Janua

anuary 11, 2017

Lecture 4

Lecturer: Giovanni Neglia

Scribe: Miguel Romero, Melissa Sanabria

NOTE: The content of these notes has not been formally reviewed by the lecturer. It is recommended that they are read critically.

1 Introduction

During the previous lecture we studied the dynamics of the bandwidth sharing over a network. For this analysis we took a non-rigorous approach when we assumed that the system must come to a halt (Lec. 3, Sec. 4.2), this reasoning led us to the conclusion that if the system stude it will do it at the optimum, but so far we don't know if the system really stops.

For this reason, in this lesson we will study the convergence of this dynamic system at the limit. In Section 2, we will study the behavior of the rates in some simple petwork configurations to observe if they eventually converge. We will find that the analysis of the rates in the network is not useful to determine if the system stops. Then, in Section 3, we will evaluate a different function from the system that will help us to determine whether the system stops and if it stops at the optimum. In Section 4, we will present the simulated annealing process that is a technique that will be utile to find the global optimum of a given function.

2 Does the system stop?

In the previous lecture we modeled the "Bandwith sharing over the Internet" problem as follows:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{y}}{\text{maximize}} & \sum_{r \in R} U_r(x_r) - \sum_{l \in E} M_l(y_l) \\ \text{subject to} & y_l = \sum_{r|l \in r} x_r \\ & x_r \ge 0, \ \forall r \in R \end{array}$$
(1)

If we solve this problem by the Lagrange multipliers method, the optimal solution is:

$$U_{\bar{r}}'(x_{\bar{r}}^*) \begin{cases} = \sum_{l \in \bar{r}} M_l'(y_l^*) & \text{if } x_{\bar{r}}^* > 0, \\ \leq \sum_{l \in \bar{r}} M_l'(y_l^*) & \text{if } x_{\bar{r}}^* = 0. \end{cases}$$
(2)

This problem can be also solved using a distributed approach, where each network component has a role:

- The links measure congestion and transmit to the sources all the flow passing by them.
- The sources should adapt their rate over time according to the following equation:

$$\frac{dx_r}{dt} = k_r (U'_r(x_r(t)) - \sum_{l \in r} M'_l(y_l(t)))$$
(3)

We have concluded that if the elements of the network follow this dynamic and the system stops (the sources eventually stop changing their rate), then they stop at a point where the derivative (equation (3)) is equal to zero. Because otherwise, if the derivative is not zero, means that the system keeps changing.

If this derivative is equal to zero, then, from equation (3), we get:

$$U'_{r}(x_{r}(t)) = \sum_{l \in r} M'_{l}(y_{l}(t))$$
(4)

We recognize, this is the same equation as the (strictly positive) optimal solution obtained by the lagrange multipliers method (equation (2)); but so far we have assumed that the system stops, let's observe with a few examples if the system actually stops.

2.1 First example: A single link with only one route

Let's first see the case of a single link with a single route, illustrated in Figure 1.

Figure 1: A single link with one route.

Assume that the equation of this network leads to the following:

$$\frac{dx_r}{dt} = k_r (1 - y_l) \tag{5}$$

But, as there is only one route, we have $y_l = \sum_{r|l \in r} x_r = x_r$, then:

$$\frac{dx_r}{dt} = k_r(1 - x_r) \tag{6}$$

The general solution of this differential equation is:

$$x_r(t) = 1 + ae^{-k_r t} \tag{7}$$

Imposing the initial condition $x_r(0) = 0$, we get that a = -1 and then we arrive to the solution:

$$x_r(t) = 1 - e^{-k_r t}$$
(8)

We observe in Figure 2 that this solution approaches to 1 exponentially fast, and in particular, it happens that the value of k_r is the slope of the curve, it means that if k_r is big, it grows fast.

Figure 2: Dynamics of rate in route r.

