex spherical polygon on the unit sphere is
at most 2π.

Proof. Move one vertex at a time, increasing perimeter, until
all vertices line on the equator. The equator has 2π.

Proof. Take the polar polygon. Perimeter and area are dual
concepts under polarity. The upper bound 2π on the perimeter
is dual to the the lower bound 0 on area.

• Trade-off: deformations arguments are very messy in
HOL Light (especially without compactness), but the
second proof introduces a new concept.

• This one lemma accounts for 10% of what remains in the
text formalization.

12

Flyspeck 2012

15

Final lesson: the Flyspeck project was not nearly ambitious
enough.

1. Existing tools have been adequate (but less than optimal)
for the formalization of the 300-page text part of the
proof.

2. We are still thinking at the wrong level of magnitude
when it comes to formalization of mathematics. (We
thought a lecture class with 1000 students was large until
Thrun and Norvig taught a lecture class at Stanford with
160,000 enrolled students.)

13

Flyspeck 2012

16

The Flyspeck project is about 80% complete. The project has
five parts:

1. The text part of the proof is contained in an unpublished
manuscript “Dense Sphere Packings: a formal blueprint.”
Formalization is being done by a team of researchers.

2. The first computer program (plane graph generation) was
formalized by G. Bauer and T. Nipkow.

3. The second computer program (linear programming) is
nearly formalized by S. Obua and A. Solovyev.

4. The third computer program (nonlinear inequality
proving) is work in progress (Solovyev). I will
describe progress on this part today.

5. The integration of text part of the proof with computer
parts.

14

Flyspeck 2012

17

• Last year, I did the preliminary work of cleaning up the
existing computer code for nonlinear inequality proving.

• I have an informal proofs of a collection of about 500
foramlly specified nonlinear inequalities. They were
mostly automatically generated.

• Testing of inequalities is done with a gradient descent
program, developed at U. Maryland.

• Interval arithmetic verification is done by code developed
for the 1998 proof of the Kepler conjecture.

• This is now a few thousand lines of C++ code.

• Additional C++ code to test and verify a particular
inequality is automatically generated from the formal
specification. It automatically converts inequalities into
an optimized form, splits piecewise analytic functions,. . .

15

Flyspeck 2012

18

• The main part of the C++ code was translated into about
1K lines of OCaml.

• At this point, late last year, I turned to the project over to
Solovyev for formalization.

• The process is similar to that with the linear programming
part of the proof. I cleaned up the procedure and
implemented it in Ocaml, then Solovyev stepped in and
did the formalization of linear programming, optimizing
arithmetic in HOL Light for fast execution.

• Solovyev now has automated nonlinear inequality
proving in HOL Light. What follows is a report of his
recent work.

16

Flyspeck 2012

19

Problem Domain for Nonlinear inequalities

• D = product of compact intervals in Rn, (n ≤ 6).

• fi analytic function on Ui, for i = 1, . . . , k, such that
D ⊂

⋃
Ui.

• Prove that for all x ∈ D, there exists i such that x ∈ Ui

and fi(x) < 0.

• In most cases, the analytic functions fi are expressed in
terms of field operations on R,

√
· and arctan.

17

Flyspeck 2012

20

Examples of Flyspeck Inequalities
Definitions

∆(x1, . . . , x6) = x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+ x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+ x3x6(x1 + x2 − x3 + x4 + x5 − x6)

− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

∆y (y1, . . . , y6) = ∆(y2
1 , . . . , y2

6), ∆4 =
∂∆

∂x4
,

dih (y1, . . . , y6) =
π

2
− arctan2

(√
4y2

1 ∆y (y1, . . . , y6),−∆4(y
2
1 , . . . , y2

6)

)
.

Simple Flyspeck inequalities

Let D = {x ∈ R6 | 2 ≤ xi ≤ 2.52}.
∀x. x ∈ D =⇒dih (x) < 1.893,

∀x. x ∈ D =⇒ ∆y (x) > 0.
Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 78 / 109

Flyspeck 2012

21

source: Solovyev thesis overview, March 2012

20

What the code does

• Arithmetic is floating point with IEEE-754 directed
rounding.

