Performance Evaluation

Lecture 2: Complex Networks

Giovanni Neglia INRIA – EPI Maestro 16 December 2013

Configuration model

A family of random graphs with given degree distribution

Configuration model

- A family of random graphs with given degree distribution
 - Uniform random matching of stubs

Configuration model

- A family of random graphs with given degree distribution
 - Uniform random matching of stubs

Back to Navigation: Random Walks

- What can we do in networks without a geographical structure?
 - Random walks

Back to Navigation: Random Walks

How much time is needed in order to reach a given node?

avg time to come back to node i starting from node i: $\frac{1}{\pi_i} = \frac{2M}{k_i}$

■ Avg time to reach node i • intuitively $\approx \Theta(M/k_i)$

Another justification

Random walk as random edge sampling

Prob. to pick an edge (and a direction) leading to a node of degree k is $\frac{kp_k}{< k >}$

• Prob. to arrive to a given node of degree k:

$$\frac{kp_k}{p_k N < k >} = \frac{k}{2M}$$

○ Avg. time to arrive to this node 2M/k

...equivalent to a RW where at each step we sample a configuration model

Distributed navigation (speed up random walks)

Every node knows its neighbors

Distributed navigation (speed up random walks)

- Every node knows its neighbors
- If a random walk looking for *i* arrives in *a* the message is directly forwarded to *i*

Distributed navigation reasoning 1

We discover *i* when we sample one of the links of *i*'s neighbors

¬ Avg # of these links: $k_i \sum_{k} \left((k-1) \frac{kp_k}{\langle k \rangle} \right) = k_i \left(\frac{\langle k^2 \rangle}{\langle k \rangle} - 1 \right)$

Prob. to arrive at one of them: $\frac{k_i}{2M} \left(\frac{\langle k^2 \rangle}{\langle k \rangle} - 1 \right)$

Distributed navigation reasoning 2

Prob that a node of degree k is neighbor of node *i* given that RW arrives to this node from a node different from *i*

$$1 - \left(1 - \frac{k_i}{2M}\right)^{k-1} \approx \frac{k_i(k-1)}{2M}$$

Prob that the next edge brings to a node that is neighbor of node i:

$$\sum_{k} \frac{k_i(k-1)}{2M} \frac{kp_k}{\langle k \rangle} = \frac{k_i}{2M} \left(\frac{\langle k^2 \rangle}{\langle k \rangle} - 1 \right)$$

Distributed navigation

Avg. Hop#
$$\frac{2M}{k_i} \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$$

• Regular graph with degree d: $\frac{2M}{d(d-1)}$
• ER with $\langle k \rangle$: $\frac{2M}{k_i(\langle k \rangle -1)}$
• Pareto distribution $\left(P(k) \approx \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}\right)$:
 $\approx \frac{2M}{k_i} \frac{(\alpha-2)(\alpha-1)}{x_m - (\alpha-2)(\alpha-1)}$ If $\alpha - 2$...

Distributed navigation

Application example:

File search in unstructured P2P networks through RWs