Now, if we would like to solve our original maximization problem (equation (1)), we need the values of $U_r(x_r)$ and $M_l(y_l)$. From equation (3) and equation (5) we can deduce that:

$$U'_r(x_r) = 1 \implies U_r(x_r) = x_r \tag{9}$$

$$M_l'(y_l) = y_l \implies M_l(y_l) = \frac{y_l^2}{2} \tag{10}$$

Then, the maximization problem is:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{y}}{\operatorname{maximize}} & x_r - \frac{y_l^2}{2} \\ \text{subject to} & y_l = x_r \\ & x_r \ge 0, \ \forall r \in R \end{array}$$
(11)

Using the first constraint we can directly replace the value of y_l by x_r .

$$\begin{array}{ll} \underset{\mathbf{x} \notin \mathbf{y}}{\text{maximize}} & x_r - \frac{{x_r}^2}{2} \\ \text{subject to} & x_r \ge 0, \ \forall r \in R \end{array}$$
(12)

Using equation (9) and (10), in the solution of the optimization problem (equation (2)), we get:

$$1\begin{cases} = x_r^* & \text{if } x_r^* > 0, \\ \le x_r^* & \text{if } x_r^* = 0. \end{cases}$$
(13)

This equations tell us that either

$$\begin{cases} x_r^* = 1 \land x_r^* > 0 \implies x_r^* = 1 \\ x_r^* \ge 1 \land x_r^* = 0 \implies \text{contradiction} \end{cases}$$

Then, the optimal rate for this problem is $x_r^* = 1$. So, in this original problem, the source should transmit at rate 1.

We can observe, going back to the solution of the differential equation (equation (8)), that you go to this optimum $x_r^* = 1$, but the more you approach it the less is the speed at which you go there, then the convergence is asymptotic, you are decreasing your speed, but you are never stopping at the optimum.

2.2 Second example: Two routes sharing a link

We have seen until now that we converge to the optimum asymptotically, but although we are not stopping at the optimum, we are approaching it continuously, now we would like to see if this is always the case. Let's analyze a second example (illustrated in Figure 3), in which we observe the behavior of the rates in two routes using the same link.

Figure 3: Two routes sharing a link.

Assume that these are the equations of the flows:

$$\frac{dx_{r_1}}{dt} = k_{r_1} \left(\frac{1}{x_{r_1}} - y_l\right) \tag{14}$$

$$\frac{dx_{r_2}}{dt} = k_{r_2} \left(\frac{2}{x_{r_2}} - y_l\right) \tag{15}$$

We can deduce the Utility functions of these flows as we have done for the previous example:

$$U'_{r_1}(x_{r_1}) = \frac{1}{x_{r_1}} \implies U_{r_1}(x_{r_1}) = \ln x_{r_1}$$
(16)

$$U'_{r_2}(x_{r_2}) = \frac{2}{x_{r_2}} \implies U_{r_2}(x_{r_2}) = 2\ln x_{r_2}$$
(17)

We can also deduce the Cost function of the link:

$$M'_l(y_l) = y \implies M_l(y_l) = \frac{y^2}{2}$$
 (18)

2.2.1 r_1 alone

First, let's assume that at the beginning r_1 is alone, then developing a similar procedure as for the previous example, the condition would be:

$$\frac{1}{x_{r_1}^*} \begin{cases} = x_{r_1}^* & \text{if } x_{r_1}^* > 0, \\ \le x_{r_1}^* & \text{if } x_{r_1}^* = 0. \end{cases}$$
(19)

This equations tells us that either $\begin{cases} x_{r_1}^{*} \stackrel{2}{=} 1 \wedge x_{r_1}^{*} > 0 \implies x_{r_1}^{*} = 1 \\ x_{r_1}^{*} \stackrel{2}{\geq} 1 \wedge x_{r_1}^{*} = 0 \implies \text{contradiction} \end{cases}$ Then, the optimal value is $x_{r_1}^{*} = 1$.

