# Distributed Optimization and Games 

# Introduction to Game Theory 

Giovanni Neglia<br>INRIA - EPI Maestro<br>18 January 2017

## What is Game Theory About?

$\square$ Mathematical/Logical analysis of situations of conflict and cooperation

$\begin{array}{cccc}S_{C}=S_{R}=20 & S_{C}=S_{R}=16 & S_{C}=S_{R}=16 & S_{C}=S_{R}=12 \\ H_{C}=10, H_{R}=10 & H_{C}=16, H_{R}=10 & H_{C}=10, H_{R}=16 & H_{C}=16, H_{R}=16\end{array}$
$\square$ Goal: to prescribe how rational players should act

## What is a Game?

$\square$ A Game consists of
o at least two players

- a set of strategies for each player
o a preference relation over possible outcomes
$\square$ Player is general entity
o individual, company, nation, protocol, animal, etc
$\square$ Strategies
o actions which a player chooses to follow
$\square$ Outcome
o determined by mutual choice of strategies
$\square$ Preference relation
o modeled as utility (payoff) over set of outcomes


## Short history of GT

a Forerunners:

- Waldegrave's first minimax mixed strategy solution to a 2-person game (1713), Cournot's duopoly (1838), Zermelo's theorem on chess (1913), Borel's minimax solution for 2 -person games with 3 or 5 strategies (20s)
$\square$ 1928: von Neumann's theorem on two-person zero-sum games
ᄀ 1944: von Neumann and Morgenstern, Theory of Games and Economic Behaviour
- 1950-53: Nash's contributions (Nash equilibrium, bargaining theory)

1952-53: Shapley and Gillies' core (basic concept in cooperative GT)
$\square$ 60s: Aumann's extends cooperative GT to non-transferable utility games

- 1967-68: Harsanyi's theory of games of incomplete information
- 1972: Maynard Smith's concept of an Evolutionarily Stable Strategy
$\square$ Nobel prizes in economics
- 1994 to Nash, Harsanyi and Selten for "their pioneering analysis of equilibria in the theory of non-cooperative games"
- 2005 to Aumann and Schelling "for having enhanced our understanding of conflict and cooperation through game-theory analysis"
- 2012 to Roth and Shapley "for the theory of stable allocations and the practice of market design"
a Movies:
- 2001 "A beautiful mind" on John Nash's life
- See also:
- www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm


## Applications of Game Theory

$\square$ Economy
$\square$ Politics (vote, coalitions)
$\square$ Biology (Darwin's principle, evolutionary GT)
$\square$ Anthropology
$\square$ War
$\square$ Management-labor arbitration
$\square$ Philosophy (morality and free will)
$\square$ National Football league draft

- "Recently" applied to computer networks
- Nagle, RFC 970, 1985: "datagram networks as a multi-player game"
- wider interest starting around 2000


## Matrix Game (Normal form)


$\square$ Simultaneous play
o players analyze the game and then write their strategy on a piece of paper

## Students' game

|  | Colin |  |
| :---: | :---: | :---: |
|  |  | S |
| Rose | H |  |
| S | 15,15 | 13,16 |
| H | 16,13 | 14,14 |

## More Formal Game Definition

$\square$ Normal form (strategic) game
o a finite set $N$ of players
o a set strategies $S_{i}$ for each player $i \in N$
o payoff function $u_{i}(s)$ for each player $i \in N$

- where $s \in S=\times_{j \in N} S_{j}$ is an outcome
- sometimes also $u_{i}(A, B, \ldots) \quad A \in S_{1}, B \in S_{2}, \ldots$
- $u_{i}: S \rightarrow \mathfrak{R}$


## Two-person Zero-sum Games

$\square$ One of the first games studied
o most well understood type of game
$\square$ Players interest are strictly opposed
o what one player gains the other loses
o game matrix has single entry (gain to player 1)
$\square$ A "strong" solution concep $\dagger$