• Real numbers are represented by interval arithmetic.

• Analytic functions f are approximated with Taylor
expansions with rigorously computed error terms:

|f(x)− f(x0)−∇f(x0) · (x− x0)| <
∑

i,j

mijεiεj

εi = |xi − x0
i |

• The domain D is partitioned into smaller rectangles as
needed until the Taylor approximations are accurate
enough to yield the desired inequalities.

18

Flyspeck 2012

22

• The code is optimized in various ways. For example, if
the function f is increasing in i, then f(x) < 0 on D

provided that f(x) < 0 on along the right-hand boundary
of D.

• The Taylor expansions are generated by symbolic
differentiation using the chain rule, product rule, and so
forth. A few primitive functions (

√
·, 1/·, arctan and

some common polynomials) are hand-coded.

19

Flyspeck 2012

23

Numerals with an Arbitrary Base

Basic constructors
Represent a numeral using an arbitrary base b ≥ 2. When the base b is
fixed, define constants

" Di (n) = bn + i .

Example

If b = 10, then we can write 123 = D3(D2(D1(0))).

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 44 / 109

Flyspeck 2012

24

source: Solovyev thesis overview, March 2012

20

Arithmetic Operation with an Arbitrary Base

Addition of “digits”

If i + j = k < b, then

! Di (m) + Dj(n) = Dk(m + n)

If i + j = k ≥ b, then

! Di (m) + Dj(n) = Dk−b(SUC (m + n))

Addition of numerals
Store all theorems for addition of “digits” in a hash table.

The names of the constants are used as key values: the theorem with
the left hand side D1(m) + D2(n) has the key value ”D1D2”.

The addition of numerals is implemented in the usual way.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 45 / 109

Flyspeck 2012

25

source: Solovyev thesis overview, March 2012

20

Performance Tests: Multiplication

Table: Performance results for 1000 multiplication operations

Size of operands HOL Light mult. Base 16 mult. Base 256 mult.

5 decimal digits 2.220 s 0.428 s 0.148 s
10 decimal digits 7.216 s 1.292 s 0.376 s
15 decimal digits 16.081 s 3.880 s 1.316 s
20 decimal digits 59.160 s 6.092 s 2.256 s
25 decimal digits 85.081 s 10.645 s 3.592 s

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 47 / 109

Flyspeck 2012

26

source: Solovyev thesis overview, March 2012

20

Representation of Formal Floating Point Numbers
Constants

num exp : num → num → num,

min exp : num,

float : bool → num → num → real .

Definition

" num exp n e = n ∗ be

b is a numeral: base of the natural number arithmetic.

Definition

" float s n e = (−&1)if s then 1 else 0 ∗&(num exp n e)/&(bmin exp)

In other words, float F n e = nbe

bmin exp , float T n e = −float F n e.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 49 / 109

Flyspeck 2012

27

source: Solovyev thesis overview, March 2012

20

Operations with Floating Point Numbers

Operations yield inequalities.

The precision of each operation is controlled by a special (informal)
parameter.

Notation: m = min exp, nexp = num exp, f = float.

Truncation Theorems for num exp: Example

! nexp 1234 10 ≤ nexp 13 12

! nexp 1234 10 ≥ nexp 12 12

Right hand sides contain at most 2 digits in the first argument (base 10 is
assumed).

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 50 / 109

Flyspeck 2012

28

source: Solovyev thesis overview, March 2012

20

More Operations with Floating Point Numbers

x/y and
√

x can be formalized using results for x ∗ y .

x/y

To find an upper bound for x/y (assuming all numbers are non-negative),
it is enough to find z such that x ≤ z ∗ y , then x/y ≤ z .

√
x

To find an upper bound for
√

x , it is enough to find z such that x ≤ z ∗ z ,
then

√
x ≤ z .

