

Software tools for Complex Networks Analysis

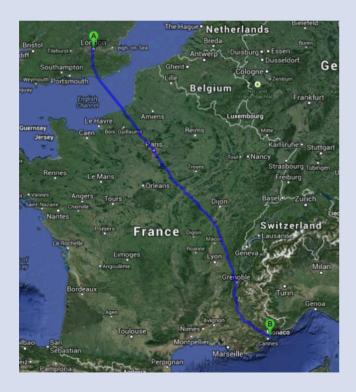
Fabrice Huet, University of Nice Sophia-Antipolis SCALE Team

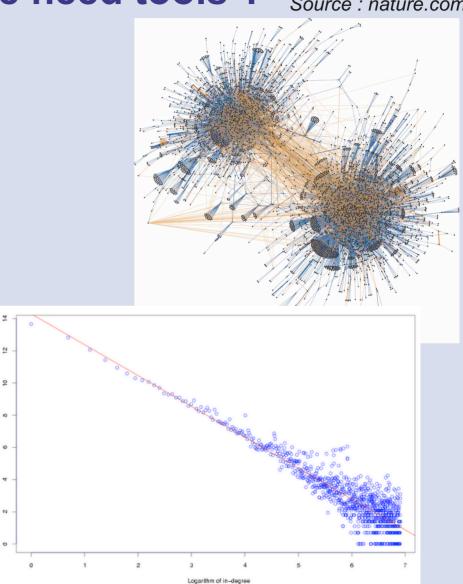
MOTIVATION

Why do we need tools ?

Source : nature.com

- Visualization
- **Properties extraction**
- **Complex queries**





Source : Boldi et al.

Graphs are everywhere

RDF

("test1", writtenBy, "Sophie") ("test1", publishedIn, "Journal") ("test2", publishedIn, "Journal)

SPARQL

SELECT ?s WHERE {

- ?s writtenBy ?a.
- ?a hasName "Sophie".
- ?s publishedIn "Journal".
- Basically a sub-graph matching

Why are graphs different ?

- Graphs can be large
 - Facebook : 720M users, 69B friends in 2011
 - Twitter : 537M accounts, 23.95B links in 2012
- Low memory cost per vertex
 - 1 ID, 1 pointer/edge
- Low computation per vertex
- Graphs are not memory friendly
 - Random jumps to memory
- They are not hardware friendly!

Lots of frameworks

- Really lots of them
 - Matlab, NetworkX, GraphChi, Hadoop, Twister,
 Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab,
 Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,...
- Why so many ?
 - Not one size fits all
 - Different computational models
 - Different architecture

Possible taxonomy

- Generic vs Specialized
 - Hadoop vs GraphChi (or Giraph, GraphX...)
- Shared vs Distributed Memory
 - GraphChi vs Pregel
- Synchronous vs Asynchronous
 - Giraph vs Maiter
- Single vs Multi threaded
 - NetworkX vs GraphiChi

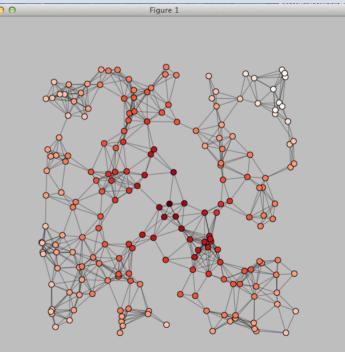
NETWORKX

Overview

- A Python package for complex network analysis
- Simple API
- Very flexible
 - Can attach any data to vertices and edges
 - Supports visualization
- Graphs generators
- http://networkx.github.io/

Dependencies

- Supports Python 2.7 (preferred) or 3.0
- If drawing support required
 - Numpy (<u>http://www.numpy.org/</u>)
 - Mathplotlib (<u>http://matplotlib.org/</u>) ***
 - Graphivz (<u>http://graphviz.org/</u>)



100+00

Examples

• Creating an empty graph

>>> import networkx as nx

>>> G=nx.Graph()

• Adding nodes

>>> G.add_node(1)
>>> G.add_nodes_from([2,3])

• Adding edges

>>> G.add_edge(2,3) >>> G.add_edges_from([(1,2),(1,3)])

Examples (2)

Graph generators

>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)

Stochastic graph generators

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)

• Reading from files

>>> mygraph=nx.read_gml("path.to.file")

Examples (3)

• Graph analysis

>>> nx.connected_components(G)

>>> nx.degree(G)

>>> pr=nx.pagerank(G,alpha=0.9)

• Graph drawing

>>> import matplotlib.pyplot as plt

>>> nx.draw(G)

>>> plt.show()

NetworkX - Conclusion

- Easy to use
 - Very good for prototyping/testing
- Centralized
 - Limited scalability
- Efficiency
 - Memory overhead

GRAPHCHI

Overview

- Single machine
 - Distributed systems are complicated!
- Disk-based system
 - Memory is cheap but limited
- Supports both static and dynamic graph
- Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos, GraphChi: Large-scale Graph Computation on Just a PC, Proceedings of OSDI'12

Computational Model

- Vertex centric
 - Vertices and Edges have associated values
 - Update a vertex values using edges values
- Typical update
 - Read values from edges
 - Compute new value
 - Update edges
- Asynchronous model
 - Always get the most recent value for edges
 - Schedule multiple updates

