NOTE: The content of these notes has not been formally reviewed by the lecturer. It is recommended that they are read critically.

1 Introduction

In the previous classes we have seen how taking decisionglocally, on the micro scale by each individual affect the general or the macroscopic state of the system. fie fist example, the electrons on circuit by taking decision they optimize a global problem/, which is minigazation of the global payer dissipated by Joule effect. But in the second example we have seen that this not always er Ne, in fact the boar policies may lead to efficiency on the macro scale. In the last lesson, the goal was to allocate resources to get the maximum from the system capabilities.

2 Problem
Having a such graph with 3 sucres: S1,S2 and S3 aiming to communicate with Depritinations: D1, D2 and D3. The problem is how to allocate the shared links between different communications paths.

Figure 1: Communication network example
Considering T1,T2 and T3 respectively the throughput of each source S1,S2 and S3 looking at the shared links we have the following constraints: $T_{1}+T_{2} \leq 1, T_{1}+T_{3} \leq 1$

One may be "democratic" and do a Max-Min Fairness and give the following allocations:

$$
T_{1}=\frac{1}{2}, T_{2}=\frac{1}{2}, T_{3}=\frac{1}{2}
$$

The global throughput will be :
pounble allocetron ${ }^{T}=\sum_{i=1}^{3} T_{i}=\frac{3}{2}$
be

$$
T_{1}=0, T_{2}=1, T_{3}=1
$$

And the global throughput will be:
2
クox-min favshey $T=\sum_{i=1}^{3} T_{i}=20 \% 3$
Doing Maximum (minimu mri) may induce Low utilization of the system.
The question now is how to stay in the middle, between a fair allocation and a high utilisation of the system.

Here we can talk about Proportional Fairness
The proportional fairness insure an optimal allocation to maximize T and in the same time (in some DEFINITION T^{*} is Optimum, means that for every other T :

$$
\begin{aligned}
& \text { TIT NO PROPORTIONAL } \\
& \text { FAIRNESS DOCS NOT } \\
& \text { GUARANTE: A HIGHER }
\end{aligned}
$$

back to our example, doing proportional fairness we get the following results

Weighted proportional fairness: More generally we talk about weighted proportional fairness

\underline{T}^{*} is weight proportional fair if only if it solves:

$$
\begin{gathered}
\operatorname{Maximize}\left(\sum W_{r} \ln \left(X_{r}\right)\right) \\
A \cdot \underline{X} \leq \underline{C} \\
\underline{X} \geq \underline{0}
\end{gathered}
$$

$\left\{\begin{array}{l}C_{l}^{*}: \text { capacity of link "l" } \\ A_{e, r}=1 \text { if } l \in r \text { and } 0 \text { if else } \\ \text { The Utility function: }\end{array}\right.$

$$
\begin{gathered}
\text { WHY SO WE } \\
\text { (WTRODOCE } \\
\text { THIS PROBLeM? }
\end{gathered}
$$

$$
\underline{x} \geq \underline{0}
$$

The question is how to get the utility function
we define: $\lambda_{n}=\frac{w}{x_{i}}$ WHAT IS THE
WTERPRITATION?
OF 之?

NOTATION IS \&IFFRENT FROM THE REST OF THE COURSE ANS NOT ALWAYS COHERENT

Figure 2: The users network relation

The User optimization system is the following, $U \operatorname{ser}\left(U_{r}, \lambda_{r}\right)$:

$$
\begin{aligned}
& \text { Maximize }\left(U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)-W_{r}\right) \quad \text { INtERPRETATION? } \\
& W r \leq 0
\end{aligned}
$$

The Network optimization system is the following, Network($\underline{W}, \mathbf{A}, \underline{C})$:

$$
\begin{gathered}
\operatorname{maximizesigma}(W r \cdot \ln (X r)) \\
A \cdot \underline{X} \leq \underline{C} \\
\underline{X}>0
\end{gathered}
$$

User + Network $==$ System
Decomposition Theorem: 1. If $\exists \underline{X}, \underline{W}$ and $\underline{\lambda}$ such that:

1. $\forall r, W_{r}=X_{r} . \lambda_{r}$
2. \underline{X} is the solution of $N E T W O R K(\underline{W}, \boldsymbol{A}, \underline{C})$
3. $\forall r, W_{r}$ is the solution of $\operatorname{USER}\left(U_{r}, \lambda_{r}\right)$

Then \underline{X} is the solution of $\operatorname{SYSTEM}(\underline{U}, A, \underline{C})$.

