Performance Evaluation

Lecture 2: Epidemics

Giovanni Neglia INRIA – EPI Maestro 10 January 2013

There is more: Independence

Theorem 2

- Under the assumptions of Theorem 1, and that the collection of objects at time 0 is exchangeable $(X_1^N(0), X_2^N(0), ..., X_N^N(0)),$ then for any fixed n and t: $\lim_{N\to\infty} \operatorname{Prob}(\underline{X}_1^N(t)=i_1, \underline{X}_2^N(t)=i_2, ..., \underline{X}_n^N(t)=i_n)=$ $=\mu_{i1}(t)\mu_{i2}(t)...\mu_{in}(t)$
- MF Independence Property, a.k.a. Decoupling Property, Propagation of Chaos

Remarks

- \Box (X₁^N(0),X₂^N(0),...X_N^N(0)) exchangeable
 - Means that all the states that have the same occupancy measure \mathbf{m}_0 have the same probability

□
$$\lim_{N\to\infty} \operatorname{Prob}(\underline{X}_{1}^{N}(t)=i_{1},\underline{X}_{2}^{N}(t)=i_{2},...,\underline{X}_{n}^{N}(t)=i_{n})=$$

= $\mu_{i1}(t)\mu_{i2}(t)...\mu_{in}(t)$

Application
 Prob(X₁^N(k)=i₁,X₂^N(k)=i₂,...X_k^N(k)=i_k)≈
 ≈µ_{i1}(kε(N))µ_{i2}(kε(N))...µ_{ik}(kε(N))

Probabilistic interpretation of the occupancy measure (SI model with p=10⁻⁴, N=100)

On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs

On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs

Model vs Simulations

Why the difference?

N should be large (the larger the better)
p should be small

•
$$p^{(N)}=p_0/N^2$$

□ For N=10⁴ p=10⁻⁴ is not small enough!

What if we do the correct scaling?

On approximation quality $p=10^4/N^2$, I(0)=N/10, 10 runs

Model vs Simulations

iterations

Lesson

You need to check (usually by simulation) in which parameter region the fluid model is a good approximation.

• e.g. N>N* p<p*/N²

SIS model

SIS model

Let's practise

Can we propose a Markov Model for SIS?

- No need to calculate the transition matrix
- If it is possible, derive a Mean Field model for SIS
 - Do we need some scaling?

Study of the SIS model

We need p^(N)=p₀/N² and r^(N)=r₀/N
 If we choose ε(N)=1/N, we get
 di(t)/dt= p₀ i(t)(1-i(t)) - r₀ i(t)

N=80, p₀=0.1

 $r_0 = 0.05$

Study of the SIS model

 $\mu_2(t)=i(t)$ $di(t)/dt=p_0 i(t)(1-i(t)) - r_0 i(t)$

Equilibria, di(t)/dt=0

- If i(0)>0 and $p_0>r_0 \Rightarrow \mu_2(\infty)=1-r_0/p_0$

Study of the SIS model

- What is the steady state distribution of the MC?
 - (0,0,0,...0) is the unique absorbing state and it is reachable from any other state
 - Who is lying here?

Back to the Convergence Result

 \Box Define <u>**M**</u>^(N)(t) with t real, such that

- $\underline{\mathbf{M}}^{(N)}(k\epsilon(N))=\mathbf{M}^{(N)}(k)$ for k integer
- $\underline{\mathbf{M}}^{(N)}(t)$ is affine on $[k\epsilon(N),(k+1)\epsilon(N)]$
- Consider the Differential Equation
 - $-d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$

Theorem

– For all T>O, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) - \mu(t)|| \rightarrow 0$ in probability (/ mean square)

Some examples

Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
 - Birkhoff center: the closure of all the recurrent points of the ODE (independently from the initial conditions)
 - What is the Birkhoff center of di(t)/dt=p₀ i(t)(1-i(t)) - r₀ i(t)?

Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
- Corollary: If the ODE has a unique stationary point m*, the sequence of stationary distributions M^(N) converges to m*

Outline

Limit of Markovian models

Mean Field (or Fluid) models

- exact results
- Extensions
 - Epidemics on graphs
 - Reference: ch. 9 of Barrat, Barthélemy, Vespignani "Dynamical Processes on Complex Networks", Cambridge press
- Applications to networks