The corresponding values z can be found “informally”, and then the
corresponding inequalities can be proved with formal arithmetic.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 51 / 109

Flyspeck 2012

29

source: Solovyev thesis overview, March 2012

20

Elementary Functions: Arctangent
Constants

! halfatn x =
x

1 +
√

1 + x2

! halfatn4 = halfatn o halfatn o halfatn o halfatn

! halfatn4co(x , j) =
(−1)jhalfatn4(x)2j+1

2j + 1

Properties

! ∀x . atn(x) = 2 ∗ atn(halfatn(x))

! ∀x . |halfatn(x)| < 1

! ∀n x v ε1 ε2 ε. 2−(6n+5) ≤ ε1 ∧ |16

n∑

j=0

halfatn4co(x , j)

− v | ≤ ε2

∧ ε1 + ε2 ≤ ε =⇒ |atn(x)− v | ≤ ε.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 52 / 109

Flyspeck 2012

30

source: Solovyev thesis overview, March 2012

20

Formal Interval Arithmetic

Definition

interval arith : real → (real , real)→ bool

" interval arith x (lo, hi) ⇐⇒ lo ≤ x ∧ x ≤ hi

Example

Add intervals " 1.23 ≤ x ≤ 1.3 and " 0.5 ≤ y ≤ 1.7.
The result is (base 10, precision is 2 digits): " 1.7 ≤ x + y ≤ 3.

Intervals with variables

a ≤ x ≤ b " lo ≤ f (x) ≤ hi

This theorem is equivalent to the theorem

" ∀x . a ≤ x ≤ b =⇒ lo ≤ f (x) ≤ hi

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 54 / 109

Flyspeck 2012

31

source: Solovyev thesis overview, March 2012

20

Solution Certificate

OCaml Definition of the Solution Certificate
Certificate =
| Cell_pass
| Cell_glue of int * Certificate * Certificate
| Cell_mono of bool * int * Certificate

No information about subdomains is explicitly given: subdomains can be
reconstructed from a certificate.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 84 / 109

Flyspeck 2012

32

source: Solovyev thesis overview, March 2012

20

Formal Taylor Intervals for Polynomials

Computation Procedure

Formally compute first and second derivatives of a polynomial.

Generate a theorem for computing a formal Taylor interval based on
expressions for derivatives.

Generate a procedure which instantiates the generated theorem for
different domains and formally evaluates all numerical computations.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 89 / 109

Flyspeck 2012

33

source: Solovyev thesis overview, March 2012

20

Test Polynomial Problems

Prove m < p(x) for all x ∈ [a, b].

schwefel: (x1 − x2
2)2 + (x2 − 1)2 + (x1 − x2

3)2 + (x3 − 1)2,
m = −5.8806× 10−10, [a, b] = [(−10,−10,−10), (10, 10, 10)]

caprasse:
−x1x3

3 +4x2x2
3x4 +4x1x3x2

4 +2x2x3
4 +4x1x3 +4x2

3 −10x2x4−10x2
4 +2,

m = −3.1801, [a, b] = [(−0.5,−0.5,−0.5,−0.5), (0.5, 0.5, 0.5, 0.5)]

lv: x1x2
2 + x1x2

3 + x1x2
4 − 1.1x1 + 1, m = −20.801,

[a, b] = [(−2,−2,−2,−2), (2, 2, 2, 2)]

magnetism: x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1,

m = −0.25001,
[a, b] = [(−1,−1,−1,−1,−1,−1,−1), (1, 1, 1, 1, 1, 1, 1)]

heart: −x1x3
6 + 3x1x6x2

7 − x3x3
7 + 3x3x7x2

6 − x2x3
5 + 3x2x5x2

8 − x4x3
8 +

3x4x8x2
5 − 0.9563453, m = −1.7435,

[a, b] = [(−0.1, 0.4,−0.7,−0.7, 0.1,−0.1,−0.3,−1.1),
(0.4, 1,−0.4, 0.4, 0.2, 0.2, 1.1,−0.3)]

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 95 / 109

Flyspeck 2012

34

source: Solovyev thesis overview, March 2012

20

Performance Tests: Polynomial Inequalities

Table: Test Results for Polynomial Inequalities in PVS and HOL Light

Inequality ID # variables PVS Bernstein (s) HOL Light (s)

schwefel 3 10.23 93.72
caprasse 4 11.44 11.83
lv 4 4.75 2.21
magnetism 7 160.44 11.97
heart 8 79.68 23.21

