
Security through Static Analysis

Chris Hankin, Imperial College

Thanks to: SecSafe partners, David Clark and Sebastian
Hunt

Verificard Workshop, January 2002, Marseille – p.1/34



Overview

SecSafe objectives

Carmel and Security

Flow Logic

Information Flow

CFA for Carmel

Conclusions

Verificard Workshop, January 2002, Marseille – p.2/34



model

����

realisation /
constraints����

proof

� � � �implementation

� � � �
Security and

Safety
Algorithms

Static
Analysis

Semantics
Automatic

Tools

Verificard Workshop, January 2002, Marseille – p.3/34



A subset of Javacard (Carmel) - Motivation:

hiding of uninteresting language and JCVM details

focus on salient features

reduction of specification and development effort

(almost) direct translation from JCVM language

� the essence [JCVMLe]

JCVM language Carmel

185 low-level instructions 30 high-level instructions
AID, tokens, offsets names

Verificard Workshop, January 2002, Marseille – p.4/34



Memory allocation control

Dynamic memory allocation must be bounded.

No memory must be allocated after personalization.

Information flow control

Given types of information must not flow outside the applet.

Service control

Given program points must be executable only if given

conditions are satisfied.

Error prediction

No exception must reach the toplevel except ISOExceptions.

Verificard Workshop, January 2002, Marseille – p.5/34



Flow logic:
a multi-paradigmatic approach to static analysis

Specification oriented

Semantics based not semantics directed

Integrates state-of-the-art from abstract interpretation
and data flow analysis

Multi-paradigmatic: functional,imperative,concurrent . . .

Verificard Workshop, January 2002, Marseille – p.6/34



Information Flow for Algol-like Languages

Information Flow Analysis
Prevent flow from high to low

Flow Logic specification
Simple imperative language
Idealised Algol

Extended with probabilistic constructs

Verificard Workshop, January 2002, Marseille – p.7/34



Following Denning, it is possible to categorise information
flows into direct vs indirect and explict vs implicit flows.

Indirect flo ws: transitive flows (a flow from � to � followed by
a flow from � to � implies a flow from � to �)

Direct explicit flo ws: arise from assignments; for example,�� � � � � causes explicit information flows from both �

and � to �.

Verificard Workshop, January 2002, Marseille – p.8/34



Direct implicit flo ws:

Local flows arise from guards in conditionals:

	
 � � ��� �� � �  ���  �� � ���

Global flows arise from guards in while loops

� � � �� ��� � 	 �  � ��� �� � � � ��� � � �

Verificard Workshop, January 2002, Marseille – p.9/34



We will illustrate the approach for a simple imperative
language:

� � !"$# "$% &% '")( *�

Command+�

Lab( � � , -%

. � Arith-e xp( /�
Bool-e xp

� � � � * 0

* � � � � 1 	$2 3 � � � . 3 �54 � �56 3

	
 / � � � �54  ���  � 6 3 � � 	 �  / � � � 3

�  � �� �

Verificard Workshop, January 2002, Marseille – p.10/34



� 1 	 2 0( 7 89 � 	 �( 7

.( 7 8;: ( 7� �� � . � 0( 7 8 9 � 	 �( 7 < �= > : ?

�54( 7 8 9 � 	 �( 7 @ � 6( 7 @ 8 9 � 	 �( 7 @ @� �54 � �56 � 0( 7 8 9 � 	 �( 7 @ @

Verificard Workshop, January 2002, Marseille – p.11/34



/( 7 8A ( 7 �54( 7 8 9 � 	 �( 7 @� 	
 / � ��� �4  ���  � 6 � 0( 7 8 9 � 	 �( 7 @

/( 7 8B ( 7 � 6( 7 8 9 � 	 �( 7 @� 	
 / � ��� �4  ���  � 6 � 0( 7 8 9 � 	 �( 7 @

Verificard Workshop, January 2002, Marseille – p.12/34



/( 7 8 B ( 7�� � 	 �  / ��� � � 0( 7 89 � 	 �( 7

/( 7 8A ( 7 �( 7 8 9 � 	 �( 7 @ �� � 	 �  / ��� � � 0( 7 @ 8 9 � 	 �( 7 @ @�� � 	 �  / ��� � � 0( 7 89 � 	 �( 7 @ @

�( 7 < �= > B ? 8 9 � 	 �( 7 @��  � �� � � 0( 7 89 � 	 �( 7 @ < �= > 7 � ?