2.2.2 r_1 and r_2 together

Now, let's look at the case where r_1 and r_2 are together. We can deduce the Utility function of these flows as follows, for r_1 :

$$U_{r_1}'(x_{r_1}^*) \begin{cases} = M_l'(y_l^*) & \text{if } x_{r_1}^* > 0, \\ \le M_l'(y_l^*) & \text{if } x_{r_1}^* = 0. \end{cases}$$
(20)

As we know that $U'_{r_1}(x_{r_1}) = \frac{1}{x_{r_1}}$ and $M'_l(y_l) = y_l = \sum_{r|l \in r} x_r = x_{r_1} + x_{r_2}$, then, replacing:

$$\frac{1}{x_{r_1}} \begin{cases} = x_{r_1}^* + x_{r_2}^* & \text{if } x_{r_1}^* > 0, \\ \le x_{r_1}^* + x_{r_2}^* & \text{if } x_{r_1}^* = 0. \end{cases}$$
(21)

Similarly for r_2 :

$$\frac{2}{x_{r_2}} \begin{cases} = x_{r_1}^* + x_{r_2}^* & \text{if } x_{r_2}^* > 0, \\ \leq x_{r_1}^* + x_{r_2}^* & \text{if } x_{r_2}^* = 0. \end{cases}$$
(22)

Let's suppose that $x_{r_1}^* > 0$ and $x_{r_2}^* > 0$, then we have a system of two equations:

$$\frac{1}{x_{r_1}^*} = x_{r_1}^* + x_{r_2}^* \tag{23}$$

$$\frac{2}{x_{r_2}^*} = x_{r_1}^* + x_{r_2}^* \tag{24}$$

Subtracting equations (23) and (24):

$$\frac{1}{x_{r_1}^*} - \frac{2}{x_{r_2}^*} = 0 \implies x_{r_2}^* = 2x_{r_1}^*$$
(25)

Using equation (25) in equation (23), we get:

$$3x_{r_1}^{*2} = 1 \implies x_{r_1}^* = \frac{1}{\sqrt{3}}$$
 (26)

Replacing equation (26) in equation (25):

$$x_{r_2}^* = \frac{2}{\sqrt{3}}$$
(27)

This result is coherent, because as they are sharing the same link and the utility of r_2 is higher than the utility of r_1 , is reasonable that at the end (in the optimal case) the rate of r_2 is higher than the rate of r_1 . Now with this information, we can try to see what can be the dynamics of the rates.

2.2.3 Dynamics r_1 alone

Let's start trying to deduce the dynamics of x_{r_1} for the first case. When r_1 is alone, it will converge to 1, we don't know the exact shape, but it can be similar to the one presented in Figure 4.

Figure 4: Behavior of r_1 alone.

In particular, the speed at which it approaches 1 will be related to k_{r_1} .

Dynamics r_1 and r_2 together 2.2.4

Now, let's take a look to the behavior of x_{r_1} and x_{r_2} when r_1 and r_2 are sharing the link. In this case, it is more complex to know what will happen, because x_{r_1} has its target in $\frac{1}{\sqrt{3}}$ and the target of x_{r_2} is $\frac{2}{\sqrt{3}}$. Again, the speed at which they approach their targeted value will depend on the parameter k_{r_1} and k_{r_2} .

Let's assume that k_{r_2} is much smaller than k_{r_1} :

$$k_{r_2} << k_{r_1}$$

so that x_{r_2} changes but very slowly.

Figure 5: Behavior of r_1 and r_1 together.

So, as illustrated in Figure 5, at the beginning the influence of r_2 will be so low that r_1 will not notice it, and then r_1 will start to increase its rate, x_{r_1} will tend to go to 1, as if it were alone in the link.

Meanwhile r_2 will be increasing its rate slowly. At one point x_{r_2} will start becoming significant, and the more x_{r_2} grows, the more x_{r_1} will start perceiving the congestion, until x_{r_1} has to come back to its final (optimal) condition.

We can see that actually, even if there are only two flows sharing the link, it is possible that at the beginning one of them overshoots its target to perhaps come back later, and these dynamics could be even more complex as we will see with the following examples.

