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Lecture 4
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NOTE: The content of these notes has not been formally reviewed by the lec-
turer. It is recommended that they are read critically.

1 Introduction

During the previous lecture we studied the dynamics of the bandwidth sharing over a network. For this
analysis we took a non-rigorous approach when we assumed that the system must come to a halt (Lec. 3,
Sec. 4.2), this reasoning led us to the conclusion that if the system stops it will do it at the optimum, but
so far we don’t know if the system really stops.

For this reason, in this lesson we will study the convergence of this dynamic system at the limit. In
Section 2, we will study the behavior of the rates in some simple network configurations to observe if they
eventually converge. We will find that the analysis of the rates in the network is not useful to determine if
the system stops. Then, in Section 3, we will evaluate a different function from the system that will help
us to determine whether the system stops and if it stops at the optimum. In Section 4, we will present
the simulated annealing process that is a technique that will be utile to find the global optimum of a given
function.

2 Does the system stop?

In the previous lecture we modeled the “Bandwith sharing over the Internet” problem as follows:

maximize
x,y

∑
r∈R

Ur(xr)−
∑
l∈E

Ml(yl)

subject to yl =
∑
r|l∈r

xr

xr ≥ 0, ∀r ∈ R

(1)

If we solve this problem by the Lagrange multipliers method, the optimal solution is:

U ′r̄(x∗r̄)

{
=

∑
l∈r̄M

′
l (y
∗
l ) if x∗r̄ > 0,

≤
∑

l∈r̄M
′
l (y
∗
l ) if x∗r̄ = 0.

(2)

This problem can be also solved using a distributed approach, where each network component has a role:

• The links measure congestion and transmit to the sources all the flow passing by them.

• The sources should adapt their rate over time according to the following equation:

dxr
dt

= kr(U ′r(xr(t))−
∑
l∈r

M ′l (yl(t))) (3)

We have concluded that if the elements of the network follow this dynamic and the system stops (the
sources eventually stop changing their rate), then they stop at a point where the derivative (equation (3)) is
equal to zero. Because otherwise, if the derivative is not zero, means that the system keeps changing.

If this derivative is equal to zero, then, from equation (3), we get:

U ′r(xr(t)) =
∑
l∈r

M ′l (yl(t)) (4)
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We recognize, this is the same equation as the (strictly positive) optimal solution obtained by the lagrange
multipliers method (equation (2)); but so far we have assumed that the system stops, let’s observe with a
few examples if the system actually stops.

2.1 First example: A single link with only one route

Let’s first see the case of a single link with a single route, illustrated in Figure 1.

Figure 1: A single link with one route.

Assume that the equation of this network leads to the following:

dxr
dt

= kr(1− yl) (5)

But, as there is only one route, we have yl =
∑

r|l∈r
xr = xr, then:

dxr
dt

= kr(1− xr) (6)

The general solution of this differential equation is:

xr(t) = 1 + ae−krt (7)

Imposing the initial condition xr(0) = 0, we get that a = −1 and then we arrive to the solution:

xr(t) = 1− e−krt (8)

We observe in Figure 2 that this solution approaches to 1 exponentially fast, and in particular, it happens
that the value of kr is the slope of the curve, it means that if kr is big, it grows fast.

Figure 2: Dynamics of rate in route r.

Now, if we would like to solve our original maximization problem (equation (1)), we need the values of
Ur(xr) and Ml(yl). From equation (3) and equation (5) we can deduce that:

U ′r(xr) = 1 =⇒ Ur(xr) = xr (9)
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M ′l (yl) = yl =⇒ Ml(yl) =
yl

2

2
(10)

Then, the maximization problem is:

maximize
x,y

xr −
yl

2

2

subject to yl = xr

xr ≥ 0, ∀r ∈ R

(11)

Using the first constraint we can directly replace the value of yl by xr.

maximize
x,y

xr −
xr

2

2

subject to xr ≥ 0, ∀r ∈ R
(12)

Using equation (9) and (10), in the solution of the optimization problem (equation (2)), we get:

1

{
= x∗r if x∗r > 0,

≤ x∗r if x∗r = 0.
(13)

This equations tell us that either{
x∗r = 1 ∧ x∗r > 0 =⇒ x∗r = 1

x∗r ≥ 1 ∧ x∗r = 0 =⇒ contradiction

Then, the optimal rate for this problem is x∗r = 1. So, in this original problem, the source should transmit
at rate 1.