Verificard Workshop, January 2002, Marseille – p.13/34



We write � C�D( CFE( C�G � 3 � �

when

� CD( CHE( CFG �

is an acceptable Information Flow Analysis of
the statement S.

CD � IKJ J LNM ' � O# P > Q � , -% �

CFE � RSUT P# S � O# P > Q � V, -% �

C�G � W%X � O# P > Q � V, -% Y V, -% �

where

V, -% � , -% Z [H\ ]

.
Verificard Workshop, January 2002, Marseille – p.14/34



We use � for relational composition, thus: � ^ � � � iff_ �� � ^ � � �. We also overload this notation to allow the
‘composition’ of a set with a relation, thus:` � ^ acb d� [ � 3 _ � � `� � ^ � ]

.
We use the notation

e f � to restrict the range of a partial
function, thus:

� e f � � � � �

is undefined if � � � and is

e � � �

otherwise. We apply the same notation to binary relations:^ f � a b d� [ � �( � � � ^ 3 � g � � ]
.

Where convenient, we treat
h � + �

as a function of type

V, -% >

Q � V, -% �

. In particular, we use a ‘function update’ notation on

relations thus:
^ < �= > ` ? a b d� ^ f � Z [ � ] Y `

.

Verificard Workshop, January 2002, Marseille – p.15/34



� CD( CFE( C�G � 3 � � 1 	$2 0

iff

C�G � + �ji k l

� CD( CFE( C�G � 3 � � � � � . � 0

iff

CD � + � i [ � ]nmCoG � + � i k l < �= > pq � . � ?

� CD( CFE( C�G � 3 � � * 0sr4 � * 0st6 � 0
iff

� CD( CFE( C�G � 3 � * 0ur4 m � CD( CFE( C�G � 3 � * 0ut6 mCD � + � i CD � + 4 � Z CoD � + 6 � mCFE � + � i CFE � + 4 � Z CFE � + 6 � � C�G � + 4 � mCoG � + � i CoG � + 6 � � CoG � + 4 �

Verificard Workshop, January 2002, Marseille – p.16/34



� CD( CFE( C�G � 3 � � 	
 / � �� � * 0ur4  ���  * 0ut6 � 0
iff

� CD( CFE( C�G � 3 � * 0sr4 m � CD( CFE( C�G � 3 � * 0st6 mCD � + � i CD � + 4 � Z CFD � + 6 � mCFE � + � i CFE � + 4 � Z CFE � + 6 � m

�\ � CHE � + � � CHE � + � i pq � / � � mC�G � + � i C�G � + 4 � Z C�G � + 6 � mCFG � + � i CD � + � Y pq � / �

Verificard Workshop, January 2002, Marseille – p.17/34



� CD( CFE( C�G � 3 � �� � 	 �  / ��� * 0 r � 0

iff

� CD( CFE( C�G � 3 � * 0ur mCFD � + � i CD � + 4 � mCFE � + � i [H\ ] Z pq � / � Z CFE � + 4 � Z CFE � + � � C�G � + 4 � mCFG � + �ji k l Z CFG � + � � CFG � + 4 � mC�G � + �ji CD � + � Y pq � / �

� CD( CFE( C�G � 3 � ��  � �� * 0sr � 0
iff

� CD( CvE( CoG � 3 � * 0sr mC�D � + � i CD � + 4 � f [ � ] mCFE � + � i CFE � + 4 � f [ � ]mCoG � + �ji CoG � + 4 � f [ � ] Z [ � �( � � ]

Verificard Workshop, January 2002, Marseille – p.18/34



We are concerned with three aspects of correctness:

First, that the analysis is well-defined.

Second, that the analysis results are a proper
abstraction of the semantics.

Third, that every program has an acceptable information
flow analysis and that the constraints have solutions.