Note: arithmetic computations in PVS are done by native machine
arithmetic. HOL Light verification procedure is completely formal.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 94 / 109

Flyspeck 2012

35

source: Solovyev thesis overview, March 2012

20

Existing Formal Procedures

Univariate inequalities in PVS based on Taylor interval arithmetic.
http://shemesh.larc.nasa.gov/people/cam/publications/

Multivariate polynomial inequalities in PVS based on Bernstein
polynomials.
http://shemesh.larc.nasa.gov/people/cam/Bernstein/
Inspired by Roland Zumkeller’s optimization program Sergei.
http://code.google.com/p/sergei/

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 76 / 109

Flyspeck 2012

36

source: Solovyev thesis overview, March 2012

20

Verification of Flyspeck Inequalities

D = {x ∈ R6 | 2 ≤ xi ≤ 2.52}

Test 1

Verify ∀y . y ∈ D =⇒ 0 < ∆y (y).

Certificate size (the number of Cell pass elements): 27.

Formal verification time (float precision = 10): 26.189 seconds.

Test 2

Verify ∀y . y ∈ D =⇒dih (y) < 1.893.

Certificate size: 4317.

Formal verification time (float precision = 15): about 13.5 hours.

Test 3
More complicated Flyspeck inequalities.

Certificate sizes: 8000–67000.
Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 96 / 109

Flyspeck 2012

37

source: Solovyev thesis overview, March 2012

20

Optimization Strategies

Cached arithmetic (low level and high level).

Verification of groups of inequalities (on common subdomains).

Adaptive arithmetic precision.

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 97 / 109

Flyspeck 2012

38

source: Solovyev thesis overview, March 2012

20

Flyspeck 2012

Benchmarks from Obua’s Thesis.

39

A P P E N D I X B

Results of Running the Basic LPs

In this appendix we list our results of running our methods on the archive of
tame graphs. For each tame graph, we assumed that it forms a graph system. By
generating the corresponding basic linear program and trying to prove it infeasible
we tried to show that this assumption was false. Our results are presented in tables
of the following format:

Inconsistent Time

The ’#’ column contains the number of the tame graph that has been examined.
The numbering is chosen to correspond to the order of the tame graphs listed in [22].
A tame graph is in class n if all of its faces have at most n edges and there is at least
one face with n edges. Class 3 ranges from #1 to #20, class 4 from #21 to #943, class
5 from #944 to #2488, class 6 from #2489 to #2726, class 7 from #2727 to #2749, and
class 8 from #2750 to #2771.

The ’Inconsistent’ column says ’Yes’ if we have successfully shown the infeasi-
bility of the basic linear program induced by the tame graph, and therefore shown
the inconsistency of the corresponding graph system. If it says ’?’, we only know
that our methods failed on this graph.

Finally, the ’Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.

source: Obua’s thesis

Flyspeck 2012

Benchmarks

40

80 Appendix B — Results of Running the Basic LPs

Inconsistent Time
1 Yes 15.4
2 Yes 21.9
3 Yes 17.6
4 Yes 39.8
5 Yes 19.4
6 Yes 23.1
7 Yes 26.9
8 Yes 24.3
9 Yes 41.5