We can observe, going back to the solution of the differential equation (equation (8)), that you go to
this optimum x∗r = 1, but the more you approach it the less is the speed at which you go there, then the
convergence is asymptotic, you are decreasing your speed, but you are never stopping at the optimum.

2.2 Second example: Two routes sharing a link

We have seen until now that we converge to the optimum asymptotically, but although we are not stopping
at the optimum, we are approaching it continuously, now we would like to see if this is always the case.
Let’s analyze a second example (illustrated in Figure 3), in which we observe the behavior of the rates in
two routes using the same link.

Figure 3: Two routes sharing a link.

Assume that these are the equations of the flows:

dxr1
dt

= kr1(
1

xr1
− yl) (14)

4-3

gneglia
Pencil

gneglia
Pencil



dxr2
dt

= kr2(
2

xr2
− yl) (15)

We can deduce the Utility functions of these flows as we have done for the previous example:

U ′r1(xr1) =
1

xr1
=⇒ Ur1(xr1) = lnxr1 (16)

U ′r2(xr2) =
2

xr2
=⇒ Ur2(xr2) = 2 lnxr2 (17)

We can also deduce the Cost function of the link:

M ′l (yl) = y =⇒ Ml(yl) =
y2

2
(18)

2.2.1 r1 alone

First, let’s assume that at the beginning r1 is alone, then developing a similar procedure as for the previous
example, the condition would be:

1

x∗r1

{
= x∗r1 if x∗r1 > 0,

≤ x∗r1 if x∗r1 = 0.
(19)

This equations tells us that either

{
x∗r1

2 = 1 ∧ x∗r1 > 0 =⇒ x∗r1 = 1

x∗r1
2 ≥ 1 ∧ x∗r1 = 0 =⇒ contradiction

Then, the optimal value is x∗r1 = 1.

2.2.2 r1 and r2 together

Now, let’s look at the case where r1 and r2 are together. We can deduce the Utility function of these flows
as follows, for r1:

U ′r1(x∗r1)

{
= M ′l (y

∗
l ) if x∗r1 > 0,

≤M ′l (y∗l ) if x∗r1 = 0.
(20)

As we know that U ′r1(xr1) = 1
xr1

and M ′l (yl) = yl =
∑

r|l∈r
xr = xr1 + xr2 , then, replacing:

1

xr1

{
= x∗r1 + x∗r2 if x∗r1 > 0,

≤ x∗r1 + x∗r2 if x∗r1 = 0.
(21)

Similarly for r2:

2

xr2

{
= x∗r1 + x∗r2 if x∗r2 > 0,

≤ x∗r1 + x∗r2 if x∗r2 = 0.
(22)

Let’s suppose that x∗r1 > 0 and x∗r2 > 0, then we have a system of two equations:

1

x∗r1
= x∗r1 + x∗r2 (23)

2

x∗r2
= x∗r1 + x∗r2 (24)

Subtracting equations (23) and (24):

1

x∗r1
− 2

x∗r2
= 0 =⇒ x∗r2 = 2x∗r1 (25)
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Using equation (25) in equation (23), we get:

3x∗r1
2 = 1 =⇒ x∗r1 =

1√
3

(26)

Replacing equation (26) in equation (25):

x∗r2 =
2√
3

(27)

This result is coherent, because as they are sharing the same link and the utility of r2 is higher than the
utility of r1, is reasonable that at the end (in the optimal case) the rate of r2 is higher than the rate of r1.

Now with this information, we can try to see what can be the dynamics of the rates.

2.2.3 Dynamics r1 alone

Let’s start trying to deduce the dynamics of xr1 for the first case. When r1 is alone, it will converge to 1,
we don’t know the exact shape, but it can be similar to the one presented in Figure 4.

Figure 4: Behavior of r1 alone.

In particular, the speed at which it approaches 1 will be related to kr1 .

2.2.4 Dynamics r1 and r2 together

Now, let’s take a look to the behavior of xr1 and xr2 when r1 and r2 are sharing the link. In this case, it
is more complex to know what will happen, because xr1 has its target in 1√

3
and the target of xr2 is 2√

3
.

