Game Theory: introduction and applications to computer networks

Zero-Sum Games (follow-up)

Giovanni Neglia
INRIA - EPI Maestro
20 January 2014

Part of the slides are based on a previous course with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

Saddle Points main theorem

\square The game has a saddle point iff $\max _{v} \min _{w} u(v, w)=\min _{w} \max _{v} u(v, w)$

	Colin			
	A	B	D	min_{w}
A	12	-1	0	-1
B	5	1	-20	-20
c	3	2	3	2
D	-16	0	16	-16
max ${ }_{\text {v }}$	12	2	16	

- Rose C ε argmax $\min _{w} u(v, w)$ most cautious strategy for Rose: it secures the maximum worst case gain independently from Colin's action (the game maximin value)
- Colin $B \varepsilon \operatorname{argmin} \max _{v} u(v, w)$ most cautious strategy for Colin: it secures the minimum worst case loss (the game minimax value)

Saddle Points main theorem

\square Another formulation:

- The game has a saddle point iff maximin $=$ minimax ,
\square This value is called the value of the game

Saddle Points main theorem

\square The game has a saddle point iff $\max _{v} \min _{w} u(v, w)=\min _{w} \max _{v} u(v, w)$
N.C.

Two preliminary remarks

1. It holds (always)
$\max _{v} \min _{w} u(v, w)<=\min _{w} \max _{v} u(v, w)$
because $\min _{w} u(v, w)<=u(v, w)<=$ max $_{v} u(v, w)$ for all v and w
2. By definition, (x, y) is a saddle point iff
o $u(x, y)<=u(x, w)$ for all w in $S_{\text {Colin }}$

- i.e. $u(x, y)=\min _{w} u(x, w)$
o $u(x, y)>=u(v, y)$ for all v in $S_{\text {Rose }}$
- i.e. $u(x, y)=\max _{v} u(v, y)$

Saddle Points main theorem

\square The game has a saddle point iff $\max _{v} \min _{w} u(v, w)=\min _{w} \max _{v} u(v, w)$

1. $\max _{v} \min _{w} u(v, w)<=\min _{w} \max _{v} u(v, w)$
2. if (x, y) is a saddle point
$\circ u(x, y)=\min _{w} u(x, w), \quad u(x, y)=\max _{v} u(v, y)$
N.C.
$u(x, y)=\min _{w} u(x, w)<=\max _{v} \min _{w} u(v, w)<=\min _{w} \max _{v} u(v, w)<=\max _{v} u(v, y)=u(x, y)$

Saddle Points main theorem

\square The game has a saddle point of $\max _{v} \min _{w} u(v, w)=\min _{w} \max _{v} u(v, w)$

SC.

x in $\operatorname{argmax} \min _{w} u(v, w)$
y in argmin $\max _{v} u(v, w)$
We prove that (x, y) is a saddle-point
w_{0} in $\operatorname{argmin}_{w} u(x, w)\left(\max _{v} \min _{w} u(v, w)=u\left(x, w_{0}\right)\right)$
v_{0} in $\operatorname{argmax}_{v} u(v, y)\left(\min _{w} \max _{v} u(v, w)=u\left(v_{0}, y\right)\right)$
$u\left(x, w_{0}\right)=\min _{w} u(x, w)<=u(x, y)<=\max _{v} u(v, y)=u\left(v_{0}, y\right)$

But $u\left(x, w_{0}\right)=u\left(v_{0}, y\right)$ by hypothesis, then
$u(x, y)=\min _{w} u(x, w)=\max _{v}(v, y)$

Saddle Points main theorem

\square The game has a saddle point iff $\max _{v} \min _{w} u(v, w)=\min _{w} \max _{v} u(v, w)$

	Colin			
	A	B	D	$\min _{w}$
A	12	-1	0	-1
	5	1	-20	-20
	3	2	-3	2
	-16	0	16	-16
max $_{v}$	12	2	16	

This result provides also another way to find saddle points

Properties

\square Given two saddle points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$,
o they have the same payoff (equivalence property):

- it follows from previous proof:

$$
u\left(x_{1}, y_{1}\right)=\max _{v} \min _{w} u(v, w)=u\left(x_{2}, y_{2}\right)
$$

o $\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{1}\right)$ are also saddle points(interchangeability property): $y_{1} \quad \mid \quad y_{2}$

- as in previous proof

They make saddle point a very nice solution!

y_{1}		y_{2}		
x_{2}				
x_{1}	-	$<=$		
				\ddots

What is left?

\square There are games with no saddle-point!
\square An example?

	R	P	S	\min
R	0	-1	1	-1
P	1	0	-1	-1
S	-1	1	0	-1
\max	1	1	1	
minimax				

maximin <> minimax

What is left?

\square There are games with no saddle-point!