2.3 Third example: More complex networks

We have seen that for a simple network with only one link and two routes sharing the link, the equations and the behavior of the flows start to be complex, now, let's take a look to the configuration shown in Figure 6, where r_1 and r_2 are competing for link l_2 , and r_2 and r_3 are competing for link l_3 .

Figure 6: Example of a network configuration with 3 routes over 5 links.

Let's say that the utilities of the sources r_1 , r_2 , and r_3 are the following:

$$U_{r_1}(x_{r_1}) = \ln x_{r_1}$$

$$U_{r_2}(x_{r_2}) = 2 \ln x_{r_2}$$

$$U_{r_3}(x_{r_3}) = 10 \ln x_{r_3}$$
(28)

Now, assume that $k_{r_1} >> k_{r_2} >> k_{r_3}$. In Figure 7 we observe the possible behavior of flow x_{r_1} : At the beginning x_{r_1} will grow pointing to 1, when x_{r_2} starts to be significant, x_{r_1} will start to decrease towards $\frac{1}{\sqrt{3}}$, but then after some time, x_{r_3} will be high enough to compete with x_{r_2} on link l_3 , and because it has larger utility, it will probably reduce the rate of r_2 . Then r_1 will have more space on link l_2 , and will increase its rate again approaching to 1, and the dynamics continue.

Then we can build a more complex network configuration like the one proposed in Figure 8, where it is possible that a behavior like the following occurs: First x_{r_1} will grow towards 1, then x_{r_2} starts to be

Figure 7: Flow x_{r_1} over time.

one con think the

significant, and x_{r_1} decrease approaching its goal value. After some time, x_{r_3} will be noticed by x_{r_2} which will reduce its own rate, causing that x_{r_1} increases again. At some point, x_{r_4} will be perceived by x_{r_3} t_4 which will reduce its own rate, this will yield the increasing of x_{r_2} and consequently the reduction of x_{r_1} . In general, the dynamics will continue running and the rates can oscillate going up and down, now it's not clear anymore even if they asymptotically converge to an equilibrium point.

Figure 8: Network configuration with 10 links and 4 flows.

3 Does the system converge?

We wanted to find something like the following:

$$\lim_{t \to \infty} x_r(t) = x_r^*$$

In general: given a system of equations:

$$\dot{x}_{r_1}(t) = f_1(x_{r_1}, x_{r_2})$$

$$\dot{x}_{r_2}(t) = f_2(x_{r_1}, x_{r_2})$$

We would like to prove that:

os tinas poes on
$$\dot{x}_{r_1}(t) \xrightarrow[t \to \infty]{t \to \infty} x_{r_1}^*$$

 $\dot{x}_{r_2}(t) \xrightarrow[t \to \infty]{t \to \infty} x_{r_2}^*$

One possibility to prove this is to observe the variable x_{r_1} over time, and show that it is each time closer to $x_{r_1}^*$, then do the same for $x_{r_2}^*$. Once you have proven that each of the variables x_r in the system converge to x_r^* over time, the prove is finished.

in the previous section we have observed the following:

is not clear how this can lead us to some convergence, we want to use another function that helps us.

$$V(t) = \sum_{r \in R} U_r(x_r(t)) - \sum_{l \in E} M_l(g_l)$$
⁽²⁹⁾

narrow

We can wonder, is it possible that although each individual rate does not go closer and closer over time to the optimal solution, this global function (equation (29)) keeps going closer and closer to the optimal unver, solution?

To answer this, we have to solve two questions:

1. Does V(t) always increase unless it reaches the optimum?

$$\frac{dV(t)}{dt} > 0, \ \forall t \ unless \ V(t) = \max V \underbrace{\bigotimes_{r}}^{\bullet} ?$$

2. Does this function achieve the point of maximum?

$$\lim_{t \to \infty} V(t) = \max V(x_r) ?$$

If the answers to this two questions are Yes, imply that:

$$\lim_{t \to \infty} x_r(t) = x_r^*$$

Because x_r^* is the only point where the function V(t) is maximum, and if V(t) is always increasing, then once it reaches the maximum, it cannot continue changing/increasing more over time.