Again, the speed at which they approach to their targeted value will depend on the parameter kr1 and kr2 .
Let’s assume that kr2 is much smaller than kr1 :

kr2 << kr1
so that xr2 changes but very slowly.

Figure 5: Behavior of r1 and r1 together.
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So, as illustrated in Figure 5, at the beginning the influence of r2 will be so low that r1 will not notice
it, and then r1 will start to increase its rate, xr1 will tend to go to 1, as if it were alone in the link.

Meanwhile r2 will be increasing its rate slowly. At one point xr2 will start becoming significant, and the
more xr2 grows, the more xr1 will start perceiving the congestion, until xr1 has to come back to its final
(optimal) condition.

We can see that actually, even if there are only two flows sharing the link, it is possible that at the
beginning one of them overshoots its target to perhaps come back later, and these dynamics could be even
more complex as we will see with the following examples.

2.3 Third example: More complex networks

We have seen that for a simple network with only one link and two routes sharing the link, the equations and
the behavior of the flows start to be complex, now, let’s take a look to the configuration shown in Figure 6,
where r1 and r2 are competing for link l2, and r2 and r3 are competing for link l3.

Figure 6: Example of a network configuration with 3 routes over 5 links.

Let’s say that the utilities of the sources r1, r2, and r3 are the following:

Ur1(xr1) = lnxr1

Ur2(xr2) = 2 lnxr2

Ur3(xr3) = 10 lnxr3

(28)

Now, assume that kr1 >> kr2 >> kr3 . In Figure 7 we observe the possible behavior of flow xr1 : At the
beginning xr1 will grow pointing to 1, when xr2 starts to be significant, xr1 will start to decrease towards
1√
3
, but then after some time, xr3 will be high enough to compete with xr2 on link l3, and because it has

larger utility, it will probably reduce the rate of r2. Then r1 will have more space on link l2, and will increase
its rate again approaching to 1, and the dynamics continue.

Then we can build a more complex network configuration like the one proposed in Figure 8, where it
is possible that a behavior like the following occurs: First xr1 will grow towards 1, then xr2 starts to be
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Figure 7: Flow xr1 over time.

significant, and xr1 decrease approaching its goal value. After some time, xr3 will be noticed by xr2 which
will reduce its own rate, causing that xr1 increases again. At some point, xr4 will be perceived by xr3
which will reduce its own rate, this will yield the increasing of xr2 and consequently the reduction of xr1 .
In general, the dynamics will continue running and the rates can oscillate going up and down, now it’s not
clear anymore even if they asymptotically converge to an equilibrium point.

Figure 8: Network configuration with 10 links and 4 flows.

3 Does the system converge?

We wanted to find something like the following:

lim
t→∞

xr(t) = x∗r

In general: given a system of equations:

ẋr1(t) = f1(xr1 , xr2)
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ẋr2(t) = f2(xr1 , xr2)

We would like to prove that:
ẋr1(t) −−−→

t→∞
x∗r1

ẋr2(t) −−−→
t→∞

x∗r2

One possibility to prove this is to observe the variable xr1 over time, and show that it is each time closer
to x∗r1 , then do the same for x∗r2 . Once you have proven that each of the variables xr in the system converge
to x∗r over time, the prove is finished.

What we have seen is that it is not possible to use this proof method, because from the study of the flows
in the previous section we have observed the following:

• Probably the system will not converge in finite time.

• It is possible that we are in a chaotic system. We are not sure if the system will eventually converge.

Instead of analysing the rates, because as we have seen in the previous section they can oscilate, and it
is not clear how this can lead us to some convergence, we want to use another function that helps us.

We can think here on the function we used in the maximization problem:

V (t) =
∑
r∈R

Ur(xr(t))−
∑
l∈E

Ml(yl) (29)

We can wonder, is it possible that although each individual rate does not go closer and closer over time
to the optimal solution, this global function (equation (29)) keeps going closer and closer to the optimal
solution?

To answer this, we have to solve two questions:

1. Does V (t) always increase unless it reaches the optimum?

dV (t)

dt
> 0, ∀t unless V (t) = maxV (xr) ?

2. Does this function achieve the point of maximum?

lim
t→∞

V (t) = maxV (xr) ?