Storing graphs on disk

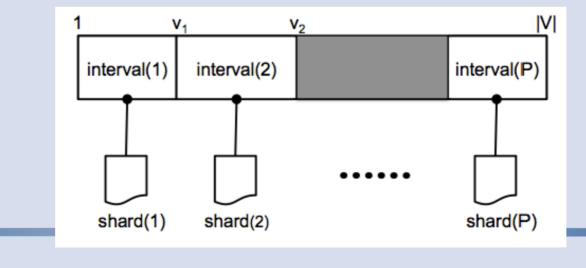
- Compressed Sparse Row (CSR)
 - Equivalent to adjacency sets
 - Store out-edges of vertex consecutively on Disk
 - Maintain index to adjacency sets for each vertex
- Very efficient for out-edges, not so for in-edges
 - Use Compressed Sparse Column (CSC)
- Changing edges values
 - On modification of out-edge : write to CSC
 - On reading of in-edge : read from CSR
 - Random read or random write 😕

Parallel Sliding Windows

- Minimize non sequential disk access
- 3 stages algorithm

From Kyrola and al.

- Storing graph on disk
 - Vertices *V* are split into *P* disjoints intervals
 - Store all edges that have **destination** in an interval in a *Shard*
 - Edges are stored by source order



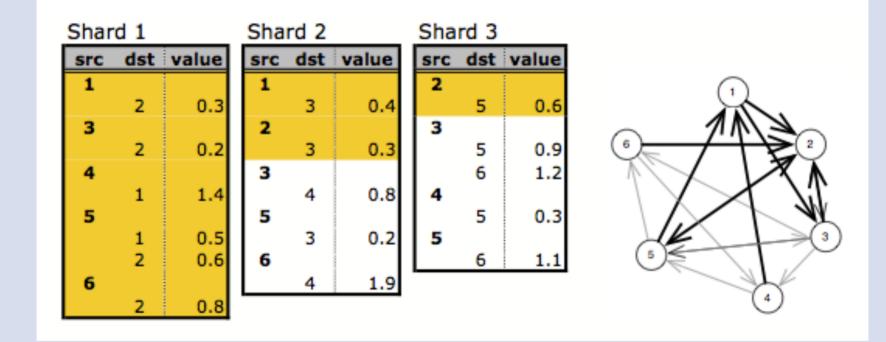
Parallel Sliding Windows (2)

- Loading subgraph of vertices in interval *p*
 - Load Shard(p) in memory
 - Get in-edges immediately
 - Out-edges are stored in the P-1 other shards
 - But ordered by sources, so easy to find
- Loading subgraph p+1
 - Slide a window over all shards
- Each interval requires *P* sequential reads

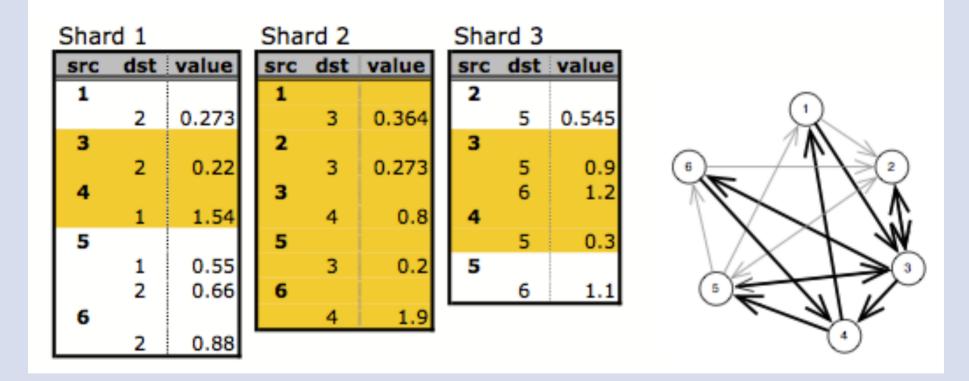
Parallel updates

- Once interval loaded, update in parallel
- Data races
 - Only a problem if considering edge with both endpoints in interval
 - Enforce sequential update
- Write back result to disk
 - Current shard totally rewritten
 - Sliding window of other shards rewritten

Example



Example



Performance

- Mac Mini 2.5GHz, 8GB and 256GB SSD
- Shard creation

Graph name	Vertices	Edges	P	Preproc.
live-journal [3]	4.8M	69M	3	0.5 min
netflix [6]	0.5M	99M	20	1 min
domain [44]	26M	0.37B	20	2 min
twitter-2010 [26]	42M	1.5B	20	10 min
uk-2007-05 [11]	106M	3.7B	40	31 min
uk-union [11]	133M	5.4B	50	33 min
yahoo-web [44]	1.4B	6.6B	50	37 min

Performance (2)

Application & Graph	Iter.	Comparative result	GraphChi (Mac Mini)	Ref
Pagerank & domain	3	GraphLab[30] on AMD server (8 CPUs) 87 s	132 s	-
Pagerank & twitter-2010	5	Spark [45] with 50 nodes (100 CPUs): 486.6 s	790 s	[38]
Pagerank & V=105M, E=3.7B	100	Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min	approx. 581 min	[37]
Pagerank & V=1.0B, E=18.5B	1	Piccolo, 100 EC2 instances (200 cores) 70 s	approx. 26 min	[36]
Webgraph-BP & yahoo-web	1	Pegasus (Hadoop) on 100 machines: 22 min	27 min	[22]
ALS & netflix-mm, D=20	10	GraphLab on AMD server: 4.7 min	9.8 min (in-mem)	
			40 min (edge-repl.)	[30]
Triangle-count & twitter-2010	-	Hadoop, 1636 nodes: 423 min	60 min	[39]
Pagerank & twitter-2010	1	PowerGraph, 64 x 8 cores: 3.6 s	158 s	[20]
Triange-count & twitter- 2010	-	PowerGraph, 64 x 8 cores: 1.5 min	60 min	[20]