- An example? An even simpler one

Some practice: find all the saddle points

	A	B	C	D
A	3	2	4	2
B	2	1	3	0
C	2	2	2	2

	A	B	C
A	-2	0	4
B	2	1	3
C	3	-1	-2

	A	B	C
A	4	3	8
B	9	5	1
C	2	7	6

Games with no saddle points

\square What should players do?
o resort to randomness to select strategies

Mixed Strategies

\square Each player associates a probability distribution over its set of strategies
\square Expected value principle: maximize the expected payoff

Rose' s expected payoff when playing $A=1 / 3^{*} 2+2 / 3 * 0=2 / 3$ Rose's expected payoff when playing $B=1 / 3^{\star}-5+2 / 3^{*} 3=1 / 3$
\square How should Colin choose its prob. distribution?
2×2 game

Rose's exp. gain when playing $A=2 p+(1-p)^{*} 0=2 p$
Rose' s exp. gain when playing $B=-5^{\star} p+(1-p)^{\star} 3=3-8 p$
\square How should Colin choose its prob. distribution?

- Rose cannot take advantage of $p=3 / 10$
- for $p=3 / 10$ Colin guarantees a loss of $3 / 5$, what about Rose' s ?
2×2 game Colin's expected loss

Colin's exp. loss when playing $A=2 q-5^{\star}(1-q)=7 q-5$
Colin's exp. loss when playing $B=0^{\star} q+3^{\star}(1-q)=3-3 q$

- How should Rose choose its prob. distribution?
- Colin cannot take advantage of $q=8 / 10$
- for $q=8 / 10$ Rose guarantees a gain of?
2×2 game

\square Rose playing the mixed strategy $(8 / 10,2 / 10)$ and Colin playing the mixed strategy $(3 / 10,7 / 10)$ is the equilibrium of the game
- No player has any incentives to change, because any other choice would allow the opponent to gain more
- Rose gain 3/5 and Colin loses 3/5
$m \times 2$ game

\square By playing $p=3 / 10$, Colin guarantees max exp. loss $=3 / 5$
- it loses $3 / 5$ if Rose plays A or B, it wins $13 / 5$ if Rose plays C
\square Rose should not play strategy C
$m \times 2$ game
Colin's expected loss
 not less than 3/5

Minimax Theorem

\square Every two-person zero-sum game has a solution, i.e, there is a unique value v (value of the game) and there are optimal (pure or mixed) strategies such that

- Rose's optimal strategy guarantees to her a payoff $>=v$ (no matter what Colin does)
- Colin's optimal strategies guarantees to him a payoff $<=v$ (no matter what Rose does)
\square This solution can always be found as the solution of a kxk subgame
\square Proved by John von Neumann in 1928!
o birth of game theory...

How to solve mxm games

I if all the strategies are used at the equilibrium, the probability vector is such to make equivalent for the opponent all its strategies

- a linear system with $m-1$ equations and $m-1$ variables
- if it has no solution, then we need to look for smaller subgames

> Example:
> $\quad 2 x-5 y+3(1-x-y)=0 x+3 y-5(1-x-y)$
> $\quad 2 x-5 y+3(1-x-y)=1 x-2 y+3(1-x-y)$

How to solve 2×2 games

\square If the game has no saddle point
o calculate the absolute difference of the payoffs achievable with a strategy
o invert them
o normalize the values so that they become probabilities

Colin

How to solve $m \times n$ matrix games

1. Eliminate dominated strategies
2. Look for saddle points (solution of 1×1 games), if found stop
3. Look for a solution of all the $h \times h$ games, with $h=\min \{m, n\}$, if found stop
4. Look for a solution of all the (h-1)x(h-1) games, if found stop
5. ...
$h+1$. Look for a solution of all the 2×2 games, if found stop
Remark: when a potential solution for a specific kxk game is found, it should be checked that Rose's m-k strategies not considered do not provide her a better outcome given Colin's mixed strategy, and that Colin's n-k strategies not considered do not provide him a better outcome given Rose's mixed strategy.

Game Theory: introduction and applications to computer networks

Two-person non zero-sum games

Giovanni Neglia
INRIA - EPI Maestro

Slides are based on a previous course
with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University)

Outline

- Two-person zero-sum games
- Matrix games
- Pure strategy equilibria (dominance and saddle points), ch 2
- Mixed strategy equilibria, ch 3
- Game trees, ch 7
- Two-person non-zero-sum games
- Nash equilibria...
- ...And its limits (equivalence, interchangeability, Prisoner's dilemma), ch. 11 and 12
o Strategic games, ch. 14
- Subgame Perfect Nash Equilibria (not in the book)
- Repeated Games, partially in ch. 12
- Evolutionary games, ch. 15
\square N-persons games

Two-person Non-zero Sum Games

\square Players are not strictly opposed
o payoff sum is non-zero

\square Situations where interest is not directly opposed

- players could cooperate
o communication may play an important role
- for the moment assume no communication is possible

What do we keep from zero-sum games?
\square Dominance
\square Movement diagram
o pay attention to which payoffs have to be considered to decide movements

Player 2

\square Enough to determine pure strategies equilibria

- but still there are some differences (see after)

What can we keep from zero-sum games?

\square As in zero-sum games, pure strategies equilibria do not always exist...

\square...but we can find mixed strategies equilibria