If the answers to this two questions are Yes, imply that:

lim
t→∞

xr(t) = x∗r

Because x∗r is the only point where the function V (t) is maximum, and if V (t) is always increasing, then
once it reaches the maximum, it cannot continue changing/increasing more over time.

We will use the following additional hypothesis:

U ′r(0) = +∞, ∀r ∈ R

If this is true, then we know that x∗r > 0, and it means that we can only consider the simplest equations
(equality equations) in the condition of equation (2).
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3.1 Is V (t) always increasing?

To know if the function V (t) is increasing with time, we compute the derivative (using the chain rule):

dV (t)

dt
=
dV (xr1(t), xr2(t), ..., xrR(t))

dt
=

∑
r∈R

∂V

∂xr
· dxr
dt (30)

Computing the partial derivative ∂V/∂xr:

∂V

∂xr
= (U ′r(xr(t))−

∑
l∈r

M ′l (yl(t))) (31)

And we already had the result of dxr/dt in equation (3). Then replacing (3) and (31) in (30):

dV (t)

dt
=

∑
r∈R

(U ′r(xr(t))−
∑
l∈r

M ′l (yl(t)))
2 · (kr) (32)

We have the squared term of (U ′r(xr(t))−
∑

l∈rM
′
l (yl(t))), multiplied by a positive term (kr), and then

we have the sum over these positive terms, then we can conclude that the value of dV (t)/dt is always positive.

dV (t)

dt
≥ 0, ∀t (33)

If we check the point where the derivative is equal to zero:

dV (t)

dt
= 0 =⇒ U ′r(xr(t)) =

∑
l∈r

M ′l (yl(t)) (34)

We can remember from equation (2) that this is the same optimal solution obtained by the method of
lagrange multipliers. It implies a much stronger condition, this function is always increasing unless we arrive
to the optimum:

dV (t)

dt
> 0, ∀t unless xr(t) = x∗r(t) (35)

3.2 Does V (t) go towards V (x∗)?

Now the question that arises is, does V (t) go towards V (x∗)?
Because it could be that the function is increasing but each time slower that it approaches assymptotically

to the optimum, and never reaches it.
So, what does it mean that the function V (t) never reaches the maximum? Let’s try to illustrate the

space of xr in Figure 9.

Figure 9: Evolution (over time) of xr in the space, plot for two routes, R = r1, r2.
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This Figure plots the evolution over time of the values of xr, then we start from xr = 0, and we target
to the optimum (it can be targeted in a strange way as shown in the figure), this is the curve over time, and
let’s suppose it approaches assymptotically to x∗r .

At one instant we will be at point x̃r, now let’s define the set A to be:

A = {xr | V (xr) ≥ V (x̃r)} (36)

The set A will include x̃r and x∗r (the optimum), as shown in Figure 6. This set is compact (closed and
bounded).

Let’s assume now that we are approaching x∗r asymptotically, this means that we will never reach it, and
then there will exist a ball B around x∗r such that xr(t) will never be there at any time.

If xr(t) 6→ x∗r =⇒ ∃ B | xr(t) 6∈ B ∀t (37)

Now, if we look at the set A−B, we find that in this set, dV/dt is strictly positive, because we already
found that this derivative is always positive, except in x∗r and this point does not belong to the set A−B.

dV

dt
> 0 over A−B

Then, the function dV/dt happens to be continuous, and we have seen that set A is a compact set.

Claim 1. A continuous function over a compact set implies that the function has a maximum and a minimum
on the set.

This is telling us that V (t) moves inside A−B with a strictly positive speed (a).

dV

dt
is continuous over a compact set =⇒ ∃min

dV

dt
= a > 0

This implies that V (t) cannot stay forever out of set B. In other words, it cannot be that V (t) is always
increasing but it never goes inside set B. Then we arrived to a contradiction, because we supposed that V (t)
could have stayed always inside the set A-B and we found that it does not happen.

Our proof is finished. Then we can conclude that:

Remark 1. We started from an optimization problem, and we have shown that the dynamics we have defined
converge to the optimum.

Remark 2. From another point of view, if you don’t have the optimization problem, but you have the
dynamics of the system, and you wonder if they converge or not. We can prove it by defining a real function
that always increases. This function is usually called ”potential function” or ”Lyapunov function”.