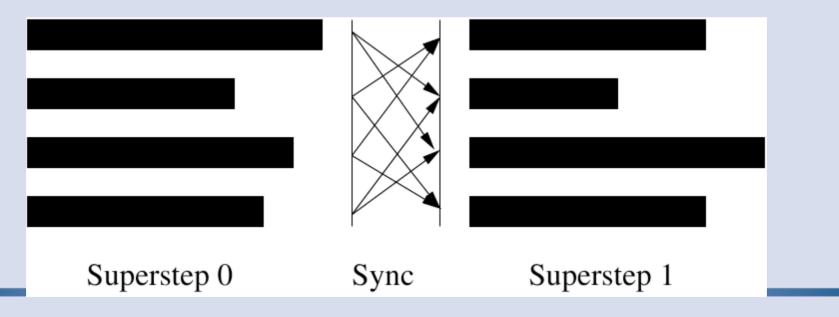
GOOGLE PREGEL

Overview

- Directed graphs
- Distributed Framework Based on the Bulk Synchronous
 Parallel model
- Vertex Centric computation model
- Private framework with C++ API
- Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD '10)

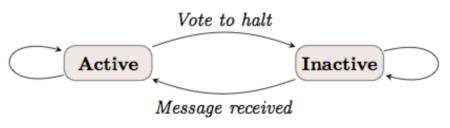
Model of Computation (1)

- BSP : model for parallel programming
 - Takes into account communication/synchronization
 - Series of super-steps (iterations)
 - Performs local computations
 - Communicate with others
 - Barrier



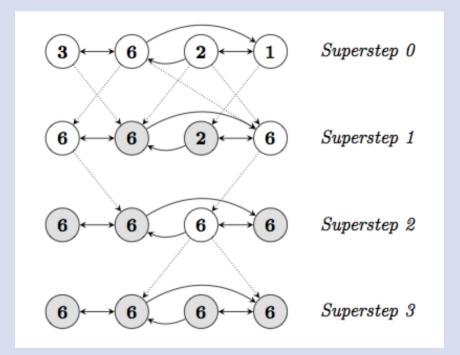
Model of Computation (2)

- Vertex Centric
 - Each vertex execute a function in parallel
- Can read messages sent at previous super-step
- Can send messages to be read at next super-step
 - Not necessarily following edges
- Can modify state of outgoing edges
- Run until all vertices agree to stop and no message in transit



From Malewicz and al.

Maximum Value Example



From Malewicz and al.

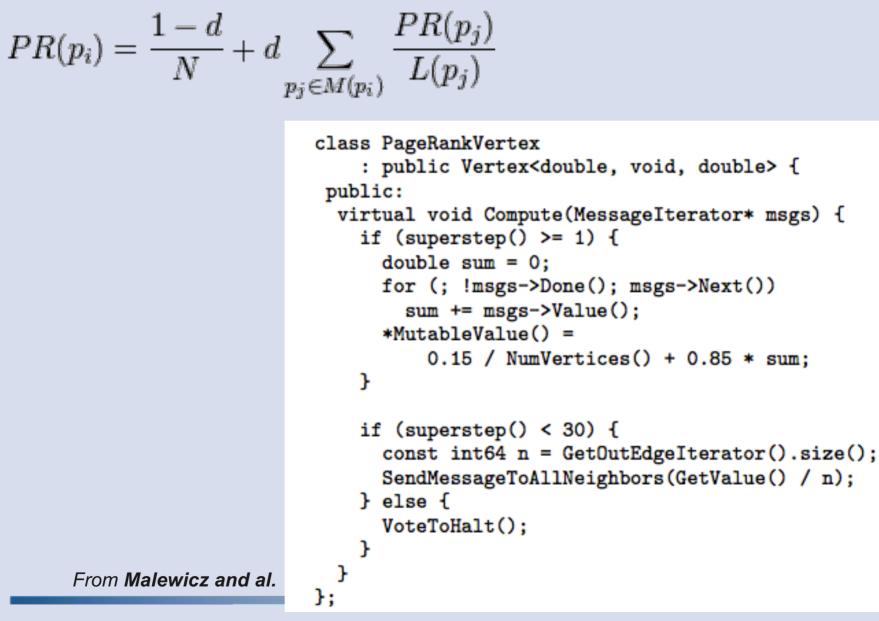
Implementation and Execution (1)

- User provides a graph, some input (vertex and edges values) and a program
- The program is executed on all nodes of a cluster
 - One node become the master, other are workers
- The graph is divided into partitions by the master
 - Vertex Id used to compute partition index (*e.g.* hash(Id) mod N)
- Partitions are assigned to workers
- User input file is partitioned (no fancy hash) and sent to workers
 - If some input is not for the worker, it will pass it along

Implementation and Execution (2)

- The master request worker to perform superstep
 - At the end, each worker reports the number of active vertices for next superstep
- Aggregators can be used at end of super-step to reduce communications
 - Perform reduction on values before sending
- If no more active vertices, Master can halt computation
- What about failures ?
 - Easy to checkpoint workers at end of superstep
 - If failure, rollback to previous checkpoint
 - If master fails... too bad $\ensuremath{\mathfrak{S}}$

PageRank in Pregel



Performance

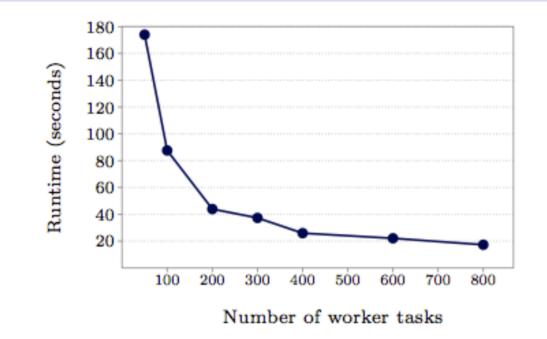


Figure 7: SSSP—1 billion vertex binary tree: varying number of worker tasks scheduled on 300 multicore machines

From Malewicz and al.

