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Abstract: A reactive script interpretor is a broadcast event-driven interpretor which can

react to several commands in parallel. The basic principle is that absence of an event cannot

be decided before the end of the current interpretor reaction. Generating events and waiting

for occurrence of events are the basic commands which are composed in several ways to build

complex behaviors. Moreover, one can also de�ne objects with associated methods run when

a nonblocking order is sent to them. Method execution is immediate (in the same interpretor

reaction as the order) and a method can be executed at most once during each reaction.

Reactive script interpretors are implemented using the Reactive-C language. Finally, it is

shown that reactive scripts are a mix of two formalisms: the SL synchronous language, and

the ROM Reactive Object Model.

Key-words: Parallelism, Script, Interpretor, Reactive programming, Object

(Résumé : tsvp)

EMP-CMA, B.P. 207, F-06904 Sophia Antipolis cedex

France-Télécom/Cnet PAA/TSA, 38-40 avenue du Général Leclerc, F-92131 Issy-Les-Moulineaux
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Scripts Réactifs

Résumé : Un interpréteur de scripts réactifs utilise des événements di�usés et exécute

un ensemble de commandes parallèles. Le principe de base est que l'absence d'un événe�

ment ne peut être décidée avant la �n de la réaction courante. La génération et l'attente

d'evénements sont les commandes élémentaires, que l'on compose pour construire des ré�

actions complexes. On peut également dé�nir des objets et leur associer des méthodes

exécutées lorsque les ordres non-bloquants leurs sont donnés. L'exécution des méthodes est

immédiate (elle s'e�ectue dans la même réaction que l'ordre) et une méthode ne peut être

exécutée plus d'une fois pendant une réaction. Les interpréteurs de scripts réactifs sont im�

plémentés en utilisant le langage Reactive-C. Finalement, on montre que les scripts réactifs

sont un mélange de deux formalismes : le langage synchrone SL et le modèle des objets

réactifs ROM.

Mots-clé : Parallelisme, Script, Interpreteurr, Programmation réactive, Objet
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Reactive Scripts1

A Language of Reactive Scripts

A script is a program represented as a character string and intended to be run by an inter�

pretor. There exist a lot of script languages, for example the many Unix �shell� languages.

In a script based approach, emphasis is put on programming ease; for example, variables

need not to be declared before used, and their types can be changed at will. Generally,

interpretors implement in�nite loops that wait for a command, run it, and then wait for

the next command; thus, interpretors are sequential programs which run one command at a

time. In the following we shall say that an interpretor reacts to a command when it runs it.

In this paper, we consider event-driven interpretors which stores several commands awai�

ting for events to occur, and �res them accordingly to their arrival. Such an interpretor is

an example of a parallel and dynamic program: it does not need to have �nished to execute

the current command to accept new ones, and each new command stored is run in parallel

with the others. Actually, the interpretor manages a global parallel program which may

be dynamically changed by addition of new commands; it keeps the state of the parallel

program and continues to execute it each time it is run. Moreover, events are broadcast,

meaning that all commands waiting for the same event are all simultaneously �red, as soon

as the event occurs (that is, they are all executed during the same interpretor reaction).

Thus, we are considering broadcast event-driven scripts and broadcast event-driven paral�

lel interpretors, that from now we prefer to call shortly reactive scripts (RS) and reactive

scripts interpretors (RSI).

In the context of reactive scripts, emphasis is put more on behavioral aspects than on

data aspects. Actually, the de�nition of reactive scripts is �parametrized� by an underlying

language of external statements and expressions whose task is to manage variables and data.

We shall describe data and variables aspects when considering the particular RS interpretor

based on the underlying language Tcl/Tk.

The structure of the paper is as follows: �rst, the notion of a reactive script is introduced.

Then, interpretors of reactive scripts based on Tcl/Tk are described and some examples

given. Finally, related works (Java and Agent-Tcl) are considered before the conclusion.

1 Basic commands

Waiting for an event E to occur is simply written await E, and to generate event E is written

generate E. Generation of an event concerns only the current reaction, and is lost for the

future (events are not persistent). Accordingly to the interpretor approach, events need not

to be declared before being used.

1Work supported by France Télécom/Cnet and Soft Mountain, Grant 93 1B 141, #506
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4 Frédéric Boussinot, Laurent Hazard

To trigger execution of a command by the occurrence of an event E, one puts the command

in sequence with await E. For example, the command

await E;{puts Received!}

prints �Received!� when E occurs, that is when

generate E

is executed. Note the semi-colon symbol used to put commands in sequence, and also

the printing statement puts enclosed by braces. More generally, exact syntax of external

statements like printing statements, assignments or procedure calls is of no interest for the

moment. These external statements are always put between �{� and �}�.

