-

Security through Static Analysis

Chris Hankin, Imperial College

Thanks to: SecSafe partners, David Clark and Sebastian
Hunt

Verificard Workshop, January 2002, Marseille

—p.1/3:

Overview

SecSafe objectives
Carmel and Security
Flow Logic
Information Flow
CFA for Carmel

Conclusions

Verificard Workshop, January 2002, Marseille

—p.2/3:

Security and
Safety

Semantics

model

proof

Verificard Workshop, January 2002, Marseille

realisation /
constraints

Static
Analysis

Algorithms

ementation

Automatic
Tools

=

-

—Pp.3/3:

o .

A subset of Javacard (Carmel) - Motivation:
hiding of uninteresting language and JCVM detalls
focus on salient features

(almost) direct translation from JCVM language

o
o
reduction of specification and development effort
o
= the essence [JCVMLe]

JCVM language Carmel

185 low-level instructions | 30 high-level instructions
AID, tokens, offsets names

o -

Verificard Workshop, January 2002, Marseille — p.4/3:

-

Memory allocation control

» Dynamic memory allocation must be bounded.
» No memory must be allocated after personalization.

® Information flow control

» Given types of information must not flow outside the applet.

® Service control

Given program points must be executable only if given
conditions are satisfied.

Error prediction

» No exception must reach the toplevel except ISOEXxceptions.

o -

Verificard Workshop, January 2002, Marseille —p.5/3:

o .

Flow logic:
a multi-paradigmatic approach to static analysis

#® Specification oriented
® Semantics based not semantics directed

Integrates state-of-the-art from abstract interpretation
and data flow analysis

Multi-paradigmatic: functional,imperative,concurrent . ..

o -

Verificard Workshop, January 2002, Marseille —p.6/3:

o .

Information Flow for Algol-like Languages

Information Flow Analysis
s Prevent flow from high to low

Flow Logic specification
s Simple imperative language
» l|dealised Algol

Extended with probabilistic constructs

o -

Verificard Workshop, January 2002, Marseille —Pp.7/3:

o .

Following Denning, it is possible to categorise information
flows into direct vs indirect and explict vs implicit flows.

Indirect flows: transitive flows (a flow from x to y followed by
a flow from y to =z implies a flow from x to z)

Direct explicit flows: arise from assignments; for example,
r := 1y + z causes explicit information flows from both y
and z to z.

o -

Verificard Workshop, January 2002, Marseille —p.8/3:

-

Direct implicit flows:

Local flows arise from guards in conditionals:

if x then y:=2z else y:=w.

o Global flows arise from guards in while loops

r :=y;(while w do x:=2);---.

Verificard Workshop, January 2002, Marseille —Pp.9/3:

-

We will illustrate the approach for a simple imperative
language:

S € Statement, C' € Command
¢ € Lab, z € Ide
a € Arith-e xp, b € Bool-e xp

= Ot

A U
i

| x:=a | S1:52 |
b S1 Sy | b S |
.S

Verificard Workshop, January 2002, Marseille — p.10/3:

670.\U/ 70.
a, 0 v,0o
(z:=a)f,0 § void, oz > 0]

Slao-ll 70, S27OJU' 70/,

(Sl 52)£70- lL 70-”

Verificard Workshop, January 2002, Marseille

- p.11/3:

boll,o0 Si,0l o’

(if b S1 S9)t, o | o'

bao-U'an- San-U’ 70,

(b Sl 32)670- U’ 70,

Verificard Workshop, January 2002, Marseille - p.12/3:

(bdo S)t, o) 0
bolll,o S,ol ol bdo S, o o
(bdo S)t, 0| o

Verificard Workshop, January 2002, Marseille — p.13/3:

o .

We write

AN AN AN

(X,G,D) = S

when (X, G, D) is an acceptable Information Flow Analysis of
the statement s.

X € Assign = Lab — P(Ide)
G € Global = Lab — P(Ide)

D € Dep = Lab — P(Ide x Ide)

Lwhere Ide = Ide U {e}. J

Verificard Workshop, January 2002, Marseille — p.14/3:

-

=

We use ; for relational composition, thus: = RS z Iff
Jy. x Ry S z. We also overload this notation to allow the

‘composition’ of a set with a relation, thus:

Y RY (:|3yeY. yR2).

We use the notation f\z to restrict the range of a partial
function, thus: (f\z)(y) iIs undefined if z = y and is f(y)
otherwise. We apply the same notation to binary relations:

def
R\z = {(y,2) € R |y # x}.
Where convenient, we treat D(¢) as a function of type Ide —

P(I/dE). In particular, we use a ‘function update’ notation on

relations thus: R|z +— Y| ot R\xU{x} xY.

-

Verificard Workshop, January 2002, Marseille — p.15/3:

Verificard Workshop, January 2002, Marseille

— p.16/3:

T
)
o
=)

_.
=R

= (if b cy Cy?)*
(X,G,D) = cﬁl A (X,G,D) = C& A
)/Z() D)?(81) U X(fz) A

G(£) D G(¢1) U G(£a) A

(e € G(£) = G(£) D FV (b)) A

D(£) 2 D(¢1) UD(¢2) A

D(¢) D X(¢) x FV(b)

Verificard Workshop, January 2002, Marseille - p.17/3:

= (bdo Ch)f
(X,G,D) |= € A

X(£) 2 X(¢1) A

G(¢) D {e} UFV(b) U G(¢1) UG(¥)
D(¢) D IdUD(¥);D(¢1) A
D(¢) D X(¢) x FV(b)

= (new x. O

(X,G,D) = C4 A

X(0) 2 X(t1)\{z} A

G(£) 2 G(er)\{a} A

D(¢) 2 D(€)\{z} U{(z,z)}

fWe are concerned with three aspects of correctness: T

First, that the analysis is well-defined.