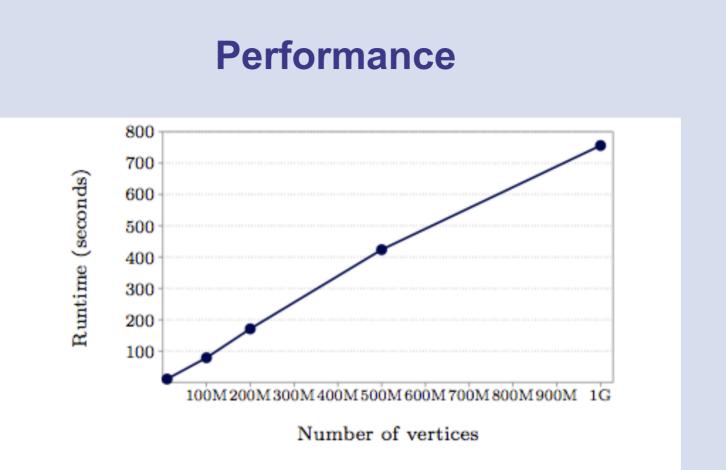


Figure 9: SSSP—log-normal random graphs, mean out-degree 127.1 (thus over 127 billion edges in the largest case): varying graph sizes on 800 worker tasks scheduled on 300 multicore machines

From Malewicz and al.

MAPREDUCE

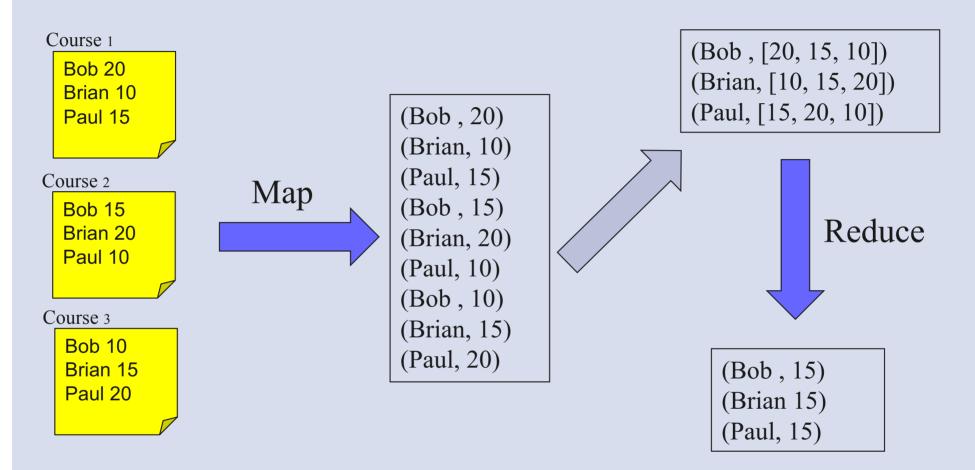
Map Reduce operations

- Input data are (key, value) pairs
- 2 operations available : map and reduce
- Map
 - Takes a (key, value) and generates other (key, value)
- Reduce
 - Takes a key and all associated values
 - Generates (key, value) pairs
- A map-reduce algorithm requires a mapper and a reducer
- Re-popularized by Google
 - MapReduce: Simplified Data Processing on Large Clusters
 Jeffrey Dean and Sanjay Ghemawat, OSDI'04

Map Reduce example

- Compute the average grade of students
 - For each course, the professor provides us with a text file
 - Text file format : lines of "student grade"
- Algorithm (non map-reduce)
 - For each student, collect all grades and perform the average
- Algorithm (map-reduce)
 - Mapper
 - Assume the input file is parsed as (student, grade) pairs
 - So ... do nothing!
 - Reducer
 - · Perform the average of all values for a given key