4 Simulated Annealing — GIBBS Sampling

Annealing is a heat process whereby a metal is heated to a specific temperature and then allowed to cool
down slowly. This softens the metal which means it can be cut and shaped more easily.

The idea of this procedure is to heat the metal in order to cause the oscillation of the atoms which will
potentially break the disordered pieces of the metal. The temperature is slowly reduced to make the atoms
move until they reach some ordered state, which is the minimum energy configuration.

If this configuration has the minimum energy configuration, the question is why the metal by itself does
not go directly to this configuration?

It happens because the metal presents an analog situation to the one shown in Figure 10. This figure
represents a system with different states, which can be all the different positions of the atoms in the metal.
Let’s assume that there is a ball that arrives to this curve in a point (state), and you know there is another
state in the system that has less energy, but in order to reach that point, the ball need to pass first through
a space where the energy is higher.

If you can increase the kinetic energy of the ball, at one point, the ball will be able to pass by the
configuration of higher energy, and then will reach the minimum energy configuration; meanwhile you can
reduce gradually the energy until the ball is again motionless, but now in the global minima.
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(a) Original State of the system. (b) Trajectory of the ball from the initial state
after aplying some kinetic force until it arrives
to the final state.

Figure 10: Energy of the system for the different states.

Now, we can formalize the definition of the problem. Let’s assume we have a set of states S, and a
number N of agents. Each agent i has some internal variable ai ∈ Ai where Ai is a finite set. We also define
the state as S(a1, a2, ..., aN ). Then, if you have a finite number of agents (N), and they have a finite number
of possibilities (| Ai |), the space is finite (and not continuous as the problems seen in the previous sections).

Let’s see an example. Suppose that action ai ∈ {0, 1}, and the state of the system is characterized by
Equation 38 which describe how many nodes have done a particular choice, then a possible plot of this
example is presented in Figure 11.

S(a1, a2, ..., aN ) =

N∑
i=1

1(ai = 1) (38)

Figure 11: State of the system.

To solve this simple example, we want to minimize the energy ξ that is a function of state S (Equation
39), the goal is to find the state for which the energy is minimal.

minimize
{ai}

ξ(S(a1, ..., aN )) (39)

There are some strong differences with the problems we solved before. Now, the solution space is finite
and we do not rely on assumptions about the shape of the function (concave, convex, increasing, etc).

4.1 Neighborhood Relation

One way to solve the problem described before is to have a neighborhood relation, meaning that from one
state you can consider some other state. This relation is shown in Figure 12 where we can move from state
Si to state Sj , but cannot move directly from state Si to state Sk.
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Figure 12: Representation of Neighborhood relation.

First, let’s describe some definitions.

• qij is the probability of state Si to consider state Sj

• ξ(Sj) = ξj is the energy of state Sj

• αij is the probability to move from state Si to state Sj given that you have considered state Sj

4.2 Modelling the problem as a Markov Chain

Now, let’s define some rules:

1. At every step you can consider one of your neighbors with probability qij .
We will assume that qij = qji.

2. Once you decide to look into node j, you can compare its energy with your energy according to Equation
40, where we can observe that if the difference is small, the probability to move to state Sj is high.

αij =

{
1 if ξj ≤ ξi,
e−

ξj−ξi
T if ξj > ξi.

(40)

From (40) we can observe that if the energy of state Sj is smaller than the energy in the current state,
I will always move there. On the other hand, if the energy of state Sj is greater than my current energy, I
will move depending on the difference of the energies. If the difference is small, then I would go there with
a high probability but if the difference is very large, it will be very unlikely that I move to state Sj .

After all this, we have found a Markov chain (Figure 13), where the probability to go from Si to Sj is
qij · αij .

Figure 13: Markov chain.

