Performance Evaluation

Lecture 1: Complex Networks

Giovanni Neglia
INRIA - EPI Maestro
10 December 2012

Outline

\square Properties of Complex Networks

- Small diameter
- High Clustering
- Hubs and heavy tails
\square Physical causes
\square Consequences

Small Diameter (after Milgram's experiment)

Six degrees - the science of a connected

 age, 2003Six degrees of separation is the idea that everyone is on average approximately six steps away, by way of introduction, from any other person in the world, so that
 a chain of "a friend of a friend" statements can be made, on average, to connect any two people in six steps or fewer.

Small Diameter, more formally

\square A linear network has diameter N-1 and average distance $\Theta(\mathrm{N})$

- How to calculate it?
\square A square grid has diameter and average distance $\Theta(\operatorname{sqrt}(\mathrm{N}))$
\square Small World: diameter $O\left((\log (N))^{a}\right), a>0$
\square Lessons from model: long distance random connections are enough

Erdös-Rényi graph

$\square A E R$ graph $G(N, q)$ is a stochastic process

- N nodes and edges are selected with prob. q
\square Purpose: abstract from the details of a given graph and reach conclusions depending on its average features

Erdös-Rényi graph

$\square A E R$ graph $G(N, q)$ is a stochastic process
o N nodes and edges are selected with prob. q
o Degree distribution: $P(d)=C^{d}{ }_{N-1} q^{d}(1-q)^{N-1-d}$

- Average degree: <d>=q (N-1)
- For $N->\infty$ and $N q$ constant: $P(d)=e^{-\langle d\rangle}\langle d\rangle d / d$!
- $\left\langle d^{2}\right\rangle=\langle d\rangle(1+\langle d\rangle)$

O Average distance: $\langle |>\approx \log N / \log <d>$

- Small world

Clustering

\square "The friends of my friends are my friends"
\square Local clustering coefficient of node i

- (\# of closed triplets with i at the center) / (\# of triplets with node i at the center) = (links among i's neighbors of node i)/(potential links among i's neighbors)

$$
C_{i}=2 /\left(4^{\star} 3 / 2\right)=1 / 3
$$

\square Global clustering coefficient

- (total \# of closed triplets)/(total \# of triplets)
- \# of triplets = 3 \# of triangles
-Or $1 / N \Sigma_{i} C_{i}$

Clustering

$$
\begin{aligned}
& \square \text { In } E R \\
& \quad \circ C \approx q \approx\langle d>/ N
\end{aligned}
$$

Clustering

\square In real networks

Network	Size	$\langle k\rangle$	ℓ	$\ell_{\text {rond }}$	C	$C_{\text {rand }}$	Reference	Nr .
WWW, site level, undir.	153127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001	Yook et al., 2001a, Pastor-Satorras et al., 2001	2
Movie actors	225226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	3
LANL co-authorship	52909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	4
MEDLINE co-author GOOE 25 Martraing fols aNO disfallace, 2001a, 2001b, 2001c SPIRES co-authorship 56627 173 0.72 .12 Newman, 2001a, 2001b, 2001c								
NCSTRL co Berahip Math. co-authorship	Natrge_{70975}	inte	$\mathrm{for}_{9.5}^{50}$					7 8
Neurosci. co-authorship	209293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	13
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	15
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17

How to model real networks?

Regular Graphs have a high clustering coefficient
but also a high diameter
Random Graphs have a low diameter but a low clustering coefficient
--> Combine both to model real networks: the Watts and Strogatz model

Regular ring lattice

Watts and Strogatz model

Random rewiring of regular graph
With probability p rewire each link in a regular graph to a randomly selected node
Resulting graph has properties, both of regular and random graphs
--> High clustering and short path length

Small World

\square Usually to denote

- small diameter + high clustering

Intermezzo: navigation

\square In Small world nets there are short paths $O\left((\log (N))^{a}\right)$
\square But can we find them?
o Milgram's experiment suggests nodes can find them using only local information

- Standard routing algorithms require $O(N)$ information

Kleinberg's result

\square Model: Each node has

- Short-range connections
o 1 long-range connection, up to distance r with probability prop. to $r^{-\alpha}$
- For $\alpha=0$ it is similar to Watts-Strogatz model: there are short-paths

Kleinberg's result

\square If $\alpha=2$ the greedy algorithm (forward the packet to the neighbor with position closest to the destination) achieves avg path length $O\left((\log (N))^{2}\right)$

Kleinberg's result

- where $\beta=(2-\alpha) / 3$ for $0<=\alpha<=2$, $\beta=(\alpha-2) /(\alpha-1)$, for $\alpha>2$

Kleinberg's result

- Conclusions
- The larger α the less distant long-range contacts move the message, but the more nodes can take advantage of their "geographic structure"
o $\alpha=2$ achieved the best trade-off

Hubs

$\square 80 / 20$ rule
o few nodes with degree much higher than the average
o a lot of nodes with degree smaller than the average

- (imagine Bill Clinton enters this room, how rapresentative is the avg income)
$\square E R$ with $N=1000,\left\langle d>=5, P(d) \approx e^{-\langle d\rangle}\langle d>d / d!\right.$
- \#nodes with $d=10$: $N * P(10) \approx 18$
- \#nodes with $\mathrm{d}=20: \mathrm{N}^{\star} \mathrm{P}(20) \approx 2.6$ 10-4

Hubs

Power law:
$P(d) \sim d^{-\alpha}$

ER
Power law

Power law degree distributions

... and more

Power Law

a Where does it come from?