Map Reduce example



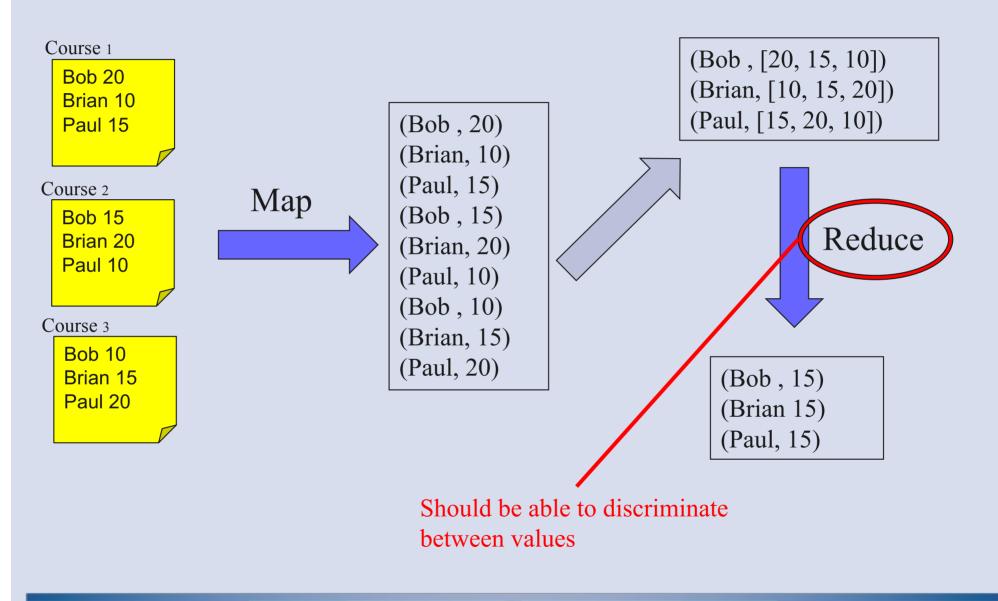
Map Reduce example... too easy ©

•Ok, this was easy because

- We didn't care about technical details like reading inputs
- All keys are "equals", no weighted average
- •Now can we do something more complicated ?
- •Let's computed a weighted average
 - Course 1 has weight 5
 - Course 2 has weight 2
 - Course 3 has weight 3

•What is the problem now ?

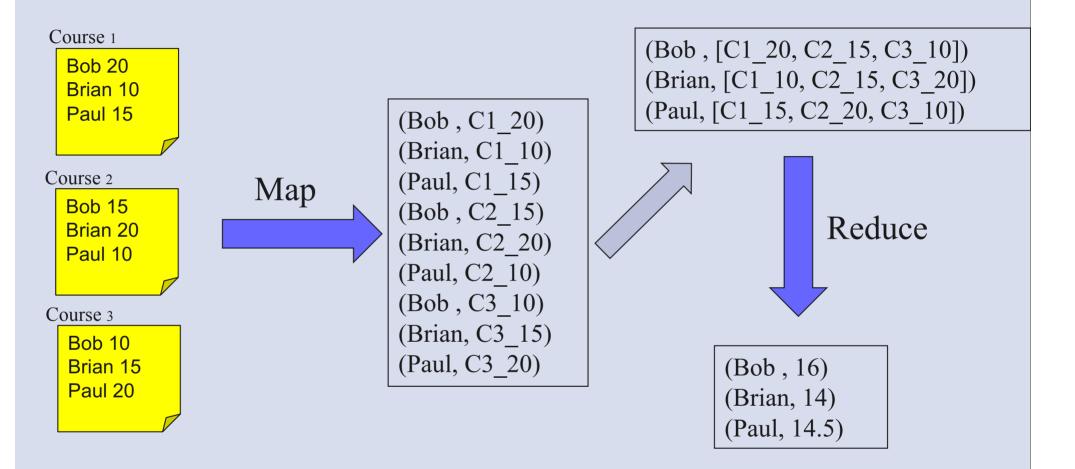
Map Reduce example



Map Reduce example - advanced

- How discriminate between values for a given key
 - We can't ... unless the values look different
- New reducer
 - Input : (Name, [course1_Grade1, course2_Grade2, course3_Grade3])
 - Strip values from course indication and perform weighted average
- So, we need to change the input of the reducer which comes from... the mapper
- New mapper
 - Input : (Name, Grade)
 - Output : (Name, courseName_Grade)
 - The mapper needs to be aware of the input file

Map Reduce example - 2



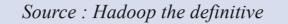
What is Hadoop?

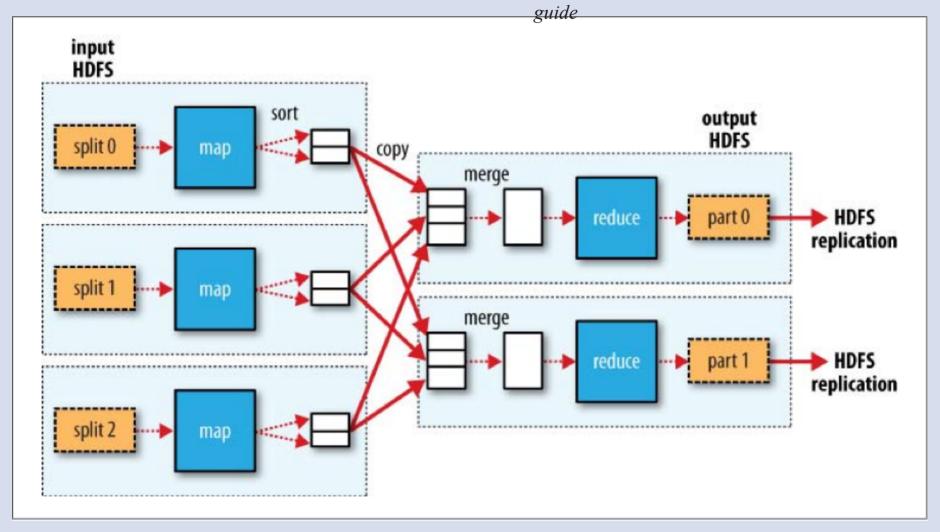
- A set of software developed by Apache for distributed computing
- Many different projects
 - MapReduce
 - HDFS : Hadoop Distributed File System
 - Hbase : Distributed Database
 -
- Written in Java
 - Bindings for your favorite languages available
- Can be deployed on any cluster easily

Hadoop Job

- An Hadoop job is composed of a map operation and (possibly) a reduce operation
- Map and reduce operations are implemented in a *Mapper* subclass and a *Reducer* subclass
- Hadoop will start many instances of *Mapper* and *Reducer*
 - Decided at runtime but can be specified
- Each instance will work on a subset of the keys called a *Splits*

Hadoop workflow





Graphs and MapReduce

- How to write a graph algorithm in MapReduce?
- Graph representation ?
 - Use adjacency matrix

	V ₁	V ₂	V ₃
V ₁	0	0	1
V ₂	1	0	1
V ₃	1	1	0

- Line based representation
 - $-V_1:0,0,1$
 - V_2 : 1, 0, 1
 - V₃: 1, 1, 0
- Size $|V|^2$ with tons of 0 ...

