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Outline 

❒  Properties of Complex Networks 
•  Small diameter 
•  High Clustering 
•  Hubs and heavy tails  

❒  Physical causes 
❒  Consequences 
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Small Diameter (after Milgram’s 
experiment) 

Six degrees - the science of a connected 
age, 2003 

Six degrees of separation is the 
idea that everyone is on average 
approximately six steps away, by 

way of introduction, from any 
other person in the world, so that 
a chain of "a friend of a friend" 

statements can be made, on 
average, to connect any two people 

in six steps or fewer. 
J. Vaucher, Small World Networks, April 2005 

 
 



Small Diameter, more formally 

❒ A linear network has diameter N-1 and 
average distance Θ(N)
•  How to calculate it? 

❒ A square grid has diameter and average 
distance Θ(sqrt(N)) 

❒ Small Diameter: diameter O((log(N))a), a>0 
❒  Lessons from model: long distance random 

connections are enough 



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 

❒  Purpose: abstract from the details of a 
given graph and reach conclusions depending 
on its average features    



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 
❍ Degree distribution: P(d)=Cd

N-1 qd(1-q)N-1-d  
•  Average degree: <d>=q (N-1) 
•  For N->∞ and Nq constant: P(d)=e-<d><d>d/d! 

-   <d2>=<d>(1+<d>) 
❍ Average distance: <l>≈logN/log<d> 

•  Small diameter   



Clustering 

❒  "The friends of my friends are my friends" 
❒  Local clustering coefficient of node i 

❍  (# of closed triplets with i at the center) / (# of triplets 
with node i at the center) = (links among i’s neighbors of 
node i)/(potential links among i’s neighbors) 

 
❒ Global clustering coefficient 

❍  (total # of closed triplets)/(total # of triplets) 
•  # of closed triplets = 3 # of triangles 

❍  Or 1/N Σi Ci 

Ci=2/(4*3/2)=1/3 



Clustering 

❒  In ER 
❍ C ≈ q ≈ <d>/N 



Clustering 

❒  In real networks 

Ci=2/(4*3) 

Other'Real'Networks'Examples'

Good matching for avg distance,  
Bad matching for clustering coefficient 
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How to model real networks? 
Regular Graphs have a high clustering coefficient 

but also a high diameter 
Random Graphs have a low diameter 

but a low clustering coefficient 
--> Combine both to model real networks: the Watts and Strogatz 

model 

Random Graph (k=4) 
Short path length  

L=logkN 
Almost no clustering 

C=k/n 

Regular Graph (k=4) 
Long paths  

L = n/(2k)  
Highly clustered  

C=3/4 

Regular ring lattice  
R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1, 

January 2002 
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Watts and Strogatz model 
Random rewiring of regular graph 

With probability p rewire each 
link in a regular graph to a 
randomly selected node 

Resulting graph has properties 
both of regular and random 
graphs 

--> High clustering and short 
path length 

 

R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1, 
January 2002 

 



Small World 

❒ Usually to denote 
❍  small diameter + high clustering 



Intermezzo: navigation 

❒  In Small world nets there 
are short paths O((log(N))a) 

❒ But can we find them? 
❍ Milgram’s experiment 

suggests nodes can find them 
using only local information 

❍ Standard routing algorithms 
require O(N) information 



Kleinberg’s result 

❒ Model: Each node has 
❍ Short-range connections 
❍  1 long-range connection, up to distance r with 

probability prop. to r-α

❍ For α=0 it is similar to Watts-Strogatz model: 
there are short-paths 



Kleinberg’s result 

❒  If α=2 the greedy algorithm (forward the 
packet to the neighbor with position 
closest to the destination) achieves avg 
path length O((log(N))2) 



Kleinberg’s result 

❒  If α<>2 no local information 
algorithm can take advantage 
of small world properties 
❍  avg path length Ω(Nβ/2) 

•  where β=(2-α)/3 for 0<=α<=2, 
β=(α-2)/(α-1), for α>2 

The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Navigation in a small world
It is easier to find short chains between points in some networks than others.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.

© 2000 Macmillan Magazines Ltd



Kleinberg’s result 

❒  Conclusions 
❍ The larger α the less distant long-range 

contacts move the message, but the more 
nodes can take advantage of their “geographic 
structure”  

❍ α=2 achieved the best trade-off 



Hubs 

❒  80/20 rule 
❍  few nodes with degree much higher than the 

average 
❍  a lot of nodes with degree smaller than the 

average 
❍  (imagine Bill Clinton enters this room, how 

representative is the avg income)  
❒ ER with N=1000, <d>=5, P(d)≈e-<d><d>d/d! 

❍ #nodes with d=10: N*P(10)≈18  
❍ #nodes with d=20: N*P(20)≈2.6 10-4  

d 

P(d) 



Hubs 

ER 
Power law 

PDF 

CCDF Power law: 
P(d) ~ d-α



Power law degree distributions 

5: DataLink Layer 

coauthorship 



… and more 

5: DataLink Layer 

Income 

Meme on Twitter 
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FIG. 1: The severities (number of deaths) for 13,274 fatal
terrorist attacks worldwide from 1968–2008 [27]. The data are
plotted as a complementary cumulative distribution function
Pr(X ≥ x). The solid black line shows the power-law behavior
of the distribution, with scaling exponent α̂ = 2.4 ± 0.2 for
x ≥ 10 [9].

and severity of events within individual conflicts, such
as those in Colombia and Iraq, exhibit power-law statis-
tics [6, 18, 19], and that observable changes in the power
law’s exponent over time are indicative of real and im-
portant shifts in the underlying dynamics of the social
and political generative processes.