Having analysed a program,
* 0

, we determine that there is
a breach of security if either

wx CFE � + � g � y

, or

_ � � z� _ �� w� � CoG � + � �

Verificard Workshop, January 2002, Marseille – p.19/34



First we consider an example:

( ( ( while ( x { 3 )
do ( ( ( if ( p = g )

then ( f:= 1 )

| r}

else ( f := 0 )

| r r

)

|�~

;
( x := x + 1 )

|��

)

|��

;
( g := g + 10 )

|��

)

|��

)

|��
;

( f := 2 )

|��

)

| r

;
( x := 0 )

| t

)

|}
Verificard Workshop, January 2002, Marseille – p.20/34



The analysis of this program produces a set of constraints
to be solved:

CD � +�� � i CD � + 4 � Z CD � + 6 � m CHE � +�� � i CHE � + 4 � Z CHE � + 6 � � CFG � + 4 �

m C�G � +5� � i C�G � + 6 � � C�G � + 4 �

CD � + 4 � i CD � +�� � Z CD � +�� � m CHE � + 4 � i CHE � +�� � Z CHE � +�� � � CFG � +�� �

m C�G � + 4 � i C�G � +�� � � C�G � +5� �

CD � + 6 � i [ � ] m CFG � + 6 � i k l < �= > y ?

...

Verificard Workshop, January 2002, Marseille – p.21/34



Iterating over these constraints beginning from
CD � � �� y

,CFE � � �� y

, and

C�G � � �� y

to a fixed point giving the least
solution yields:

CD � +5� � � [ e( �( � ]

CvE � +5� � � [\ ( � ]

C�G � +5� � � [ �v� ( � �( � �( � �( � �( � � ]

which satisfy the security criteria for the while language (cf
type-based approaches).

We now return to the correctness . . .

Verificard Workshop, January 2002, Marseille – p.22/34



The specification of the analysis is essentially defining the
relation:

3 � � � IKJ J LNM ' Y RSUT P# S Y W%X Y !"$# "$% &% '" � > [
true( false

]

��
� � IKJ J LNM ' Y RSUT P# S Y W%X Y !"$# "$% &% '" � > [

true( false

] � >

� � IKJ J LNM ' Y RSUT P# S Y W% X Y !"$# "$% &% '" � > [

true( false

] �

� 4 � � 6 � � � CD( CvE( CoG( � � �

� � 4 � CD( CFE( C�G( � � � true � � � � 6 � C�D( CFE( C�G( � � � true �

Verificard Workshop, January 2002, Marseille – p.23/34



Given a set of variables

�

, we write 7 4 �� 7 6 to mean that
the two stores agree on all � � �

:

7 4 � � 7 6 � � � � �� 7 4 � � � � 7 6 � � �

Clearly, �� is an equivalence relation for any choice of

�

.

We sometimes write �c� to mean �� � � .

Verificard Workshop, January 2002, Marseille – p.24/34



Assignment Freedom

Suppose

� CD( CHE( CFG � 3 � * 0

and let

� @ � [ � � , -% 3 � g� CFD � + � ]

.
Then:

1. if

* 0( 7 8 9 � 	 �( 7 @ then 7 @ ��� 7
2. if � g� CoD � + �

then � CoG � + � �
Proof: Part 1 by induction on the height of the derivation.

Part 2 by structural induction.

Verificard Workshop, January 2002, Marseille – p.25/34



Store Independence

Suppose

� CD( CFE( C�G � 3 � * 0( then, for all �:
if

� 7 4 ���� 7 6 �

then
if

� * 0( 7 4 89 � 	 �( 7 @4 m * 0( 7 6 8 9 � 	 �( 7 @6 �

then 7 @4 �� 7 @6
where

h� � CoG � + � � � �

.

Proof: Proof is by induction on the height of the first deriva-

tion.
Verificard Workshop, January 2002, Marseille – p.26/34



Termination Independence

Suppose

� CD( CFE( C�G � 3 � * 0

. Then:

1. if \ g� CvE � + �

then

* 0( 7 8

for all 7.
2. if 7 4 ��¡  ¢ 0 £ 7 6 then

* 0( 7 4 8 � * 0( 7 6 8

Proof: Part 1 is by structural induction. Part 2 is by
induction on the height of the derivation.

