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Software tools for Complex Networks 
Analysis

Fabrice Huet, University of Nice Sophia-
Antipolis

SCALE Team MOTIVATION

Why do we need tools ?

• Visualization 
• Properties extraction
• Complex queries 

Source : nature.com

Source : Boldi et al.

Graphs are everywhere

• RDF

• SPARQL 

• Basically a sub-graph matching

SELECT ?s WHERE {
?s  writtenBy ?a.
?a  hasName “Sophie”.
?s  publishedIn “Journal”.

}

(“test1”, writtenBy, “Sophie”)
(“test1”, publishedIn, “Journal”)
(“test2”, publishedIn, “Journal)
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Why are graphs different ?

• Graphs can be large
- Facebook : 720M users, 69B friends in 2011

● 1.4 billions vertices, 1 trillion edges (2017)
- Twitter : 537M accounts, 23.95B links in 2012

• Low memory cost per vertex
- 1 ID, 1 pointer/edge

• Low computation per vertex
• Graphs are not memory friendly

- Random jumps to memory
• They are not hardware friendly!

Lots of frameworks

• Really lots of them 
- Matlab, NetworkX, GraphChi, Hadoop, Twister, 

Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, 
Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,… 

• Why so many ?
- Not one size fits all
- Different computational models 
- Different architecture

Possible taxonomy

• Generic vs Specialized
- Hadoop vs GraphChi (or Giraph, GraphX…)

• Shared vs Distributed Memory
- GraphChi vs Pregel

• Synchronous vs Asynchronous
- Giraph vs Maiter

• Single vs Multi threaded 
- NetworkX vs GraphiChi NETWORKX

8



1/18/18

3

Overview

• A Python package for complex network analysis
• Simple API
• Very flexible 

- Can attach any data to vertices and edges
- Supports visualization 

• Graphs generators
• http://networkx.github.io/

Dependencies 

• Supports Python 2.7 (preferred) or 3.0 
• If drawing support required

- Numpy (http://www.numpy.org/)
- Mathplotlib (http://matplotlib.org/)
- Graphivz (http://graphviz.org/)

Examples

• Creating an empty graph

• Adding nodes

• Adding edges 

>>> import networkx as nx
>>> G=nx.Graph() 

>>> G.add_node(1)
>>> G.add_nodes_from([2,3]) 

>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])

Examples (2)

• Graph generators

• Stochastic graph generators

• Reading from files

>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1) 
>>> ba=nx.barabasi_albert_graph(100,5) 
>>> red=nx.random_lobster(100,0.9,0.9)

>>> mygraph=nx.read_gml("path.to.file")
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Examples (3)

• Graph analysis

• Graph drawing 

>>> nx.connected_components(G)

>>> nx.degree(G)

>>> pr=nx.pagerank(G,alpha=0.9)

>>> import matplotlib.pyplot as plt
>>> nx.draw(G)
>>> plt.show()

NetworkX - Conclusion

• Easy to use
- Very good for prototyping/testing

• Centralized
- Limited scalability 

• Efficiency
- Memory overhead

PROGRAMING MODELS FOR 
SCALABLE GRAPH 
PROCESSING

15

Overview

• Edges and vertices can have values
- Some state, weight…

• Values propagate along edges 
- From source to destination vertex

• Vertices values are (can be) computed using incoming 
values 

• Source : 
- High-Level Programming Abstractions for Distributed Graph 

Processing" by Vasiliki Kalavri, Vladimir Vlassov, and Seif
Haridi.
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Vertex Centric model (”think like a vertex”)

• Input : 
- Directed graph
- A function to execute on each vertex (aka Vertex 

Function)
• Execution model

- At step i
● Receive values from ingoing edges sent at i-1
● Compute local state
● Push new values

• Introduced in Pregel

https://arxiv.org/abs/1607.02646

Gather Scatter

• Iteration based
• Two operations to implement

- Gather : receive values
- Scatter : send values

• Very similar to vertex centric 
- Except message sending/receiving occurs in the 

same step
• Read/Write synchronization is done with inbox/outbox

- No write during gather, no read during scatter

https://arxiv.org/abs/1607.02646
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The GAS Model