3 Solving Problem

In order to solve the SYSTEM problem we will use theorem 2 seen in the previous courses. But the hypothesises of the theorem are not all satisfied. In fact the derivative of U is not undefiled in 0 . So we will find another border for \underline{X} :
-WHAT IS X*? THE GLOBAL ${ }^{\exists X^{*}}$ and let $b=\min _{r}\left(\frac{X_{r}^{*}}{2}\right)$
$x_{2}^{*} \geq 0 \forall 2$ 。 WHy?

So $\forall(r): X_{r} \geq b>0$
Coming back to the SYSTEM problem with the new constraint border "b":

$$
\begin{gathered}
\operatorname{Maximize}\left(\sum_{r}\left(W_{r} \cdot \ln \left(X_{r}\right)\right)\right. \\
A \cdot X^{*} \leq C^{*} \\
X_{r} \geq b
\end{gathered}
$$

Now we are in the framework of theorem 2.
Let's define the Lagrangian function:

$$
\mathcal{L}_{S}=\sum_{r} U_{r}\left(X_{r}\right)+\sum_{l} \vartheta_{l}\left(C_{l}-\sum_{r / l \in r} X_{r}\right)
$$

We have:

$$
\frac{\partial L s}{\partial X_{r}}=0 \quad W H y ?
$$

then

$$
U_{r}\left(X_{r}\right)^{\prime}+\sum_{l / l \in r} \vartheta_{l}=0
$$

Now let's try to solve the two problems, USER and NETWORK:
USER:
All the conditions of theorem 1 are now verified so:

Figure 3: The plot of Utility function of the User

$$
\frac{\partial L_{r}}{\partial W_{r}}=\frac{\partial\left(U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)-W_{r}\right)}{\partial W_{r}}=0
$$

then

$$
\frac{1}{\lambda_{r}} \cdot U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)^{\prime}-1=0
$$

So

$$
\lambda_{r}=U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)^{\prime}
$$

Since $U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)^{\prime}$ is monotone then $\left(U_{r}\left(\frac{W_{r}}{\lambda_{r}}\right)^{\prime}\right)^{-1}$ exists and we have:

$$
\text { Whity? } \quad\left(U_{r}\left(\lambda_{r}\right)^{\prime}\right)^{-1}=\frac{W_{r}}{\lambda_{r}}
$$

Thus

$$
W_{r}=\lambda_{r} .\left(U_{r}\left(\lambda_{r}\right)^{\prime}\right)^{-1} \quad(\text { equation }: 0)
$$

NETWORK: Once again we are in the form* of theorem Let's define
vo. THE PROBLET
IS \&IFFERCNT
BUT WE CAN STILL STUDY IT
the Lagrangian of the network
We have (according to theorem 2)

$$
\frac{\partial L_{N}}{\partial X_{r}}=0
$$

$$
\frac{W_{r}^{*}}{X_{r}^{*}}-\sum_{l \in r} \mu_{l}^{*}=0, \mu_{l}^{*} \geq 0 \quad(\text { equation }: 1)
$$

But we have

$$
W_{r}^{*}=X_{r}^{*} \cdot \lambda_{r}^{*} \quad(\text { equation }: 2)
$$

Thus (equation $1+$ equation 2)

$$
\lambda_{r}^{*}=\sum_{l \in r} \mu_{l}^{*} \quad(\text { equation }: 3)
$$

Then we get the fourth equation:
equation $0+$ equation $2+$ equation $3==$ equation 4

$$
U_{r}^{\prime}\left(X_{r}\right)=\sum_{l \in r} \mu_{l}^{*} \quad(\text { equation }: 4)
$$

A practical way to solve the optimization problem is to do the penalty approach. The penalty method replaces a constrained optimization problem by a series of unconstrained problems whose solutions ideally converge to the solution of the original constrained problem

