Performance Evaluation

Lecture 2: Complex Networks

Giovanni Neglia
INRIA - EPI Maestro
16 December 2013

Configuration model

\square A family of random graphs with given degree distribution

Configuration model

\square A family of random graphs with given degree distribution

- Uniform random matching of stubs

Configuration model

\square A family of random graphs with given degree distribution

- Uniform random matching of stubs

Back to Navigation: Random Walks

\square What can we do in networks without a geographical structure?
o Random walks

Back to Navigation: Random Walks

a How much time is needed in order to reach a given node?

Random Walks:

stationary distribution
व $\pi_{i}=\sum_{j \in N_{i}} \frac{1}{k_{j}} \pi_{j}$
व $\pi_{i}=\frac{k_{i}}{\sum_{i=1}^{N} k_{j}}=\frac{k_{i}}{2 M}$

\square avg time to come back to node i starting from node i: $\frac{1}{\pi_{i}}=\frac{2 M}{k_{i}}$
\square Avg time to reach node i

- intuitively $\approx \Theta\left(M / k_{i}\right)$

Another justification

\square Random walk as random edge sampling

- Prob. to pick an edge (and a direction) leading to a node of degree k is $\frac{k p_{k}}{\langle k>}$
- Prob. to arrive to a given node of degree k :

$$
\frac{k p_{k}}{p_{k} N<k>}=\frac{k}{2 M}
$$

- Avg. time to arrive to this node $2 \mathrm{M} / \mathrm{k}$
\square...equivalent to a RW where at each step we sample a configuration model

Distributed navigation (speed up random walks)
\square Every node knows its neighbors

Distributed navigation (speed up random walks)
\square Every node knows its neighbors
\square If a random walk looking for i arrives in a the message is directly forwarded to i

Distributed navigation reasoning 1

\square We discover i when we sample one of the links of i 's neighbors
$\square \mathrm{Avg}$ \# of these links: $k_{i} \sum_{k}\left((k-1) \frac{k p_{k}}{\langle k\rangle}\right)=k_{i}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)$
\square Prob. to arrive at one of them: $\frac{k_{i}}{2 M}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)$

Distributed navigation reasoning 2

\square Prob that a node of degree k is neighbor of node i given that RW arrives to this node from a node different from i

$$
1-\left(1-\frac{k_{i}}{2 M}\right)^{k-1} \approx \frac{k_{i}(k-1)}{2 M}
$$

\square Prob that the next edge brings to a node that is neighbor of node i :

$$
\sum_{k} \frac{k_{i}(k-1)}{2 M} \frac{k p_{k}}{\langle k>}=\frac{k_{i}}{2 M}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)
$$

Distributed navigation

\square Avg. Hop\# $\frac{2 M}{k_{i}} \frac{\langle k\rangle}{\left\langle k^{2}\right\rangle-\langle k\rangle}$

- Regular graph with degree d: $\frac{2 M}{d(d-1)}$
- ER with 〈k>: $\frac{2 M}{k_{i}(<k>-1)}$
- Pareto distribution $\left(P(k) \approx \frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}\right)$:

$$
\approx \frac{2 M}{k_{i}} \frac{(\alpha-2)(\alpha-1)}{x_{m}-(\alpha-2)(\alpha-1)} \quad \text { If } \alpha->2 \ldots
$$

Distributed navigation

\square Application example:
o File search in unstructured P2P networks through RWs