• Gather, Sum,  Apply, Scatter
• Try to address work imbalance in power-law graph

- Mainly low-degree vertices, few high-degree
• Gather phase

- A user defined function is applied to each edge of a 
vertex in parallel

• Sum phase
- Apply an associative and commutative function to 

processed edges
• Apply 

- Compute new vertex state
• Scatter 

- User defined function on edges in paralle
https://arxiv.org/abs/1607.02646

GRAPH PARTITIONING

23

Motivation

• Divide a graph into partitions
• Allow for parallel/distributed processing
• Optimal partitioning ?

- NP Complete :( 
• Good partitioning ?

- Based on heuristics 
- Try to optimize some metrics (std dev of size partition, 

inter partitions communications…)
• How to partition ?

- Vertex vs Edges
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Vertex partitioning

partitions

25Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

Edge partitioning

frontier vertices

26Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

Random approach

ØRandomVertexCut computes the hash 
value for each pair (source id, destination 
id). 

Id=3674867Id=15899

HASH(                          )= 48946 % 6 = 4

[“Graphbuilder: scalable graph ETL framework”, N. Jain et al., 2013]

27Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

Segmenting hash space approach

i row

j column

M

M

[“Graphbuilder: scalable graph ETL framework”, N. Jain et al., 2013]

ØGrid partitioner

Hash(Id=3674867)%3=1
Hash(Id=432487)%3=2

28Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense
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Greedy approach

ØGreedy partitioner minimizes
communication cost at each step

[“Graphbuilder: scalable graph ETL framework”, N. Jain et al., 2013]

29Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

PageRank algorithm

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

HC HCP
EP1D

EP2D
RVC

CRVC

Ex
ec

ut
io

n 
tim

e 
(s

)

observed
predicted by best LRM

30Distributed Edge Partitioning, Hlib Mykhailenko, PhD defense

GRAPHCHI
Frameworks

31

Overview

• Single machine
- Distributed systems are complicated!

• Disk-based system 
- Memory is cheap but limited

• Supports both static and dynamic graph
• Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos, 

GraphChi: Large-scale Graph Computation on Just a 
PC, Proceedings of OSDI’12
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Computational Model

• Vertex centric 
- Vertices and Edges have associated values
- Update a vertex values using edges values

• Typical update
- Read values from edges
- Compute new value
- Update edges

• Asynchronous model
- Always get the most recent value for edges
- Schedule multiple updates

Storing graphs on disk

• Compressed Sparse Row (CSR)
- Equivalent to adjacency sets
- Store out-edges of vertex consecutively on Disk
- Maintain index to adjacency sets for each vertex

• Very efficient for out-edges, not so for in-edges
- Use Compressed Sparse Column (CSC)

• Changing edges values
- On modification of out-edge : write to CSC
- On reading of in-edge : read from CSR
- Random read or random write L

Parallel Sliding Windows

• Minimize non sequential disk access
• 3 stages algorithm
• Storing graph on disk

- Vertices V are split into P disjoints intervals
- Store all edges that have destination in an interval in 

a Shard
- Edges are stored by source order

From Kyrola and al.

Parallel Sliding Windows (2)

• Loading subgraph of vertices in interval p
- Load Shard(p) in memory

● Get in-edges immediately
- Out-edges are stored in the P-1 other shards

● But ordered by sources, so easy to find
• Loading subgraph p+1

- Slide a window over all shards
• Each interval requires P sequential reads 
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Parallel updates

• Once interval loaded, update in parallel
• Data races

- Only a problem if considering edge with both 
endpoints in interval

- Enforce sequential update
• Write back result to disk

- Current shard totally rewritten
- Sliding window of other shards rewritten

Example

Example Performance

• Mac Mini 2.5GHz, 8GB and 256GB SSD
• Shard creation 
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Performance (2)

GOOGLE PREGEL

Overview

• Directed graphs 
• Distributed Framework Based on the Bulk Synchronous 

Parallel model
• Vertex Centric computation model 
• Private framework with C++ API
• Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, 