Verificard Workshop, January 2002, Marseille – p.27/34



Existence of solutions

For all

� � !"$# "$% &% '" the set

[ � CD( CHE( CFG � 3 � CD( CHE( CFG � 3 � � ]

is a
Moore family.

Recall that a subset Y of a complete lattice

z � � z( � �

is a
Moore family if and only if

¤ ` @ � `
for all

` @n¥ `

.

An immediate corollary of our result is that there is always
an acceptable information flow analysis for a statement and
that, moreover, there is a least analysis.

Verificard Workshop, January 2002, Marseille – p.28/34



We now return to Carmel.

The main issue is that we have to deal with method
invocation. This essentially means that we need an
inter-procedural information flow analysis.

But . . . which methods are being invoked?

Verificard Workshop, January 2002, Marseille – p.29/34



Flow Logic for Carmel (Rene Rydhof Hansen)

Control Flow Analysis for Carmel

Proved correct wrt. semantics

Extensions for exceptions, ownership (firewall) etc.

Basis for prototype implementation

Verificard Workshop, January 2002, Marseille – p.30/34



¦¨§

tracks values of static fields for each class,

¦ w
tracks

values of instance fields for individual objects,
¦ z

is the local
heap and

¦ �

is the abstract operand stack. Judgements are
of the form:

� ¦©§( ¦ w( ¦ z( ¦ � � 3 � addr � instr

Analysing push:

� ¦ §( ¦ w( ¦ z( ¦ � � 3 � �vª �( �« � � � 2¬ � �  :

iff
[: ] � � ¦ � � ª �( �« � � � ¦ � � ª �( �« � �A �

¦ z � ª �( �« � � � ¦ z � ª �( �« � �A �

Verificard Workshop, January 2002, Marseille – p.31/34



Analysing invokevirtual:

� ¦©§( ¦ w( ¦ z( ¦ � � 3 � � ªn® ( �« ® � � 	� 9 � 1  9 	$¯ �¬ ° � ª iff±³² � � � � � � � ±µ´·¶ ´ � � ¸ � � �c¹ ¦ � � ªº® ( �« ® � �� �»U¼ ½ 7 � � ¸ �

ªH¾ � ¿ À Á ÂÄÃ ÅÆ Ã Ã ÇKÈ É �vª � Ê l( 7 �

[ � »U¼ ½ 7 � ] � � ±² � � � � � � � ±Ë´·¶ ´ � ¦ z � ªH¾ ( A � <B � � 3 ª 3 ?

Ì� � `¹ ¦ � � ªH¾ ( ÍÎ G¶ Ï � �Ì� � � � ¦ � � ªº® ( �« ® �A �

¦ z � ªn® ( �« ® � � ¦ z � ªn® ( �« ® �A �

Verificard Workshop, January 2002, Marseille – p.32/34



The information flow analysis of invokevirtual might
look something like:

� CD( CvE( CoG � 3 � ¢ ÐÒÑÔÓ ÐÒÕÓ ÐÒÖÓ Ðc× £ � ª �( �« � � � 	� 9 � 1  9 	$¯ �¬ ° � ª iff± 4 � � � � � � � ±ËØÚÙ Ø � � ¸ � � �c¹ ¦ � � ª �( �« � � �

� � »U¼ ½ 7 � � ¸ �

ª¨Û � ¿ À Á ÂÃ Å Æ Ã Ã Ç È É � ª � Ê l( 7 �

CoG � ª �( �« � � Ü ¥ CoG � ª Û ( A �

C�D � ª Û ( ÍÎ GÙ Ï � ¥ C�D � ª �( �« � �A �

CvE �vª Û ( ÍÎ GÙ Ï � ¥ CvE � ª �( �« � �A �

C�G � ª¨Û ( ÍÎ GÙ Ï �$Ý ¥ C�G � ª �( �« � �A �

Verificard Workshop, January 2002, Marseille – p.33/34



Conclusions

We have seen:

SecSafe objectives

Flow Logic

Information Flow Analysis

It remains to:

develop the Infromation Flow Logic for Carmel

to develop other security analyses

Verificard Workshop, January 2002, Marseille – p.34/34


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