10 Yes 40.7
11 Yes 37.7
12 Yes 30.4
13 Yes 30.9
14 Yes 47.3
15 Yes 53.5
16 Yes 66.8
17 Yes 56.1
18 ? 47.3
19 Yes 15.9
20 Yes 12.7
21 Yes 20.0
22 Yes 20.8
23 Yes 22.9
24 Yes 23.6
25 Yes 24.3
26 Yes 21.0
27 Yes 21.6
28 Yes 18.0
29 Yes 18.6
30 Yes 21.6
31 Yes 20.6
32 Yes 22.5
33 Yes 19.8
34 Yes 20.6
35 Yes 21.9
36 ? 19.8
37 Yes 21.6
38 Yes 21.6
39 Yes 23.9
40 Yes 22.9
41 Yes 19.2
42 Yes 25.8
43 Yes 22.7
44 Yes 23.0
45 Yes 19.7
46 Yes 27.4
47 Yes 18.2
48 Yes 21.3
49 Yes 22.4
50 Yes 22.0
51 Yes 20.9
52 Yes 18.2
53 Yes 18.8
54 Yes 20.0
55 Yes 20.3
56 Yes 20.9
57 Yes 18.5
58 Yes 19.9
59 Yes 18.0
60 Yes 17.3
61 ? 19.4
62 ? 19.2
63 Yes 19.7
64 Yes 23.4
65 Yes 19.4
66 Yes 23.4
67 Yes 22.8
68 Yes 19.7
69 Yes 23.5
70 Yes 24.0
71 Yes 24.7
72 Yes 19.8
73 Yes 21.6
74 Yes 25.9
75 Yes 27.1
76 Yes 17.6
77 Yes 28.7
78 ? 26.1
79 Yes 23.3
80 Yes 18.3
81 ? 28.3
82 Yes 22.2
83 Yes 25.4
84 Yes 18.8
85 Yes 25.4
86 Yes 26.0
87 Yes 21.9
88 Yes 25.0
89 ? 26.9
90 ? 27.5
91 ? 19.4
92 Yes 23.5
93 Yes 26.0
94 Yes 25.3
95 Yes 40.4
96 Yes 25.1
97 Yes 22.6
98 Yes 18.7
99 Yes 22.2

100 Yes 18.0

Inconsistent Time
101 Yes 18.7
102 Yes 19.9
103 Yes 24.0
104 Yes 18.1
105 Yes 23.8
106 Yes 25.0
107 Yes 21.1
108 Yes 18.4
109 Yes 24.2
110 Yes 25.6
111 Yes 18.8
112 Yes 23.6
113 Yes 26.0
114 Yes 19.4
115 Yes 18.1
116 Yes 23.4
117 Yes 18.3
118 Yes 29.3
119 Yes 23.7
120 Yes 17.8
121 Yes 22.9
122 Yes 23.9
123 Yes 25.9
124 Yes 25.6
125 Yes 23.5
126 Yes 26.0
127 Yes 26.7
128 Yes 24.5
129 Yes 20.4
130 Yes 20.4
131 Yes 18.4
132 Yes 28.1
133 ? 19.8
134 Yes 27.2
135 Yes 26.2
136 Yes 21.3
137 Yes 24.7
138 ? 20.6
139 Yes 19.3
140 ? 19.7
141 Yes 22.8
142 Yes 27.7
143 ? 18.5
144 Yes 22.4
145 ? 21.0
146 ? 19.6
147 Yes 31.5
148 Yes 17.7
149 Yes 18.7
150 Yes 21.7
151 Yes 21.7
152 Yes 26.0
153 Yes 28.2
154 Yes 21.2
155 Yes 24.6
156 Yes 23.2
157 Yes 23.6
158 ? 20.1
159 Yes 29.4
160 Yes 19.8
161 Yes 17.8
162 Yes 21.2
163 Yes 19.9
164 Yes 26.8
165 ? 28.0
166 Yes 25.2
167 Yes 25.2
168 Yes 28.3
169 Yes 27.4
170 Yes 27.9
171 Yes 17.9
172 Yes 32.4
173 Yes 17.8
174 Yes 18.0
175 ? 22.0
176 Yes 25.6
177 Yes 22.9
178 Yes 25.8
179 Yes 17.8
180 Yes 22.2
181 Yes 24.6
182 Yes 28.5
183 Yes 20.4
184 Yes 21.9
185 Yes 23.1
186 Yes 25.8
187 Yes 30.3
188 Yes 28.4
189 Yes 27.0
190 Yes 18.3
191 Yes 25.9
192 Yes 20.4
193 Yes 24.7
194 Yes 30.7
195 Yes 27.6
196 Yes 25.6
197 ? 23.6
198 Yes 20.5
199 Yes 19.8
200 Yes 20.8

