Performance Evaluation

Lecture 2: Epidemics

Giovanni Neglia
INRIA - EPI Maestro
10 January 2013

There is more: Independence

\square Theorem 2

- Under the assumptions of Theorem 1, and that the collection of objects at time 0 is exchangeable $\left(X_{1}^{N}(0), X_{2}^{N}(0), \ldots X_{N}^{N}(0)\right)$,
then for any fixed n and t :
$\lim _{N \rightarrow \infty} \operatorname{Prob}\left(\underline{X}_{1}^{N}(t)=i_{1}, \underline{X}_{2}^{N}(t)=i_{2}, \ldots \underline{X}_{n}^{N}(t)=i_{n}\right)=$

$$
=\mu_{i 1}(\dagger) \mu_{i 2}(t) \ldots \mu_{i n}(t)
$$

\square MF Independence Property, a.k.a. Decoupling Property, Propagation of Chaos

Remarks

$\square\left(X_{1}^{N}(0), X_{2}{ }^{N}(0), \ldots X_{N}^{N}(0)\right)$ exchangeable

- Means that all the states that have the same occupancy measure m_{0} have the same probability
$\square \lim _{N \rightarrow \infty} \operatorname{Prob}\left(\underline{X}_{1} N(t)=i_{1}, \underline{X}_{2}^{N}(t)=i_{2}, \ldots \underline{X}_{n}^{N}(t)=i_{n}\right)=$

$$
=\mu_{i 1}(\dagger) \mu_{i 2}(\dagger) \ldots \mu_{i n}(\dagger)
$$

- Application
$\operatorname{Prob}\left(X_{1} N(k)=i_{1}, X_{2} N(k)=i_{2}, \ldots X_{k}^{N}(k)=i_{k}\right) \approx$ $\approx \mu_{\mathrm{i} 1}(k \varepsilon(N)) \mu_{\mathrm{i} 2}(k \varepsilon(N)) \ldots \mu_{\mathrm{ik}}(k \varepsilon(N))$

Probabilistic interpretation of the occupancy measure
 (SI model with $\mathrm{p}=10^{-4}, \mathrm{~N}=100$)

$\operatorname{Prob}($ nodes $1,17,21$ and 44 infected at $k=200)=$ $=\mu_{2}(\mathrm{k} \mathrm{p} \mathrm{N})^{4}=\mu_{2}(2)^{4} \approx(1 / 3)^{4}$
What if $1,17,21$ and 44 are surely infected at $k=0$

On approximation quality $\mathrm{p}=10^{-4}, \mathrm{I}(0)=\mathrm{N} / 10,10$ runs

 $\times 10^{3}$ iterations

$x 10^{2}$ iterations

On approximation quality $\mathrm{p}=10^{-4}, I(0)=\mathrm{N} / 10,10$ runs

Model vs Simulations

Why the difference?

$\square N$ should be large (the larger the better)
a p should be small

- $p^{(N)}=p_{0} / N^{2}$
\square For $\mathrm{N}=10^{4} \mathrm{p}=10^{-4}$ is not small enough!
\square What if we do the correct scaling?

On approximation quality $p=10^{4} / N^{2}, I(0)=N / 10,10$ runs

Model vs Simulations

iterations

Lesson

\square You need to check (usually by simulation) in which parameter region the fluid model is a good approximation.

- e.g. $N>N^{*} p<p^{*} / N^{2}$

SIS model

Susceptible
At each slot there is a probability p that two given nodes meet,

Infected a probability r that a node recovers.

SIS model

Susceptible

At each slot there is a probability p that two given nodes meet, a probability r that a node recovers.

Infected

Let's practise

\square Can we propose a Markov Model for SIS?

- No need to calculate the transition matrix
\square If it is possible, derive a Mean Field model for SIS
- Do we need some scaling?

Study of the SIS model

\square We need $p^{(N)}=p_{0} / N^{2}$ and $r^{(N)}=r_{0} / N$
\square If we choose $\varepsilon(N)=1 / N$, we get

- $d i(t) / d t=p_{0} i(t)(1-i(t))-r_{0} i(t)$

$$
p_{0}>r_{0}
$$

$$
p_{0}<r_{0}
$$

$d i / d T$

Epidemic Threshold: p_{0} / r_{0}

$\mathrm{N}=80, \mathrm{p}_{0}=0.1$

$$
r_{0}=0.05
$$

$$
r_{0}=0.125
$$

Study of the SIS model

$\square \mu_{2}(t)=i(t)$
$\square d i(t) / d t=p_{0} i(t)(1-i(t))-r_{0} i(t)$
\square Equilibria, $\mathrm{di}(t) / d t=0$

- $i(\infty)=1-r_{0} / p_{0}$ or $i(\infty)=0$
- If $i(0)>0$ and $p_{0}>r_{0} \Rightarrow \mu_{2}(\infty)=1-r_{0} / p_{0}$

Study of the SIS model

\square If $i(0)>0 p_{0}>r_{0}, \mu_{2}(\infty)=1-r_{0} / p_{0}$
$\square \operatorname{Prob}\left(X_{1}(N)(k)=1\right) \approx i(k \varepsilon(N))$

- $\operatorname{Prob}\left(X_{1}{ }^{(N)}(\infty)=1\right) \approx \mu_{2}(\infty)=i(\infty)=1-r_{0} / p_{0}$
\square What is the steady state distribution of the MC?
- $(0,0,0, \ldots .0)$ is the unique absorbing state and it is reachable from any other state
- Who is lying here?

Back to the Convergence Result

\square Define $\underline{M}^{(\mathbb{N})}(\dagger)$ with \dagger real, such that

- $\underline{M}^{(N)}(k \varepsilon(N))=M^{(N)}(k)$ for k integer
- $\underline{M}^{(N)}(t)$ is affine on $[k \varepsilon(N),(k+1) \varepsilon(N)]$
\square Consider the Differential Equation
$-d \mu(t) / d t=f(\mu)$, with $\mu(0)=m_{0}$
- Theorem
- For all $T>0$, if $M^{(N)}(0) \rightarrow m_{0}$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup _{0 \leq \pm \leq T}| | \underline{M}^{(N)}(\dagger)-\mu(\dagger) \| \rightarrow 0$ in probability (/ mean square)

Some examples

Nothing to do with $t=\infty$?

\square Theorem 3: The limits when N diverges of the stationary distributions of $M^{(N)}$ are included in the Birkhoff center of the ODE

- Birkhoff center: the closure of all the recurrent points of the ODE
(independently from the initial conditions)
- What is the Birkhoff center of $\mathrm{di}(\mathrm{t}) / \mathrm{d} t=\mathrm{p}_{0} \mathrm{i}(\mathrm{t})(1-\mathrm{i}(\mathrm{t}))-\mathrm{r}_{0} \mathrm{i}(\mathrm{t})$?

Nothing to do with $t=\infty$?

\square Theorem 3: The limits when N diverges of the stationary distributions of $M^{(N)}$ are included in the Birkhoff center of the ODE
\square Corollary: If the ODE has a unique stationary point m^{*}, the sequence of stationary distributions $M^{(N)}$ converges to m^{*}

Outline

- Limit of Markovian models
- Mean Field (or Fluid) models
- exact results
- Extensions
- Epidemics on graphs
- Reference: ch. 9 of Barrat, Barthélemy, Vespignani "Dynamical Processes on Complex Networks", Cambridge press
- Applications to networks