Sparse matrix representation

• Only encode useful values, i.e. non 0

$$-V_1: (V_3, 1)$$

- $-V_2$: (V₁,1), (V₃,1)
- $-V_3$: (V₁,1), (V₂,1)
- And if equal weights

$$- V_{1} : V_{3}$$
$$- V_{2} : V_{1}, V_{3}$$
$$- V_{3} : V_{1}, V_{2}$$

Single Source Shortest Path

- Find the shortest path from one source node S to others
- Assume edges have weight 1
- General idea is BFS
 - Distance(S) = 0
 - For all nodes N reachable from S
 - Distance(N) = 1
 - For all nodes *N* reachable from other set of nodes *M*
 - Distance(N) = 1+ min(Distance(M))
 - And start next iteration

MapReduce SSSP

- Data
 - Key : node N
 - Value : (d, adjacency list of N)
 - d distance from S so far
- Map :
 - \forall *m* ∈ adjacency list: emit (*m*, *d* + 1)
- Reduce :
 - Keep minimum distance for each node
- This basically advances the frontier by one hop
 - Need more iterations

MapReduce SSSP (2)

- How to maintain graph structure between iterations
 - Output adjacency list in mapper
 - Have special treatment in reducer
- Termination ?
 - Eventually ©
 - Stops when no new distance is found... (any idea how?)

Seriously ?

• MapReduce + Graphs is easy

- But everyone is MapReducing the world!
 - Because they are forced to
 - And because of Hadoop
- Hadoop gives
 - A scalable infrastructure (computation and storage)
 - Fault tolerance
- So let's use Hadoop as an underlying infrastructure

Giraph

- Built on top of Hadoop
- Vertex centric and BSP model ③
 - Giraph jobs run as MapReduce

Giraph			Hive MR		
HivelO	YARN	MapReduce			
Hive Tables					
HDFS					

Source : https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-atrillion-edges/10151617006153920/

SPARK AND GRAPHX

Spark

- Addresses limitations of Hadoop
 - Disk intensive
 - No support for iteration (cycles)
- Spark
 - In-Memory computation
 - Workflows with cycles
 - Still relies on Map-Reduce like operations
 - Multi languages support : Scala, Java, Python, R
- https://spark.apache.org/

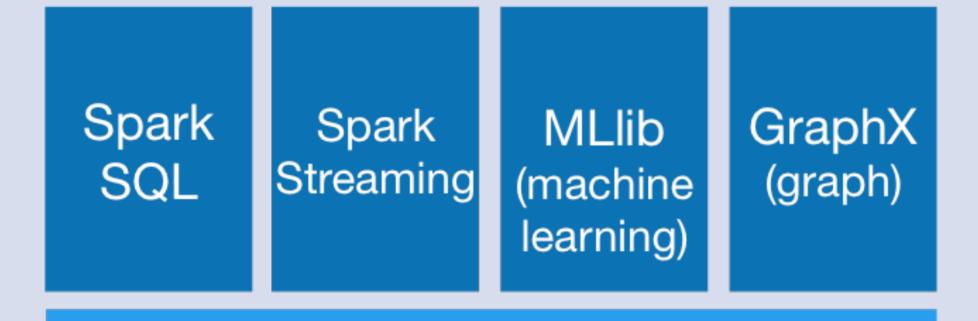
Resilient Distributed Datasets

- RDDs
 - Array-like data structure
 - Mostly in-memory
 - Partitioned
 - Fault tolerant
 - Immutable \leftarrow very important !
- RDDs are created through transformations
 - Of raw data or another RDD
 - Example : map, filter, reduceByKey, groupBy...
- RDDs support actions
 - Example : collect, count, reduce, save...
- Transformations are lazy