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: a system for large-scale 
graph processing. In Proceedings of the 2010 ACM 
SIGMOD International Conference on Management of 
data (SIGMOD '10)

Model of Computation (1)

• BSP : model for parallel programming
- Takes into account communication/synchronization
- Series of super-steps (iterations)

● Performs local computations
● Communicate with others
● Barrier 

From : http://www.multicorebsp.com/
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Model of Computation (2)

• Vertex Centric 
- Each vertex execute a function in parallel

• Can read messages sent at previous super-step
• Can send messages to be read at next super-step

- Not necessarily following edges
• Can modify state of outgoing edges 
• Run until all vertices agree to stop and no message in 

transit

From Malewicz and al.

Maximum Value Example

From Malewicz and al.

Implementation and Execution (1) 

• User provides a graph, some input (vertex and edges 
values) and a program

• The program is executed on all nodes of a cluster
- One node become the master, other are workers

• The graph is divided into partitions by the master
- Vertex Id used to compute partition index (e.g. 

hash(Id) mod N)
• Partitions are assigned to workers
• User input file is partitioned (no fancy hash) and sent to 

workers
- If some input is not for the worker, it will pass it along

Implementation and Execution (2) 

• The master request worker to perform superstep
- At the end, each worker reports the number of active 

vertices for next superstep
• Aggregators can be used at end of super-step to reduce 

communications
- Perform reduction on values before sending

• If no more active vertices, Master can halt computation
• What about failures ?

- Easy to checkpoint workers at end of superstep 
- If failure, rollback to previous checkpoint 
- If master fails… too bad L
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PageRank in Pregel

From Malewicz and al.

Performance

From Malewicz and al.

Performance

From Malewicz and al.

HADOOP MAPREDUCE
Frameworks
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Map Reduce operations

• Input data are (key, value) pairs
• 2 operations available : map and reduce
• Map 

• Takes a (key, value) and generates other (key, value) 
• Reduce 

• Takes a key and all associated values
• Generates (key, value) pairs

• A map-reduce algorithm requires a mapper and a reducer
• Re-popularized by Google

- MapReduce: Simplified Data Processing on Large Clusters 
Jeffrey Dean and Sanjay Ghemawat, OSDI’04

Map Reduce example

• Compute the average grade of students 
• For each course, the professor provides us with a text file
• Text file format : lines of  “student  grade”

• Algorithm (non map-reduce)
• For each student, collect all grades and perform the 

average
• Algorithm (map-reduce)

• Mapper 
• Assume the input file is parsed as (student, grade) pairs
• So … do nothing!

• Reducer 
• Perform the average of all values for a given key   

Map Reduce example

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3

Map Reduce example… too easy J

•Ok, this was easy because
• We didn’t care about technical details like reading 

inputs
• All keys are “equals”, no weighted average

•Now can we do something more complicated ?
•Let’s computed a weighted average

• Course 1 has weight 5
• Course 2 has weight 2
• Course 3 has weight 3

•What is the problem now ?
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Map Reduce example 

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3

Should be able to discriminate 
between values

Map Reduce example - advanced

• How discriminate between values for a given key
• We can’t … unless the values look different

• New reducer
• Input : (Name, [course1_Grade1, course2_Grade2, 

course3_Grade3]) 
• Strip values from course indication and perform weighted 

average
• So, we need to change the input of the reducer which comes 

from… the mapper
• New mapper

• Input : (Name, Grade)
• Output : (Name, courseName_Grade)
• The mapper needs to be aware of the input file

Map Reduce example - 2

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , C1_20)
(Brian, C1_10)
(Paul, C1_15)
(Bob , C2_15)
(Brian, C2_20)
(Paul, C2_10)
(Bob , C3_10)
(Brian, C3_15)
(Paul, C3_20)

(Bob , [C1_20, C2_15, C3_10])
(Brian, [C1_10, C2_15, C3_20])
(Paul, [C1_15, C2_20, C3_10])

(Bob , 16)
(Brian, 14)
(Paul, 14.5)

Map
Reduce

Course 1

Course 2

Course 3

What is Hadoop ?