Inconsistent Time
201 Yes 21.4
202 Yes 24.1
203 Yes 18.2
204 Yes 30.0
205 Yes 26.1
206 Yes 27.2
207 Yes 26.1
208 Yes 31.8
209 Yes 25.1
210 Yes 28.3
211 Yes 25.8
212 Yes 27.7
213 Yes 22.3
214 Yes 21.0
215 Yes 29.4
216 Yes 29.9
217 Yes 26.6
218 Yes 29.5
219 Yes 26.4
220 Yes 26.4
221 Yes 27.0
222 Yes 35.0
223 Yes 31.7
224 Yes 29.1
225 Yes 21.2
226 Yes 24.1
227 Yes 25.2
228 Yes 32.6
229 Yes 22.7
230 Yes 27.0
231 Yes 26.8
232 Yes 28.7
233 Yes 28.8
234 Yes 32.3
235 Yes 29.1
236 Yes 28.6
237 Yes 26.7
238 Yes 31.1
239 Yes 30.0
240 Yes 30.8
241 Yes 35.9
242 Yes 21.8
243 Yes 30.4
244 Yes 17.6
245 Yes 23.1
246 Yes 28.1
247 Yes 27.5
248 Yes 31.7
249 Yes 27.2
250 Yes 30.5
251 Yes 24.3
252 Yes 21.3
253 Yes 18.9
254 Yes 22.4
255 Yes 18.2
256 ? 22.8
257 Yes 17.8
258 Yes 19.0
259 Yes 26.9
260 Yes 18.9
261 Yes 24.4
262 Yes 26.4
263 Yes 21.7
264 Yes 26.9
265 Yes 29.1
266 Yes 25.5
267 Yes 24.0
268 Yes 23.9
269 Yes 22.8
270 Yes 17.6
271 Yes 27.0
272 Yes 22.2
273 Yes 19.5
274 Yes 22.9
275 Yes 25.6
276 Yes 26.6
277 Yes 25.4
278 Yes 27.8
279 Yes 27.8
280 Yes 25.3
281 Yes 27.2
282 Yes 28.5
283 Yes 23.5
284 Yes 25.4
285 Yes 27.2
286 Yes 28.1
287 Yes 30.4
288 Yes 24.8
289 Yes 22.7
290 Yes 25.9
291 Yes 28.5
292 Yes 30.3
293 Yes 22.7
294 Yes 24.9
295 Yes 30.1
296 Yes 23.5
297 Yes 23.7
298 Yes 22.7
299 Yes 28.0
300 Yes 28.7

Inconsistent Time
301 Yes 26.4
302 Yes 28.4
303 Yes 27.0
304 Yes 26.7
305 Yes 30.9
306 Yes 20.1
307 Yes 24.7
308 Yes 32.6
309 Yes 21.0
310 Yes 36.2
311 Yes 32.9
312 Yes 31.1
313 Yes 30.0
314 Yes 32.3
315 Yes 36.4
316 Yes 17.9
317 Yes 17.6
318 Yes 22.1
319 Yes 18.2
320 Yes 19.3
321 Yes 22.8
322 Yes 16.0
323 Yes 20.0
324 Yes 22.6
325 Yes 18.9
326 Yes 17.7
327 Yes 20.9
328 Yes 16.1
329 Yes 17.8
330 Yes 20.7
331 Yes 20.4
332 Yes 27.3
333 Yes 19.1
334 Yes 21.2
335 Yes 19.9
336 Yes 18.0
337 Yes 18.7
338 Yes 19.7
339 Yes 18.3
340 Yes 18.8
341 Yes 21.3
342 Yes 18.2
343 Yes 17.6
344 Yes 17.8
345 Yes 21.5
346 Yes 18.7
347 Yes 18.8
348 Yes 20.3
349 Yes 25.6
350 Yes 27.3
351 Yes 22.6
352 Yes 21.5
353 Yes 25.0
354 Yes 25.2
355 Yes 28.4
356 Yes 20.0
357 Yes 19.5
358 Yes 18.8
359 Yes 23.8
360 Yes 16.8
361 Yes 17.8
362 Yes 18.7
363 Yes 17.3
364 Yes 19.9
365 Yes 19.1
366 Yes 19.3
367 Yes 16.1
368 Yes 19.4
369 ? 24.5
370 Yes 18.3
371 Yes 18.2
372 Yes 19.1
373 Yes 19.7
374 Yes 18.0
375 Yes 21.6
376 Yes 18.2
377 Yes 19.8
378 Yes 19.4
379 Yes 20.3
380 Yes 20.9
381 Yes 23.5
382 Yes 20.5
383 Yes 22.8
384 Yes 18.7
385 Yes 31.9
386 Yes 22.8
387 Yes 25.5
388 Yes 21.2
389 Yes 19.2
390 Yes 25.6
391 Yes 26.5
392 Yes 25.1
393 Yes 21.0
394 Yes 25.2
395 Yes 23.4
396 Yes 18.8
397 Yes 24.9
398 Yes 25.3
399 Yes 24.1
400 Yes 24.2