Example : Word Count

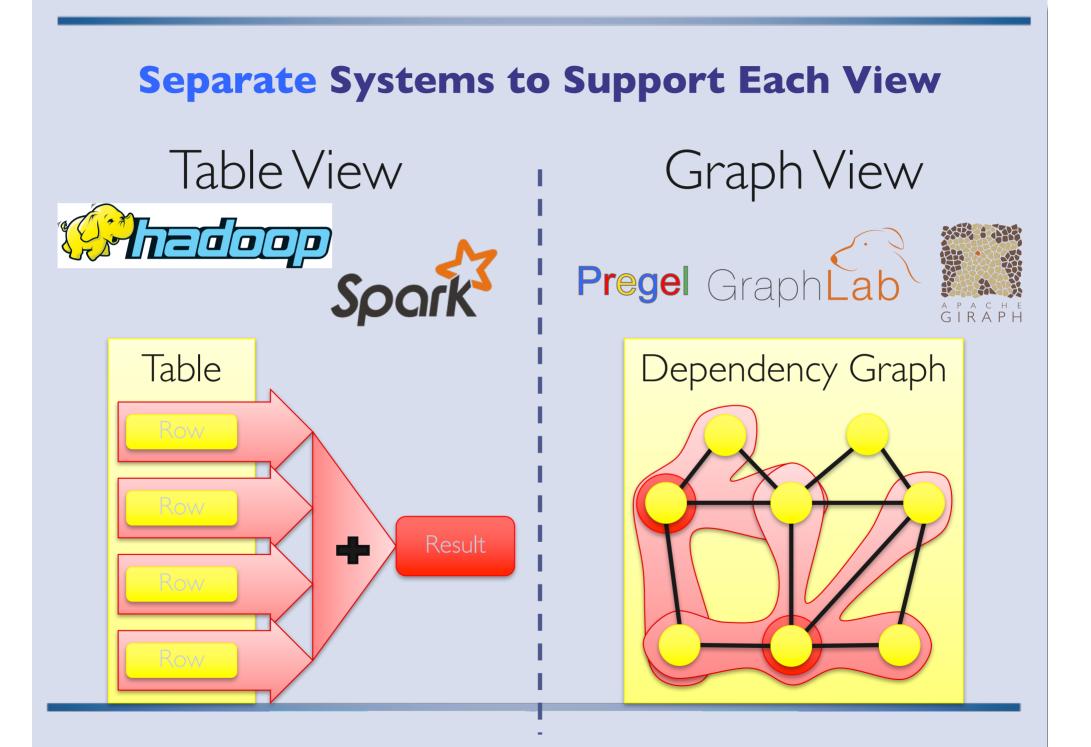
val textFile = sc.textFile("...")
val counts = textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
counts.saveAsTextFile("....")

Spark Stack



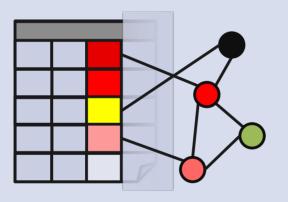
Apache Spark

http://spark.apache.org/



Solution: The GraphX Unified Approach New API New System

Blurs the distinction between Tables and Graphs



Combines Data-Parallel

Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014

Abstractions

- Graphs are represented by 2 collections
 - Vertex RDD (IDs, Properties)
 - Edges RDD(sIDs, dIDs, Properties)
- Graphs have multiple propertes
 - edges, vertices
- Most graphs operations can be expressed as analyzing or joining collections
 - Join stage (build a triple view)
 - Group-by-stage (reduce-like)
 - Map operations

Building a Graph

import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

```
val vertices : VertexRDD[String] = ....
```

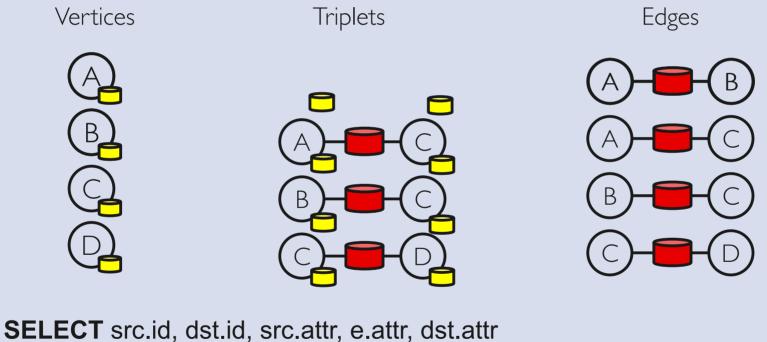
```
val edges : EdgeRDD[Int] = ....
```

val graph : Graph(vertices, edges) = ...

```
graph.edges.count()
```

Triplets Join Vertices and Edges

• The *triplets* view joins vertices and edges:



SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e
LEFT JOIN vertices AS src, vertices AS dst ON e.srcId = src.Id AND
e.dstId = dst.Id

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014

Triplet view

graph.triplets

- Each Triplet contains
 - srcld and srcAttr
 - dstld and dstAttr
 - attr

Aggregate Messages

- Applies a user defined function to each edge triplet
 The messages
- Applies a user defined function to aggregate the messages at destination vertex