- Albert-Barabasi's growth model
- Highly Optimized Model
- And other models
- See Michael Mitzenmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions

Albert-Barabasi's model

- Two elements
- Growth
- m_{0} initial nodes, every time unit we add a new node with m links to existing nodes
- Preferential attachment
- The new node links to a node with degree k_{i} with probability

$$
\Pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{j=1, N} k_{j}}
$$

Albert-Barabasi's model

\square Node i arrives at time t_{i}, its degree keeps increasing
\square With a continuum approximation:

$$
\frac{\partial k_{i}}{\partial t}=\frac{m k_{i}}{\sum_{j=1, N} k_{j}}=\frac{m k_{i}}{2 t m}=\frac{k_{i}}{2 t} \rightarrow k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta}, \beta=\frac{1}{2}
$$

\square Then degree distribution at time t is:

$$
P\left(k_{i}(t)<k\right)=P\left(t_{i}>t \frac{m^{1 / \beta}}{k^{1 / \beta}}\right)
$$

Albert-Barabasi's model

\square At time t there are $m_{0}+\dagger$ nodes, if we consider that the t nodes are added uniformly at random in $[0, t]$, then

$$
\begin{gathered}
P\left(t_{i}>x\right)=\frac{t-x}{t+m_{0}} \\
P\left(k_{i}(t)<k\right)=\frac{t}{t+m_{0}}\left(1-\frac{m^{1 / \beta}}{k^{1 / \beta}}\right)
\end{gathered}
$$

Albert-Barabasi's model

\square The PDF is

$$
P\left(k_{i}(t)=k\right)=\frac{\partial P\left(k_{i}(t) \leq k\right)}{\partial k}=\frac{t}{t+m_{0}} \frac{1}{\beta} \frac{m^{1 / \beta}}{k^{1 / \beta+1}}
$$

- For \dagger->>

$$
P\left(k_{i}(t)=k\right) \underset{t \rightarrow \infty}{ } \frac{1}{\beta} \frac{m^{1 / \beta}}{k^{1 / \beta+1}} \propto k^{-\gamma}, \gamma=3
$$

Albert-Barabasi's model

\square If $\Pi\left(k_{i}\right) \propto a+k_{i}, \quad P(k) \propto k^{-\gamma}, \gamma=3+\frac{a}{m}$
\square Other variants:

- With fitness $\Pi(k)=\frac{\eta_{i} k_{i}}{\sum_{j=1, N} \eta_{j} k_{j}}$
- With rewiring (a prob. p to rewire an existing connection)
- Uniform attaching with "aging": A vertex is deactivated with a prob. proportional to $\left(\mathrm{k}_{\mathrm{i}}+\mathrm{a}\right)^{-1}$

Back to Navigation: Random Walks

\square What can we do in networks without a geographical structure?
o Random walks

Back to Navigation: Random Walks

a How much time is needed in order to reach a given node?

Random Walks:

stationary distribution

$\square \pi_{i}=\sum_{j \in N_{i}} \frac{1}{k_{j}} \pi_{i}$
$\square \pi_{i}=\frac{k_{i}}{\sum_{i=1}^{N} k_{j}}=\frac{k_{i}}{2 M}$

\square avg time to come back to node i starting from node i: $\frac{1}{\pi_{i}}=\frac{2 M}{k_{i}}$
\square Avg time to reach node i

- intuitively $\approx \Theta\left(\mathrm{M} / \mathrm{k}_{\mathrm{i}}\right)$

Another justification

\square Random walk as random edge sampling

- Prob. to pick an edge (and a direction) leading to a node of degree k is $\frac{k p_{k}}{\langle k>}$
- Prob. to arrive to a given node of degree k :

$$
\frac{k p_{k}}{p_{k} N<k>}=\frac{k}{2 M}
$$

- Avg. time to arrive to this node $2 M / k$

Distributed navigation (speed up random walks)
\square Every node knows its neighbors

Distributed navigation (speed up random walks)
\square Every node knows its neighbors
\square If a random walk looking for i arrives in a the message is directly forwarded to i

Distributed navigation reasoning 1

\square We discover i when we sample one of the links of i 's neighbors
$\square \mathrm{Avg}$ \# of these links: $k_{i} \sum_{k}\left((k-1) \frac{k p_{k}}{\langle k\rangle}\right)=k_{i}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)$
\square Prob. to arrive at one of them: $\frac{k_{i}}{2 M}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)$

Distributed navigation reasoning 2

\square Prob that a node of degree k is neighbor of node i

$$
1-\left(1-\frac{k_{i}}{2 M}\right)^{k-1} \approx \frac{k_{i}(k-1)}{2 M}
$$

\square Prob that the next edge brings to a node that is neighbor of node i:

$$
\sum_{k} \frac{k_{i}(k-1)}{2 M} \frac{k p_{k}}{\langle k>}=\frac{k_{i}}{2 M}\left(\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}-1\right)
$$

Distributed navigation

\square Avg. Hop\# $\frac{2 M}{k_{i}} \frac{\langle k\rangle}{\left\langle k^{2}\right\rangle-\langle k\rangle}$

- Regular graph with degree d: $\frac{2 M}{d(d-1)}$
- ER with 〈k>: $\frac{2 M}{k_{i}(<k>-1)}$
- Pareto distribution $\left(P(k) \approx \frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}\right)$:

$$
\approx \frac{2 M}{k_{i}} \frac{(\alpha-2)(\alpha-1)}{x_{m}-(\alpha-2)(\alpha-1)} \quad \text { If } \alpha->2 \ldots
$$

Distributed navigation

\square Application example:
o File search in unstructured P2P networks through RWs

Configuration model

\square A family of random graphs with given degree distribution

Configuration model

\square A family of random graphs with given degree distribution

- Uniform random matching of stubs

Configuration model

\square A family of random graphs with given degree distribution

- Uniform random matching of stubs