We will use the following additional hypothesis:

$$U'_r(0) = +\infty, \ \forall r \in R$$

3.1 Is V(t) always increasing?

To know if the function V(t) is increasing with time, we compute the derivative (using the chain rule):

$$\frac{dV(t)}{dt} = \frac{dV(x_{r_1}(t), x_{r_2}(t), \dots, x_{r_R}(t))}{dt} = \sum_{r \in R} \frac{\partial V}{\partial x_r} \cdot \frac{dx_r}{dt}$$
(30)

Computing the partial derivative $\partial V / \partial x_r$:

$$\frac{\partial V}{\partial x_r} = \left(U_r'(x_r(t)) - \sum_{l \in r} M_l'(y_l(t))\right) \tag{31}$$

And we already had the result of dx_r/dt in equation (3). Then replacing (3) and (31) in (30):

$$\frac{dV(t)}{dt} = \sum_{r \in R} (U'_r(x_r(t)) - \sum_{l \in r} M'_l(y_l(t)))^2 \cdot (k_r)$$
(32)

We have the squared term of $(U'_r(x_r(t)) - \sum_{l \in r} M'_l(y_l(t)))$, multiplied by a positive term (k_r) , and then we have the sum over these positive terms, then we can conclude that the value of dV(t)/dt is always positive.

$$\frac{dV(t)}{dt} \ge 0, \ \forall t \tag{33}$$

If we check the point where the derivative is equal to zero:

$$\frac{dV(t)}{dt} = 0 \implies U'_r(x_r(t)) = \sum_{l \in r} M'_l(y_l(t))$$
(34)

We can remember from equation (2) that this is the same optimal solution obtained by the method of lagrange multipliers. It implies a much stronger condition, this function is always increasing unless we arrive to the optimum:

$$\frac{dV(t)}{dt} > 0, \ \forall t \ unless \ x_r(t) = x_r^* (\mathbf{x})$$
(35)

3.2 Does V(t) go towards $V(x^*)$?

Now the question that arises is, does V(t) go towards $V(x^*)$?

Because it could be that the function is increasing but each time slower that it approaches asymptotically to the optimum, and never reaches it.

So, what does it mean that the function V(t) never reaches the maximum? Let's try to illustrate the space of x_r in Figure 9.

Figure 9: Evolution (over time) of x_r in the space, plot for two routes, $R = r_1, r_2$.

This Figure plots the evolution over time of the values of x_r , then we start from $x_r = 0$, and we target to the optimum (it can be targeted in a strange way as shown in the figure), this is the curve over time, and let's suppose it approaches asymptotically to x_r^* .

At one instant we will be at point \tilde{x}_r , now let's define the set A to be:

$$A = \{ \underbrace{\mathbf{X}}_{r} \mid V(\underbrace{\mathbf{X}}_{r}) \ge V(\underbrace{\widetilde{\mathbf{X}}}_{r}) \}$$
(36)

The set A will include \tilde{x}_r and x_r^* (the optimum), as shown in Figure 6. This set is compact (closed and bounded). because the process of th

then there will exist a ball B around x_r^* such that $x_r(t)$ will never be there at any time.

If
$$x_r(t) \not\to x_r^* \implies \exists B \mid x_r(t) \notin B \ \forall t$$

Now, if we look at the set A - B, we find that in this set, dV/dt is strictly positive, because we already found that this derivative is always positive, except in x_r^* and this point does not belong to the set A - B.

$$\frac{dV}{dt} > 0$$
 over $A - E$

 $\frac{dV}{dt} > 0 \text{ over } A - B$ Then, the function dV/dt happens to be continuous, and we have seen that set A is a compact set.

Claim 1. A continuous function over a compact set implies that the function has a maximum and a minimum on the set.