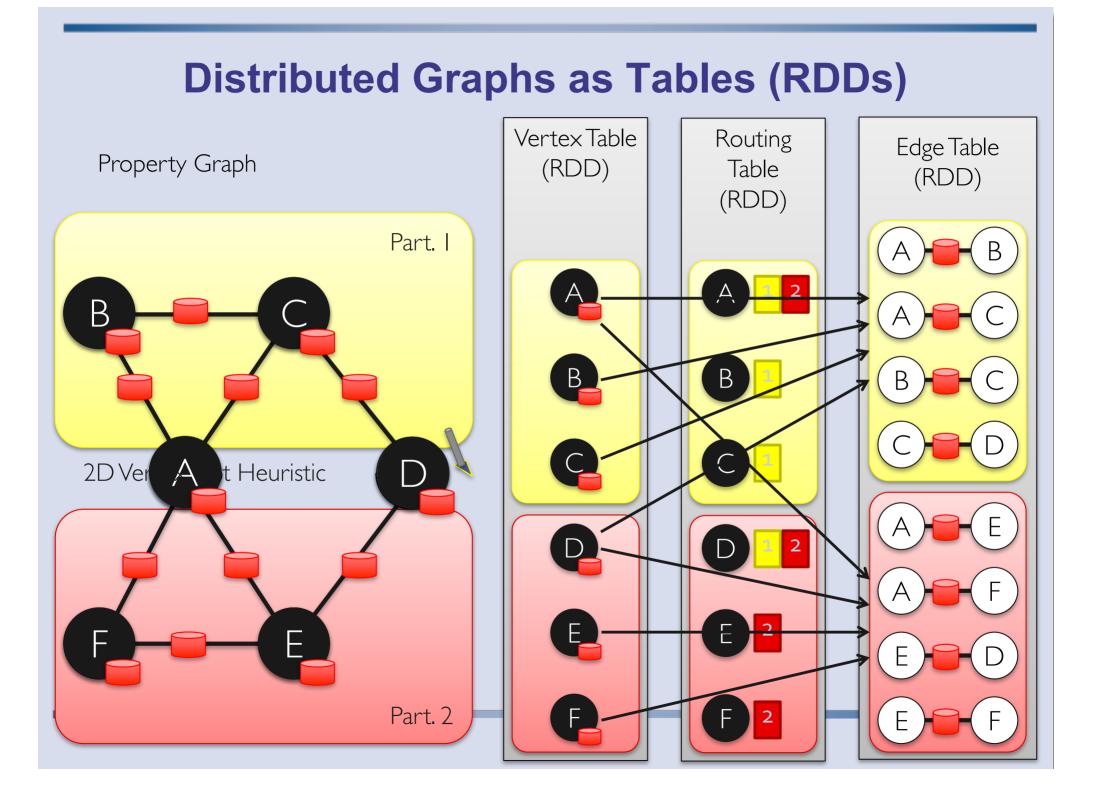
```
def aggregateMessages[Msg: ClassTag](
   sendMsg: EdgeContext[VD, ED, Msg] => Unit,
   mergeMsg: (Msg, Msg) => Msg,
   tripletFields: TripletFields = TripletFields.All): VertexRDD[Msg]
```

Example : get largest incoming edge

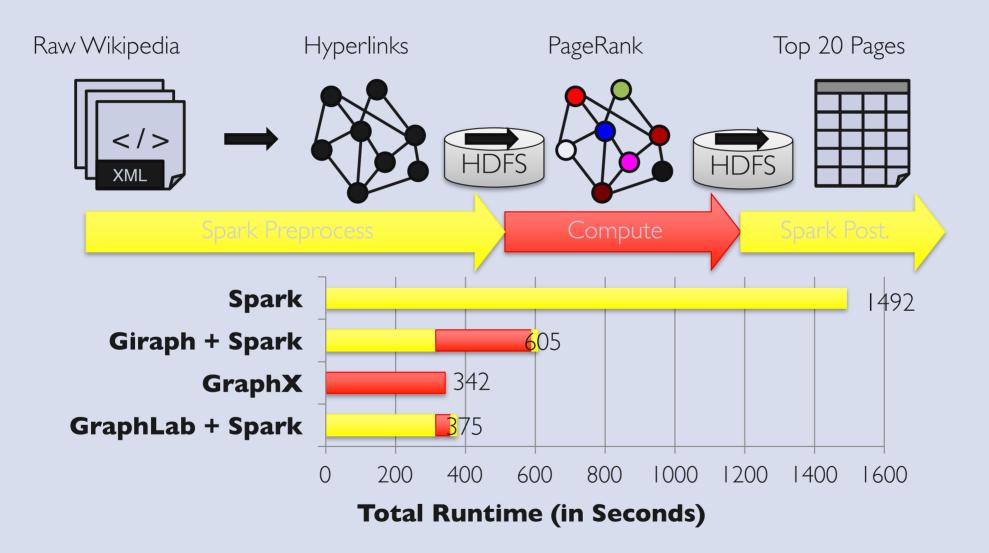
- For each vertex compute the largest incoming edge
 - Message is edge attribute value
 - Merge function is max

Misc operations

- RDD -> Array
 - take(n)
- Compute the degree of each vertex
 - graph.inDegrees/outDegrees
- Collect edges for all vertices
 - val coll = graph.collectNeighborIds(EdgeDirection.X) with X In, Out, Either
- Get all edges of a given vertice id
 - coll.lookup(id)



A Small Pipeline in GraphX



Timed end-to-end GraphX is *faster* than GraphLab

Conclusion

- So many frameworks to choose from...
- Criteria
 - What is the size of your graph?
 - What algorithms do you want to run?
 - How fast do you want your results ?
- Distributed frameworks are no silver bullet
 - Steeper learning curve
 - Add new problems (data distribution, faults...)

Food for thought

- Distributed partitioning is a hot topic
 - But what is a good partitioner?
- The network might not be a bottleneck anymore
 - RDMA + Infiniband == profit !
 - The end of slow networks: it's time for a redesign, Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian, Proc. VLDB Endow. 2016,
- Hardware contention is an issue
 - Performance Impact of Resource Contention in Multicore Systems, R. Hood, H. Jin, P. Mehrotra, J. Chang, J.
 Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas, IPDPS 2010

Resources

- Slides
 - <u>http://www.slideshare.net/shatteredNirvana/pregel-a-</u>
 <u>system-for-largescale-graph-processing</u>
 - <u>http://courses.cs.washington.edu/courses/cse490h/08</u>
 <u>au/lectures/algorithms.pdf</u>
 - <u>http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgo</u>
 <u>rithms.pptx</u>
 - <u>https://amplab.cs.berkeley.edu/wp-</u> content/uploads/2014/02/graphx@strata2014_final.pp tx