At present, these ubiquitous power-law statistics lack
a clear and well-supported explanation: what mecha-
nisms, political or otherwise, give rise to these law-like
behaviors? A scientific answer to this question may ulti-
mately shed light, in a manner complementary to tradi-
tional studies, on the use of such tactics in violent con-
flicts [23, 29], the internal dynamics of terrorist organi-
zations [7, 11], and trends in global terrorism [14, 38].
It may also shed light on the connection between sever-
ity and other modalities [8], e.g., location and timing,
suggest novel intervention strategies or policy recommen-
dations for counter-terrorism [12], and shed light on the
connection between terrorism and other kinds of violent
conflicts, such as civil and international wars [33, 37].

To date, two explanations have been proposed for the
origin of the observed power law in the frequency of
severe terrorist attacks.1 One, proposed by Clauset,

1 We note that a wide variety of mechanisms can produce power-
law distributions. Most of these processes, however, are not well-
suited for explaining the severity of terrorist attacks (see Clauset,
Young, and Gleditsch [10] for some discussion). As such, we focus
our attention on the two mechanisms that have been proposed,
both of which have some empirical support.

Young, and Gleditsch [10] relies on an exponential sam-
pling mechanism in which states and terrorists compete
to decide which planned events become real. In this
model, terrorists invest time planning events and the po-
tential severity of these increases roughly exponentially
with the total planning time. Through counter-terrorism
actions by states, along with other natural attrition fac-
tors, these potential events are then strongly sampled,
with the probability that a potential event becomes real
decreasing roughly exponentially with the size of the
event. That is, large events are exponentially less likely
to become real than smaller events. The competition of
these two exponentials produces a power-law distribu-
tion in the severity of events, with the scaling exponent
α depending only on the two exponential rates.
The second mechanism, proposed by Johnson et al. [18,

19], is a self-organized critical model [3] of the internal dy-
namics of a modern terrorist organization. In this model,
a terrorist organization is composed of cells that merge
and fall apart according to simple probabilistic rules (see
below). The long-term dynamics of this aggregation-
disintegration process produces a dynamic equilibrium or
steady-state that is characterized by a power-law distri-
bution in the sizes of cells, and, by assumption, a power-
law distribution in the severity of events. In this model
the scaling exponent in the steady-state can be calcu-
lated exactly, and is found to be α = 5/2. This value is
in good agreement with the best current empirical esti-
mate of α̂ = 2.4± 0.2 [9] for terrorist attacks worldwide
from 1968 to 2008.

In this article, we mathematically study the Johnson
et al. model. In particular, we generalize Johnson et al.’s
specific model to a family of such models. We then ana-
lytically solve for their steady-state behavior, and show
that a power-law distribution is a universal feature2 of
this class of models. That is, provided the number N of
radicalized individuals is large N ! 1, the appearance of
the power-law distribution and the value of its scaling ex-
ponent α does not depend on certain details of the model
itself. Mathematically speaking: our analysis is exact in
the limit N → ∞. We note that our asymptotic analysis
is done purely for mathematical convenience; the limit
N → ∞ has no social meaning and so long as N is very
large, our results should hold.
The benefits of generalizing the Johnson et al. model

are two fold. First, there is the generalization itself,
which extends the model in a new and important direc-
tion, and demonstrates that the model’s main qualita-
tive result—the power-law distribution in event sizes—is
robust to certain specific modeling assumptions. Sec-

2 Here, universality denotes the robustness of certain qualitative
features of a mathematical model to certain specific modeling
assumptions. This usage is distinct from, and should not be
confused with, the less technical usage of the same term to denote
a natural or social phenomenon that appears to be independent
of certain contingent or contextual details.

Deaths  
in terroristic attacks 



Power Law 

❒ Where does it come from?  
❍ Albert-Barabasi’s growth model 
❍ Highly Optimized Model 
❍ And other models  

•  See Michael Mitzenmacher, A Brief History of 
Generative Models for Power Law and Lognormal 
Distributions 



Albert-Barabasi’s model 

❒ Two elements 
❍ Growth 

•  m0 initial nodes, every time unit we add a new node 
with m links to existing nodes 

❍  Preferential attachment 
•  The new node links to a node with degree ki with 

probability  

Π(ki ) =
ki

k jj=1,N∑



Albert-Barabasi’s model 

❒ Node i arrives at time ti, its degree keeps 
increasing 

❒ With a continuum approximation: 

❒ Then degree distribution at time t is: 
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Albert-Barabasi’s model 

❒ At time t there are m0+t nodes, if we 
consider that the t nodes are added 
uniformly at random in [0,t], then 

 

P(ti > x) =
t − x
t +m0

P(ki (t)< k) =
t

t +m0

1− m
1/β

k1/β
"
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Albert-Barabasi’s model 

❒ The PDF is 

❒  For t->∞ 

 

P(ki (t) = k) =
∂P(ki (t) ≤ k)

∂k
=

t
t +m0

1
β
m1/β

k1/β+1

P(ki (t) = k) t→∞
# →##

1
β
m1/β

k1/β+1
∝ k−γ , γ = 3



Albert-Barabasi’s model 

❒  If      ,  

❒ Other variants: 
❍ With fitness 

❍ With rewiring (a prob. p to rewire an existing 
connection) 

❍ Uniform attaching with "aging": A vertex is 
deactivated with a prob. proportional to (ki+a)-1 

Π(ki )∝ a+ ki P(k)∝ k−γ , γ = 3+ a
m

∑ =
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