Game Theory: introduction and applications to computer networks

Zero-Sum Games (follow-up)

Giovanni Neglia INRIA – EPI Maestro 20 January 2014

Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

The game has a saddle point iff max, min, u(v,w) = min, max, u(v,w)

• Rose C ε argmax min_w u(v,w) most cautious strategy for Rose: it secures the maximum worst case gain independently from Colin's action (the game **maximin value**)

• Colin B ϵ argmin max, u(v,w)most cautious strategy for Colin: it secures the minimum worst case loss (the game *minimax value*)

Rose

 Another formulation:

 The game has a saddle point iff maximin = minimax,
 This value is called the value of the game

The game has a saddle point iff max_v min_w u(v,w) = min_w max_v u(v,w) N.C.

Two preliminary remarks

1. It holds (always)

max, min, u(v,w) <= min, max, u(v,w) because min, u(v,w)<=u(v,w)<=max, u(v,w) for all v and w

- 2. By definition, (x,y) is a saddle point iff
 - $u(x,y) \le u(x,w)$ for all w in S_{Colin}
 - i.e. $u(x,y)=min_w u(x,w)$
 - \bigcirc u(x,y) >= u(v,y) for all v in S_{Rose}
 - i.e. $u(x,y)=max_v u(v,y)$

- The game has a saddle point iff max, min, u(v,w) = min, max, u(v,w)
- 1. $\max_{v} \min_{w} u(v,w) \leq \min_{w} \max_{v} u(v,w)$
- 2. if (x,y) is a saddle point

 u(x,y)=min_w u(x,w), u(x,y)=max_v u(v,y)

 N.C.

 u(x,y)=min_wu(x,w)<=max_vmin_wu(v,w)<=min_wmax_vu(v,w)<=max_vu(v,y)=u(x,y)

The game has a saddle point iff max, min, u(v,w) = min, max, u(v,w)

The game has a saddle point iff max, min, u(v,w) = min, max, u(v,w)

This result provides also another way to find saddle points

Properties

- **Given two saddle points (** x_1 , y_1) and (x_2 , y_2),
 - they have the same payoff (equivalence property):
 - it follows from previous proof:

 $u(x_1,y_1) = max_v min_w u(v,w) = u(x_2,y_2)$

• (x₁,y₂) and (x₂,y₁) are also saddle points(*interchangeability property*): y₁

as in previous proof

They make saddle point a very nice solution!

Y₂

What is left?

There are games with no saddle-point! □ An example?

maximin <> minimax

What is left?

There are games with no saddle-point!
 An example? An even simpler one

minimax

Some practice: find all the saddle points

	A	В	С	D
A	3	2	4	2
В	2	1	3	0
С	2	2	2	2

	A	В	С
A	-2	0	4
В	2	1	3
С	3	-1	-2

	A	В	С
A	4	3	8
В	9	5	1
С	2	7	6

Games with no saddle points

What should players do?

o resort to randomness to select strategies

Mixed Strategies

- Each player associates a probability distribution over its set of strategies
- Expected value principle: maximize the expected payoff

	Colin	1/3	2/3
		A	В
Dose	A	2	0
NUJE	В	-5	3

Rose's expected payoff when playing A = 1/3*2+2/3*0=2/3Rose's expected payoff when playing B = 1/3*-5+2/3*3=1/3

How should Colin choose its prob. distribution?

Rose's exp. gain when playing A = 2p + (1-p)*0 = 2pRose's exp. gain when playing B = -5*p + (1-p)*3 = 3-8p

- How should Colin choose its prob. distribution?
 - Rose cannot take advantage of p=3/10
 - for p=3/10 Colin guarantees a loss of 3/5, what about Rose's?

Colin's exp. loss when playing A = $2q - 5^*(1-q) = 7q-5$ Colin's exp. loss when playing B = $0^*q+3^*(1-q) = 3-3q$

How should Rose choose its prob. distribution?
Colin cannot take advantage of q=8/10
for q=8/10 Rose guarantees a gain of?

2x2 game

Rose playing the mixed strategy (8/10,2/10) and Colin playing the mixed strategy (3/10,7/10) is the equilibrium of the game

- No player has any incentives to change, because any other choice would allow the opponent to gain more
- Rose gain 3/5 and Colin loses 3/5

mx2 game

By playing p=3/10, Colin guarantees max exp. loss = 3/5
 it loses 3/5 if Rose plays A or B, it wins 13/5 if Rose plays C
 Rose should not play strategy C

Minimax Theorem

- Every two-person zero-sum game has a solution, i.e, there is a unique value v (value of the game) and there are optimal (pure or mixed) strategies such that
 - Rose's optimal strategy guarantees to her a payoff >= v (no matter what Colin does)
 - Colin's optimal strategies guarantees to him a payoff <= v (no matter what Rose does)
- This solution can always be found as the solution of a kxk subgame

Proved by John von Neumann in 1928!
 birth of game theory...

How to solve mxm games

- if all the strategies are used at the equilibrium, the probability vector is such to make equivalent for the opponent all its strategies
 - a linear system with m-1 equations and m-1 variables
 - if it has no solution, then we need to look for smaller subgames

Example:

- $\circ 2x 5y + 3(1 x y) = 0x + 3y 5(1 x y)$
- 2x-5y+3(1-x-y)=1x-2y+3(1-x-y)

How to solve 2x2 games

□ If the game has no saddle point

- calculate the absolute difference of the payoffs achievable with a strategy
- o invert them
- normalize the values so that they become probabilities

How to solve mxn matrix games

- 1. Eliminate dominated strategies
- 2. Look for saddle points (solution of 1x1 games), if found stop
- Look for a solution of all the hxh games, with h=min{m,n}, if found stop
- 4. Look for a solution of all the (h-1)x(h-1) games, if found stop
 5. ...
- h+1. Look for a solution of all the 2x2 games, if found stop
- **Remark**: when a potential solution for a specific kxk game is found, it should be checked that Rose's m-k strategies not considered do not provide her a better outcome given Colin's mixed strategy, and that Colin's n-k strategies not considered do not provide him a better outcome given Rose's mixed strategy.

Game Theory: introduction and applications to computer networks

Two-person non zero-sum games

Giovanni Neglia INRIA – EPI Maestro

Slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

Outline

□ Two-person zero-sum games

- Matrix games
 - Pure strategy equilibria (dominance and saddle points), ch 2
 - Mixed strategy equilibria, ch 3
- O Game trees, ch 7

□ Two-person non-zero-sum games

- Nash equilibria...
 - ...And its limits (equivalence, interchangeability, Prisoner's dilemma), ch. 11 and 12
- Strategic games, ch. 14
- Subgame Perfect Nash Equilibria (not in the book)
- Repeated Games, partially in ch. 12
- Evolutionary games, ch. 15
- □ N-persons games

Two-person Non-zero Sum Games

Players are not strictly opposed
 payoff sum is non-zero

	Player 2		
		A	В
Player 1 -	A	3,4	2,0
	В	5,1	-1, 2

Situations where interest is not directly opposed
 players could cooperate

communication may play an important role

• for the moment assume no communication is possible

What do we keep from zero-sum games?

Dominance

- Movement diagram
 - pay attention to which payoffs have to be considered to decide movements

Enough to determine pure strategies equilibria
 but still there are some differences (see after)

What can we keep from zero-sum games?

As in zero-sum games, pure strategies equilibria do not always exist...

...but we can find mixed strategies equilibria