Inconsistent Time
401 Yes 24.9
402 Yes 26.7
403 Yes 24.1
404 Yes 21.5
405 Yes 25.3
406 Yes 27.0
407 Yes 27.3
408 Yes 19.1
409 Yes 23.5
410 Yes 19.6
411 Yes 31.9
412 Yes 23.2
413 Yes 24.0
414 Yes 25.2
415 Yes 23.5
416 Yes 23.2
417 Yes 20.6
418 Yes 21.7
419 Yes 22.7
420 Yes 22.1
421 Yes 19.0
422 Yes 22.5
423 Yes 22.1
424 Yes 25.4
425 Yes 24.0
426 Yes 20.3
427 Yes 25.0
428 Yes 20.9
429 Yes 24.2
430 Yes 22.8
431 Yes 24.0
432 Yes 19.8
433 Yes 20.1
434 Yes 23.8
435 Yes 18.5
436 Yes 24.9
437 Yes 25.6
438 Yes 23.6
439 Yes 20.8
440 Yes 19.1
441 Yes 21.4
442 Yes 18.8
443 Yes 20.2
444 Yes 18.7
445 Yes 19.8
446 Yes 19.7
447 Yes 24.7
448 Yes 24.2
449 Yes 27.3
450 Yes 26.9
451 Yes 24.2
452 Yes 23.0
453 Yes 26.1
454 Yes 20.3
455 Yes 21.2
456 Yes 27.5
457 Yes 25.3
458 Yes 25.0
459 Yes 23.6
460 Yes 23.3
461 Yes 27.2
462 Yes 25.1
463 Yes 20.8
464 Yes 29.2
465 Yes 27.6
466 Yes 35.8
467 Yes 23.8
468 Yes 19.9
469 Yes 17.9
470 Yes 25.2
471 Yes 28.3
472 Yes 25.7
473 Yes 24.6
474 Yes 27.3
475 Yes 24.2
476 Yes 25.6
477 Yes 25.1
478 Yes 24.5
479 Yes 19.1
480 Yes 19.0
481 Yes 23.0
482 Yes 19.5
483 Yes 18.3
484 Yes 15.1
485 Yes 15.2
486 Yes 16.8
487 Yes 18.7
488 Yes 16.6
489 Yes 15.4
490 Yes 16.1
491 Yes 17.2
492 Yes 16.9
493 Yes 16.7
494 Yes 14.1
495 Yes 14.2
496 Yes 18.0
497 Yes 17.8
498 Yes 15.9
499 Yes 18.2
500 Yes 19.1

source: Obua’s thesis

Performance Tests

Each Flyspeck linear program can be completely formally verified in about
5 seconds. There are about 50,000 linear programs in the Flyspeck project.

Linear program ID # vars # ineqs HOL arith Base 256 arith

18288526809 743 519 4.048 s 2.772 s
168941837467 750 591 5.096 s 3.196 s
25168582633 784 700 8.392 s 4.308 s
72274026085 824 773 7.656 s 5.120 s
28820130324 875 848 9.292 s 5.680 s

202732667936 912 875 9.045 s 5.816 s
156588677070 920 804 8.113 s 5.252 s
123040027899 1074 1002 11.549 s 6.664 s
110999880825 1114 1000 10.085 s 6.780 s

Alexey Solovyev (University of Pittsburgh) Formal Methods March 13, 2012 69 / 109

Flyspeck 2012

41

source: Solovyev thesis overview, March 2012

20

Flyspeck 2012

Thank You!

42