This is telling us that V(t) moves inside A - B with a strictly positive speed (a).

$$\frac{dV}{dt}$$
 is continuous over a compact set $\implies \exists \min \frac{dV}{dt} = a > 0$

This implies that V(t) cannot stay forever out of set B. In other words, it cannot be that V(t) is always increasing but it never goes inside set B. Then we arrived to a contradiction, because we supposed that V(t)could have stayed always inside the set A-B and we found that it does not happen.

Our proof is finished. Then we can conclude that:

Remark 1. We started from an optimization problem, and we have shown that the dynamics we have defined converge to the optimum.

Remark 2. From another point of view, if you don't have the optimization problem, but you have the dynamics of the system, and you wonder if they converge or not, We can prove it by defining a real function that always increases. This function is usually called "potential function" or "Lyapunov function".

Simulated Annealing — GIBBS Sampling 4

Annealing is a heat-process whereby a metal is heated to a specific temperature and then allowed to cool down slowly. This softens the metal which means it can be cut and shaped more easily.

The idea of this procedure is to heat the metal in order to cause the oscillation of the atoms which will potentially break the disordered pieces of the metal. The temperature is slowly reduced to make the atoms move until they reach some ordered state, which is the minimum energy configuration.

If this configuration has the minimum energy configuration, the question is why the metal by itself does not go directly to this configuration?

It happens because the metal presents an analog situation to the one shown in Figure 10. This figure represents a system with different states, which can be all the different positions of the atoms in the metal. Let's assume that there is a ball that arrives to this curve in a point (state), and you know there is another state in the system that has less energy, but in order to reach that point, the ball need to pass first through a space where the energy is higher.

If you can increase the kinetic energy of the ball, at one point, the ball will be able to pass by the configuration of higher energy, and then will reach the minimum energy configuration; meanwhile you can reduce gradually the energy until the ball is again motionless, but now in the global minima.

Figure 10: Energy of the system for the different states.

Now, we can formalize the definition of the problem. Let's assume we have a set of states S, and a number N of agents. Each agent i has some internal variable $a_i \in A_i$ where A_i is a finite set. We also define the state as $S(a_1, a_2, ..., a_N)$. Then, if you have a finite number of agents (N), and they have a finite number of possibilities $(|A_i|)$, the space is finite (and not continuous as the problems seen in the previous sections).

Let's see an example. Suppose that action $a_i \in \{0, 1\}$, and the state of the system is characterized by Equation 38 which describe how many nodes have done a particular choice, then a possible plot of this example is presented in Figure 11.

Figure 11: State of the system.

To solve this simple example, we want to minimize the energy ξ that is a function of state S (Equation 39), the goal is to find the state for which the energy is minimal.

$$\underset{\{a_i\}}{\text{minimize}} \quad \xi(S(a_1, ..., a_N)) \tag{39}$$

There are some strong differences with the problems we solved before. Now, the solution space is finite and we do not rely on assumptions about the shape of the function (concave, convex, increasing, etc).

4.1 Neighborhood Relation

One way to solve the problem described before is to have a neighborhood relation, meaning that from one state you can consider some other state. This relation is shown in Figure 12 where we can move from state S_i to state S_j , but cannot move directly from state S_i to state S_k .

Figure 12: Representation of Neighborhood relation.

First, let's describe some definitions.

- q_{ij} is the probability of state S_i to consider state S_j $\xi(S_j) = \xi_j$ is the energy of state S_j α_{ij} is the probability to move from state S_i to state S_j given that you have considered state S_j MARKOU Markov Chain

4.2

Now, let's define some rules:

- 1. At every step you can consider one of your neighbors with probability q_{ij} . We will assume that $q_{ij} = q_{ji}$.
- 2. Once you decide to look into node j, you can compare its energy with your energy according to Equation 40, where we can observe that if the difference is small, the probability to move to state S_j is high.

$$\alpha_{ij} = \begin{cases} 1 & \text{if } \xi_j \le \xi_i, \\ e^{-\frac{\xi_j - \xi_i}{T}} & \text{if } \xi_j > \xi_i. \end{cases}$$
(40)

(41)

prix

From (40) we can observe that if the energy of state S_i is smaller than the energy in the current state, I will always move there. On the other hand, if the energy of state S_i is greater than my current energy, I will move depending on the difference of the energies. If the difference is small, then I would go there with a high probability but if the difference is very large, it will be very unlikely that I move to state S_j .