• A set of software developed by Apache for distributed 
computing

• Many different projects
• MapReduce
• HDFS : Hadoop Distributed File System
• Hbase : Distributed Database
• ….

• Written in Java
- Bindings for your favorite languages available

• Can be deployed on any cluster easily



1/18/18

16

Hadoop Job

• An Hadoop job is composed of a map operation and 
(possibly) a reduce operation

• Map and reduce operations are implemented in a 
Mapper subclass and a Reducer subclass

• Hadoop will start many instances of Mapper and 
Reducer
• Decided at runtime but can be specified 

• Each instance will work on a subset of the keys called a 
Splits

Hadoop workflow
Source : Hadoop the definitive 
guide

Graphs and MapReduce

• How to write a graph algorithm in MapReduce?
• Graph representation ?

- Use adjacency matrix

• Line based representation 
- V1 : 0, 0, 1
- V2 : 1, 0, 1
- V3 : 1, 1, 0

• Size |V|2 with tons of 0 …

63

V1 V2 V3

V1 0 0 1
V2 1 0 1
V3 1 1 0

Sparse matrix representation

• Only encode useful values, i.e. non 0
- V1 : (V3 ,1)
- V2 : (V1,1), (V3 ,1)
- V3 : (V1,1), (V2,1)

• And if equal weights
- V1 : V3 

- V2 : V1, V3 

- V3 : V1,V2
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Single Source Shortest Path 

• Find the shortest path from one source node S to others
• Assume edges have weight 1
• General idea is BFS

- Distance(S) = 0
- For all nodes N reachable from S

● Distance(N) = 1
- For all nodes N reachable from other set of nodes M

● Distance(N) = 1+ min(Distance(M))
- And start next iteration

MapReduce SSSP

• Data
- Key : node N
- Value : (d, adjacency list of N)

● d distance from S so far
• Map :

- "m Î adjacency list: emit (m, d + 1)
• Reduce :

- Keep minimum distance for each node
• This basically advances the frontier by one hop

- Need more iterations

MapReduce SSSP (2)

• How to maintain graph structure between iterations
- Output adjacency list in mapper
- Have special treatment in reducer 

• Termination ?
- Eventually J
- Stops when no new distance is found… (any idea 

how?)

Seriously ?

• MapReduce + Graphs is easy

• But everyone is MapReducing the world!
- Because they are forced to
- And because of Hadoop

• Hadoop gives 
- A scalable infrastructure (computation and storage)
- Fault tolerance

• So let’s use Hadoop as an underlying infrastructure
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Giraph

• Built on top of Hadoop
• Vertex centric and BSP model J

- Giraph jobs run as MapReduce

Source : https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-
trillion-edges/10151617006153920/

SPARK AND GRAPHX

Spark 

• Addresses limitations of Hadoop 
- Disk intensive
- No support for iteration (cycles)

• Spark 
- In-Memory computation
- Workflows with cycles
- Still relies on Map-Reduce like operations
- Multi languages support : Scala, Java, Python, R

• https://spark.apache.org/

Resilient Distributed Datasets

• RDDs 
- Array-like data structure
- Mostly in-memory
- Partitioned 
- Fault tolerant 
- Immutable ß very important !

• RDDs are created through transformations
- Of raw data or another RDD
- Example : map, filter, reduceByKey, groupBy…

• RDDs support actions
- Example : collect, count, reduce, save…

• Transformations are lazy 
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Example : Word Count

val textFile = sc.textFile(”…") 
val counts = textFile.flatMap(line => line.split(" ")) 

.map(word => (word, 1))

.reduceByKey(_ + _) 
counts.saveAsTextFile(”….")