If this Markov Chain is reversible, we know that it will converge to the stationary distribution described
in (41), meaning that if we let this markov chain run during a long time, we know that with some probability
πi it will be at state Si, if we assume the Markov Chain is reversible, then this probability is:

πi =
e−

ξi
T∑

j e
−
ξj
T

(41)

To check if (41) is really the stationary distribution of our problem, we have to proof the reversibility
property of this Markov Chain. It means that if we take any two neighbors Si and Sj the rate at which I go
from Si to Sj , (πi · qij · αij), and the rate at which I go from Sj to Si, (πj · qji · αji), should be equal:
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πi · qij · αij = πj · qji · αji (42)

As qij = qji we have:

πi · αij = πj · αji (43)

Replacing (41) in (43), and simplifying, we obtain:

e−
ξi
T · αij = e−

ξj
T · αji (44)

Now, if we assume ξj > ξi, we can replace αij and αji using equation (40):

e−
ξi
T · e−

ξj−ξi
T = e−

ξj
T · 1

e−
ξi
T −

ξj−ξi
T = e−

ξj
T

e
−ξi−ξj+ξi

T = e−
ξj
T

e
−ξj
T = e−

ξj
T

(45)

So, we have found an equality, proving that this Markov chain is reversible and now we can use directly
the stationary distribution as the solution of our problem.

4.3 Reducing the temperature

First, let’s analyze how could be the graph of the function πi (equation 41).

πi =
e−

ξi
T∑

j e
−
ξj
T

We can observe from πi, that when ξi is big, e−
ξi
T is close to 0, and then πi will be small. When ξi is

small, e−
ξi
T is close to 1, and then πi will be big.

So we can now plot the probability of being in a given state i, in Figure 14.

Figure 14: Stationary distribution (red) compared with the curve of the energy of the states (blue).

Let’s now analyze what happens when we start decreasing the temperature T . If the temperature
decreases, the numerator and the denominator of πi decrease, but which one decreases faster? If we compute
the ratio between πi and πj , we get:

πi
πj

=

e−
ξi
T∑

k e−
ξk
T

e−
ξj
T∑

k e−
ξk
T

=
e−

ξi
T

e−
ξj
T

= e+
ξj−ξi
T
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If ξi is smaller than ξj , then the difference (ξj−ξi) is positive. If T goes to zero, this ratio goes to infinity.
If now we say that ξi is greater than ξj , and T goes to zero, this ratio will tend to zero.
This means for πi, that when T becomes smaller, the numerator will decrease, but will decrease much

faster in the states with high energy. Then, the states with higher energy will become less and less likely
and the states with low energy will become more and more likely, we plotted this in Figure 15.

Figure 15: Stationary distribution for a temperature T1 (red) compared with the Stationary distribution for
a temperature T2 < T1 (green) and the curve of the energy of the states (blue).

Let’s define now H as the set of states with minimum energy. Then, we can prove that if you leave the
temperature go to zero:

lim
T→0

πi(T ) =

{
1
|H| if i ∈ H
0 otherwise

(46)

If the temperature reaches zero, you will be sure that your system will be in one of the global minima of
the system. If you have only one global minima | H |= 1, the probability to be in this global minima will be
equal to 1.

But we cannot decrease the temperature very fast. Because, from equation (40), if T → 0 the probability
to move from another state with higher energy will be zero, and then we will possibly be in a local minima.

αij =

{
1 if ξj ≤ ξi
e−

ξj−ξi
T if ξj > ξi

−−−→
T→0

αij =

{
1 if ξj ≤ ξi
0 if ξj > ξi

We would like to have at the beginning a temperature high enough so that we can reach the stationary
distribution, and then reduce the temperature until it reaches zero.

Now we have to combine the two things:

• We have to run the system a long time in order to arrive to the stationary distribution.

• And then we have to reduce the temperature.

We can think of reducing the temperature step by step. You start from an inicial temperature at step 0,
and then you divide this temperature by ln(1 + k), where k is the step.

This reduction of the temperature in function of the step k is defined by equation (47), and is represented
in Figure 16.

T (k) =
T0

ln(1 + k)
(47)

Then, you are guaranteed that you will assymptotically be in one of the global minima, if you execute
the Algorithm 1.
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Figure 16: Decreasing of the temperature in function of the step k.

Algorithm 1 Simmulated Annealing.

Require:
S : Set of states
T0 : Initial temperature
ξ : Energy of the states
ε : tolerance

Ensure:
i : State of global minima

1: procedure SimmulAnnealing
2: i← any state of S
3: T ← T0

4: k ← 1
5: while T > 0 + ε do
6: j ← select a neighbor of i with probability pij

7: if ξi > ξj then
8: i← j
9: else

10: i← j with probability e−
ξj−ξi
T

11: T ← T0/ ln(1 + k)
12: k ← k + 1

return i
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