## Dominance

$\square$ Strategy S (weakly) dominates a strategy T if every possible outcome when $S$ is chosen is at least as good as corresponding outcome in $T$, and one is strictly better
o S strictly dominates $T$ if every possible outcome when $S$ is chosen is strictly better than corresponding outcome in $T$
$\square$ Dominance Principle
o rational players never choose dominated strategies
$\square$ Higher Order Dominance Principle
o iteratively remove dominated strategies

## Higher order dominance may be enough



GT prescribes:
Rose H - Colin H

## Higher order dominance may be enough

GT prescribes:
Rose C - Colin B

Colin


## ... but not in general

\[

\]

## Analyzing the Reduced Game: Movement Diagram



## Students' game



## Games without pure strategy NE

$\square$ An example?

|  | $R$ | $P$ | $S$ |
| :---: | :---: | :---: | :---: |
| $R$ | 0 | -1 | 1 |
| $P$ | 1 | 0 | -1 |
| $S$ | -1 | 1 | 0 |



## Games without pure strategy NE

$\square$ An example? An even simpler one


Some practice: find all the pure strategy NE

|  | $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | 3 | 2 | 4 | 2 |
| $B$ | 2 | 1 | 3 | 0 |
| $C$ | 2 | 2 | 2 | 2 |


|  | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | 4 | 3 | 8 |
| $B$ | 9 | 5 | 1 |
| $C$ | 2 | 7 | 6 |

## Games with no pure strategy NE


$\square$ What should players do?
o resort to randomness to select strategies

## Games with no pure strategy NE


$\square$...but we can find mixed strategies equilibria

## Mixed strategies equilibria

$\square$ Same idea of equilibrium
o each player plays a mixed strategy (equalizing strategy), that equalizes the opponent payoffs
o how to calculate it?

|  | Colin |  |  |
| :---: | :---: | :---: | :---: |
|  | A | B |  |
| A | 5,0 | $-1,4$ |  |
| $B$ | 3,2 | 2,1 |  |

## Mixed strategies equilibria

$\square$ Same idea of equilibrium
o each player plays a mixed strategy, that equalizes the opponent payoffs
o how to calculate it?


## Mixed strategies equilibria

$\square$ Same idea of equilibrium
o each player plays a mixed strategy, that equalizes the opponent payoffs
o how to calculate it?


## Mixed strategies equilibria

$\square$ Same idea of equilibrium
o each player plays a mixed strategy, that equalizes the opponent payoffs
o how to calculate it?


Rose playing $(1 / 5,4 / 5)$
Colin playing ( $3 / 5,2 / 5$ )
is an equilibrium
Rose gains 13/5
Colin gains 8/5

## Good news: <br> Nash's theorem [1950]

$\square$ Every two-person games has at least one equilibrium either in pure strategies or in mixed strategies

- Proved using fixed point theorem
o generalized to $N$ person game
$\square$ This equilibrium concept called Nash equilibrium in his honor
- A vector of strategies (a profile) is a Nash Equilibrium (NE) if no player can unilaterally change its strategy and increase its payoff


## A useful property

$\square$ Given a finite game, a profile is a mixed NE of the game if and only if for every player $i$, every pure strategy used by i with non-null probability is a best response to other players mixed strategies in the profile
o see Osborne and Rubinstein, A course in game theory, Lemma 33.2

## Game of Chicken


$\square$ Game of Chicken (aka. Hawk-Dove Game)
o driver who swerves looses
Driver 2

|  |  | swerve |
| :---: | :---: | :---: |
| stay |  |  |
|  | 0,0 | $-1,5$ |
| $\pm$ |  |  |
| $\Delta$ stay | $5,-1$ | $-10,-10$ |

Drivers want to do opposite of one another

Two equilibria: not equivalent not interchangeable!

- playing an equilibrium strategy does not lead to equilibrium


## Students' game



## Students' game

Colin


## Pareto Optimal

- Def: outcome o* is Pareto Optimal if no other outcome would give to all the players a payoff not smaller and a payoff higher to at least one of them
$\square$ Conflict between group rationality (Pareto principle) and individual rationality (dominance principle)


## Students' game = Prisoner's Dilemma

$\square$ One of the most studied and used games
o proposed in 1950
$\square$ Two suspects arrested for joint crime
o each suspect when interrogated separately, has option to confess