Second, that the analysis results are a proper
abstraction of the semantics.

Third, that every program has an acceptable information
flow analysis and that the constraints have solutions.

Having analysed a program, C*¢, we determine that there is
a breach of security if either

® HNG() #0,or
® 3z e L3ye HaDW)y

o -

Verificard Workshop, January 2002, Marseille — p.19/3:

-

First we consider an example:

((((x<3)
(CCiT(p=9)
(f:= 1)ho
(f:=0)m)s;
(X =X+ 1)o)s;
(g:=g+10)7)s)s;
(f:=2))h:
(x:=0)k=)o

.

Verificard Workshop, January 2002, Marseille

—p.20/3:

-

The analysis of this program produces a set of constraints
to be solved:

Verificard Workshop, January 2002, Marseille

=

- p.21/3:

o .

Iterating over these constraints beginning from X = \z.0,

G = \z.0), and D = \z.0 to a fixed point giving the least
solution yields:

X(to) = {f.z.9}
G(lo) = {ez}
D(KO) — {(p,p),(g,g),(g,x)}

which satisfy the security criteria for the while language (cf
type-based approaches).

We now return to the correctness ...

-

Verificard Workshop, January 2002, Marseille —p.22/3:

o .

The specification of the analysis is essentially defining the
relation:

= : (AssignxGlobalxDepxStatement) — {true,f al se}

Q .
((Assign x Global x Dep x Statement) — {t rue,fal se}) -
((Assign x Global x Dep x Statement) — {true,f al se})

Verificard Workshop, January 2002, Marseille —p.23/3:

-

=

Given a set of variables X, we write o1 ~xy o9 to mean that
the two stores agree on all x € X:

o1 ~x 09 & Ve € X. o1(x) = o3(x)

Clearly, ~x Is an equivalence relation for any choice of X.

We sometimes write ~, t0 mean ~y,..

Verificard Workshop, January 2002, Marseille — p.24/3:

o .

Assignment Freedom

AN AN

Suppose (X,G,D) = Ctand let X’ = {z € Ide | z & X(£)}.
Then:

1. ifCt o | o' theno' ~x/ o

2. ifz ¢ X(¢) then z D(¢) z

Proof: Part 1 by induction on the height of the derivation.

Part 2 by structural induction.

o -

Verificard Workshop, January 2002, Marseille — p.25/3:

-

.

Store Independence

AN

Suppose (X, G, D) | C%, then, for all z

Proof: Proof is by induction on the height of the first deriva-

tion. J

Verificard Workshop, January 2002, Marseille — P.26/3:

-

Termination Independence

Suppose (X, G, D) C*. Then:
1. ife a()then Ct o | forallo.

2. If o1 NG(@) oo then 06,01 I & 06,02 [}

Proof. Part 1 is by structural induction. Part 2 is by
iInduction on the height of the derivation.

o -

Verificard Workshop, January 2002, Marseille —p.27/3:

o .

Existence of solutions

AN AN

For all S € Statement the set {()A(, G,
Moore family.

)| (X,G,D) = Stis a

An immediate corollary of our result is that there Is always
an acceptable information flow analysis for a statement and
that, moreover, there is a least analysis.

o -

Verificard Workshop, January 2002, Marseille — p.28/3:

o .

We now return to Carmel.

The main issue is that we have to deal with method
Invocation. This essentially means that we need an
Inter-procedural information flow analysis.

But . ..which methods are being invoked?

Verificard Workshop, January 2002, Marseille — p.29/3:

o .

Flow Logic for Carmel (Rene Rydhof Hansen)

Control Flow Analysis for Carmel
Proved correct wrt. semantics
Extensions for exceptions, ownership (firewall) etc.

Basis for prototype implementation

Verificard Workshop, January 2002, Marseille — p.30/3:

=

K tracks values of static fields for each class, H tracks
values of instance fields for individual objects, L is the local

heap and S is the abstract operand stack. Judgements are
of the form:

A A

(K,H,L,S)=addr : instr

Analysing

(K,ﬁ,f),g)lz(mo,pco): tov
iff {v}:: S(mo,pco) T S(mo, pco + 1)
L(mg, pco) E L(mg, pco + 1)

Verificard Workshop, January 2002, Marseille —p.31/3:

-

Analysing

(K,H,L,S) = (Mg, pcy) : m iff
Ay oot Ay it B X <aS(my, pep)
V(Refo) € B :
m., = methodLookup(m.id, o)
{(Refo)} it Ay io- - it Apyy E L(my, 1)[0..|m|]

T ::Y <S(my, END,y,.) :
T : X E S(mg,pco + 1)

L
i(mo,pco) C L(mg,pco + 1)

Verificard Workshop, January 2002, Marseille —p.32/3:

o .

The information flow analysis of might
look something like:

()/Z,a,/lj) :(K,ﬁ,i,g) (m(),pC()) : m Iff
Ay Apy B X < S(mg, peo) -
V(Refo) € B :

m, = methodLookup(m.id, o)
(mo, pco)™ € D(my, 1)

Verificard Workshop, January 2002, Marseille —p.33/3:

-

We have seen:

Conclusions

#® SecSafe objectives
Flow Logic

Information Flow Analysis

It remains to:

develop the Infromation Flow Logic for Carmel

to develop other security analyses

Verificard Workshop, January 2002, Marseille — p.34/3:

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