After all this, we have found a Markov chain (Figure 13), where the probability to go from S_i to S_j is $q_{ij} \cdot \alpha_{ij}$.

Figure 13: Markov chain.

If this Markov Chain is reversible, we know that it will converge to the stationary distribution described in (41), meaning that if we let this markov chain run during a long time, we know that with some probability π_i it will be at state S_i , if we assume the Markov Chain is reversible, then this probability is:

$$\pi_i = \frac{e^{-\frac{\xi_i}{T}}}{\sum_j e^{-\frac{\xi_j}{T}}}$$

To check if (41) is really the stationary distribution of our problem, we have to proof the reversibility property of this Markov Chain. It means that if we take any two neighbors S_i and S_j the rate at which I go from S_i to S_j , $(\pi_i \cdot q_{ij} \cdot \alpha_{ij})$, and the rate at which I go from S_j to S_i , $(\pi_j \cdot q_{ji} \cdot \alpha_{ji})$, should be equal:

NOT EXACT WE PROVE THAT THE MC IS WITH RESPECT TO THE BISTRIBUTION (41) A STATIONARY BISTRIBUTION. IF THE MC

 $\frac{|RREDUCIBLE AND APERIODIC WE KNOW}{THAT C P(S_n = i | S_1 = S_1^*) = \pi_i^* \quad \forall S_1^*$

$$\pi_i \cdot q_{ij} \cdot \alpha_{ij} = \pi_j \cdot q_{ji} \cdot \alpha_{ji} \tag{42}$$

As $q_{ij} = q_{ji}$ we have:

$$\pi_i \cdot \alpha_{ij} = \pi_j \cdot \alpha_{ji} \tag{43}$$

Replacing (41) in (43), and simplifying, we obtain:

$$e^{-\frac{\xi_i}{T}} \cdot \alpha_{ij} = e^{-\frac{\xi_j}{T}} \cdot \alpha_{ji} \tag{44}$$

Now, if we assume $\xi_j > \xi_i$, we can replace α_{ij} and α_{ji} using equation (40):

$$e^{-\frac{\xi_i}{T}} \cdot e^{-\frac{\xi_j - \xi_i}{T}} = e^{-\frac{\xi_j}{T}} \cdot 1$$

$$e^{-\frac{\xi_i - \xi_j - \xi_i}{T}} = e^{-\frac{\xi_j}{T}}$$

$$e^{\frac{-\xi_i - \xi_j + \xi_i}{T}} = e^{-\frac{\xi_j}{T}}$$

$$e^{\frac{-\xi_j}{T}} = e^{-\frac{\xi_j}{T}}$$
(45)

So, we have found an equality, proving that this Markov chain is reversible and now we can use directly the stationary distribution as the solution of our problem.

4.3 Reducing the temperature

First, let's analyze how could be the graph of the function π_i (equation 41).

$$\pi_i = \frac{e^{-\frac{\xi_i}{T}}}{\sum_j e^{-\frac{\xi_j}{T}}}$$

We can observe from π_i , that when ξ_i is big, $e^{-\frac{\xi_i}{T}}$ is close to 0, and then π_i will be small. When ξ_i is small, $e^{-\frac{\xi_i}{T}}$ is close to 1, and then π_i will be big.

So we can now plot the probability of being in a given state i, in Figure 14.