Spark Stack 

http://spark.apache.org/

Separate Systems to Support Each View

Table View Graph View

Dependency Graph

6. Before

8. After

7. After

Table

Result

Row

Row

Row

Row

Solution: The GraphX Unified 
Approach

Enabling users to easily and efficiently
express the entire graph analytics pipeline

New API
Blurs the distinction between 

Tables and Graphs

New System
Combines Data-Parallel 
Graph-Parallel Systems

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014
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Abstractions

• Graphs are represented by 2 collections
- Vertex RDD (IDs, Properties)
- Edges RDD(sIDs, dIDs, Properties)

• Graphs have multiple properties
- edges, vertices 

• Most graphs operations can be expressed as analyzing 
or joining collections
- Join stage (build a triple view)
- Group-by-stage (reduce-like)
- Map operations 

Building a Graph
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val vertices :  VertexRDD[String] = ….

val edges : EdgeRDD[Int] = ….

val graph : Graph(vertices, edges) = …

graph.edges.count()

Triplets Join Vertices and Edges

• The triplets view joins vertices and edges:

SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e 

LEFT JOIN vertices AS src, vertices AS dst ON e.srcId = src.Id AND
e.dstId = dst.Id

TripletsVertices Edges

B

A

C

D

A B

A C

B C

C D

A BA

B A C

B C

C D

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014

Triplet view

• Each Triplet contains
- srcId and srcAttr
- dstId and dstAttr
- attr

graph.triplets
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Aggregate Messages

• Applies a user defined function to each edge triplet
- The messages 

• Applies a user defined function to aggregate the 
messages at destination vertex

def aggregateMessages[Msg: ClassTag]( 
sendMsg: EdgeContext[VD, ED, Msg] => Unit,
mergeMsg: (Msg, Msg) => Msg, 
tripletFields: TripletFields = TripletFields.All) : VertexRDD[Msg] 

}

Example : get largest incoming edge

• For each vertex compute the largest incoming edge
- Message is edge attribute value
- Merge function is max

graph.aggregateMessages[Int](  
triplet => {     

triplet.sendToDst(triplet.attr)  
},  
(a,b) => Math.max(a,b)

) 

Misc operations

• RDD -> Array
- take(n)

• Compute the degree of each vertex
- graph.inDegrees/outDegrees

• Collect edges for all vertices
- val coll = graph.collectNeighborIds(EdgeDirection.X) 

with X In, Out, Either 
• Get all edges of a given vertice id

- coll.lookup(id)

Part. 2

Part. 1

Vertex Table 
(RDD)

B C

A D

F E

A D

Distributed Graphs as Tables (RDDs)

D

Property Graph

B C

D

E

AA

F

Edge Table 
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

B

C

D

E

A

F

Routing
Table 

(RDD)

B

C

D

E

A

F

1

2

1 2

1 2

1

2

2D Vertex Cut Heuristic



1/18/18

22

HDFSHDFS

ComputeSpark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab

Raw Wikipedia 

< / >< / >< / >
XML

Hyperlinks PageRank Top 20 Pages

342

1492

0 200 400 600 800 1000 1200 1400 1600

GraphLab + Spark
GraphX

Giraph + Spark
Spark

Total Runtime (in Seconds)

605

375

Conclusion

• So many frameworks to choose from…
• Criteria 

- What is the size of your graph ?
- What algorithms do you want to run ?
- How fast do you want your results ?

• Distributed frameworks are no silver bullet 
- Steeper learning curve
- Add new problems (data distribution, faults…)

Food for thought 

• Distributed partitioning is a hot topic
- But what is a good partitioner ?

• New hardware is massively parallel
- GPGPU, Xeon Phi …

• The network might not be a bottleneck anymore 
- RDMA + Infiniband == profit !
- The end of slow networks: it's time for a redesign, Carsten 

Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and 
Erfan Zamanian, Proc. VLDB Endow. 2016,

• Hardware contention is an issue 
- Performance Impact of Resource Contention in Multicore 

Systems, R. Hood, H. Jin, P. Mehrotra, J. Chang, J. 
Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas, 
IPDPS 2010

Resources

• Slides
- http://www.slideshare.net/shatteredNirvana/pregel-a-

system-for-largescale-graph-processing
- http://courses.cs.washington.edu/courses/cse490h/08

au/lectures/algorithms.pdf 
- http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgo

rithms.pptx
- https://amplab.cs.berkeley.edu/wp-

content/uploads/2014/02/graphx@strata2014_final.pp
tx