Let's now analyze what happens when we start decreasing the temperature T. If the temperature decreases, the numerator and the denominator of π_i decrease, but which one decreases faster? If we compute the ratio between π_i and π_j , we get:

$$\frac{\pi_i}{\pi_j} = \frac{\frac{e^{-\frac{\xi_i}{T}}}{\sum_k e^{-\frac{\xi_k}{T}}}}{\frac{e^{-\frac{\xi_j}{T}}}{\sum_k e^{-\frac{\xi_j}{T}}}} = \frac{e^{-\frac{\xi_i}{T}}}{e^{-\frac{\xi_j}{T}}} = e^{+\frac{\xi_j - \xi_i}{T}}$$

If ξ_i is smaller than ξ_j , then the difference $(\xi_j - \xi_i)$ is positive. If T goes to zero, this ratio goes to infinity. If now we say that ξ_i is greater than ξ_j , and T goes to zero, this ratio will tend to zero.

This means for π_i , that when T becomes smaller, the numerator will decrease, but will decrease much faster in the states with high energy. Then, the states with higher energy will become less and less likely and the states with low energy will become more and more likely, we plotted this in Figure 15.

Figure 15: Stationary distribution for a temperature T_1 (red) compared with the Stationary distribution for a temperature $T_2 < T_1$ (green) and the curve of the energy of the states (blue).

Let's define now H as the set of states with minimum energy. Then, we can prove that if you leave the temperature go to zero:

$$\lim_{T \to 0} \pi_i(T) = \begin{cases} \frac{1}{|H|} & \text{if } i \in H \\ 0 & \text{otherwise} \end{cases}$$
(46)

If the temperature reaches zero, you will be sure that your system will be in one of the global minima of the system. If you have only one global minima |H| = 1, the probability to be in this global minima will be equal to 1.

But we cannot decrease the temperature very fast. Because, from equation (40), if $T \to 0$ the probability to move from another state with higher energy will be zero, and then we will possibly be in a local minima.

$$\alpha_{ij} = \begin{cases} 1 & \text{if } \xi_j \leq \xi_i \\ e^{-\frac{\xi_j - \xi_i}{T}} & \text{if } \xi_j > \xi_i \end{cases} \xrightarrow{T \to 0} \quad \alpha_{ij} = \begin{cases} 1 & \text{if } \xi_j \leq \xi_i \\ 0 & \text{if } \xi_j > \xi_i \end{cases}$$

We would like to have at the beginning a temperature high enough so that we can reach the stationary distribution, and then reduce the temperature until it reaches zero.

Now we have to combine the two things:

- We have to run the system a long time in order to arrive to the stationary distribution.
- And then we have to reduce the temperature.

We can think of reducing the temperature step by step. You start from an initial temperature at step 0, and then you divide this temperature by $\ln(1+k)$, where k is the step.

This reduction of the temperature in function of the step k is defined by equation (47), and is represented in Figure 16.

$$T(k) = \frac{T_0}{\ln(1+k)}$$
(47)

Then, you are guaranteed that you will asymptotically be in one of the global minima, if you execute the Algorithm 1.

Figure 16: Decreasing of the temperature in function of the step k.

Algorithm 1 Simmulated Annealing.
Require:
S: Set of states
T_0 : Initial temperature
ξ : Energy of the states
ϵ : tolerance
Ensure:
i: State of global minima
1: procedure SimmulAnnealing
2: $i \leftarrow \text{any state of } S$
3: $T \leftarrow T_0$
4: $k \leftarrow 1$
5: while $T > 0 + \epsilon \operatorname{do}$
6: $j \leftarrow \text{select a neighbor of } i \text{ with probability } p_{ij}$
7: if $\xi_i > \xi_j$ then
8: $i \leftarrow j$
9: else $\varepsilon_{i,j} = \varepsilon_{i,j}$
10: $i \leftarrow j$ with probability $e^{-\frac{s_j - s_i}{T}}$
11: $T \leftarrow T_0/\ln(1+k)$
12: $k \leftarrow k+1$ return i

References

[1] Frank Kelly and Elena Yudovina, Stoch astic Networks. Cambridge Press, 2014.