We are now considering several properties of basic commands.

Event Broadcast

Events are broadcast that is, execution of generate E �res all the await E commands that

are stored in the interpretor. For example, suppose one enters into the interpretor the

command

await E;{puts Received1!}

then, the command

await E;{puts Received2!}

Now, when generate E is run by the interpretor, the two await E commands are immedia�

tely �red and thus both messages Receive1! and Receive2! are immediately printed. The

sequence operator does not introduce any delay: the two messages are printed in the same

reaction E occurs (we shall say that sequencing is immediate). This implies for example,

that message E! is immediately printed by

generate E;await E;{puts E!}

Multiple Generation

Multiple generation of the same event during a single reaction is equivalent to generate

the event once. For example, suppose that the two following commands are stored in the

interpretor:

await E;generate F;{puts E!}

and:

await F;generate E;{puts F!}

INRIA



Reactive Scripts 5

Suppose that E is generated; then await E is �red, generate F is executed and message E!

is printed. In the same reaction, as F occurs, await F is �red, event E is generated for the

second times which has no e�ect, and message F! is also printed. Actually, the two messages

E! and F! are both simultaneously printed as soon as generate E or generate F is run by

the interpretor. Note that the result is the same if E and F both occur in the same reaction,

for example as a consequence of:

generate E;generate F

Non-determinism

The order in which parallel actions are executed is not �xed (in other words, non-deterministic

behaviors may appear). This is the case for the following two commands:

await E;{puts Received1!}

await E;{puts Received2!}

The order in which Received1! and Received2! are printed depends on the interpretor

implementation. The only thing sure is that they will be printed together in the same

interpretor reaction, as soon as a generate E command is executed.

2 Parallelism and the Stop Command

In this section, one introduces two operators to mimic interpretor reactions and parallelism.

Actually, these two operators give the way to program reactive scripts having in mind the

way the interpretor behaves.

Stop Command

The stop command mimics interpretor reactions: a stop command stops execution for the

current interpretor reaction, and is the new starting point for the next reaction. For example,

to print message First! during an interpretor reaction, then Second! during the next, one

can simply enter:

{puts First!}

then let the interpretor reacts, and then enter the new command:

{puts Second!}

Another solution is to use a stop statement and write directly:

{puts First!};stop;{puts Second!}

Note that in this last solution, the two printing commands are introduced together, and not

one at a time as in the �rst solution.

RR n�2868



6 Frédéric Boussinot, Laurent Hazard

The stop command is needed to trigger execution of a command by several occurrences

of the same event. For example, the following command prints message Two! after two

occurrences of E:

await E;stop;await E;{puts Two!}

The �rst await E command terminates when E occurs for the �rst time; then execution of

the sequence stops as a stop is reached. Execution will restart from the stop at the next

interpretor reaction, and the second await E becomes active at that moment. Thus Two!

is printed after E occurs twice, which is the searched behavior.

Sequencing is immediate, the sequence of two await E commands without any stop

between them, is not a solution:

await E;await E;{puts Two!}

Actually, the �rst await command terminates as soon as E occurs, and the second await

command is immediately started. But as sequencing is immediate, the second await com�

mand also terminates during the same reaction, and thus, Two! is printed as soon as the

�rst E occurs, without waiting for a second one.

Parallelism

In the same spirit stop commands mimic interpretor reactions, one introduces in the syntax

a parallel operator to mimic interpretor parallelism.

Suppose one enters the two following commands into the interpretor:

await E;{puts E!}

and:

await F;{puts F!}

Then, both commands are run in parallel by the interpretor and E! and F! are printed

accordingly to the presences of E and F. The following command which uses the parallel

operator written �||� behaves exactly in the same way:

await E;{puts E!}

||

await F;{puts F!}

A parallel command can have more than two branches, is commutative and associative, and

terminates when all its branches do. Note that �||� has a lower precedence than �;� and

that parallel commands can be put in parenthesis for precedence purposes. For example, to

print Terminated! as soon as E and F have both occurred, one can write:

(await E || await F);

{puts Terminated!}

Remark that without parenthesis, Terminated! would be printed as soon as F occurred,

independently of E.

INRIA
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3 Con�gurations of Events

One has seen how to await the occurrence of an event: await E releases the control as soon

as E occurs. Event con�gurations extend this to more general situations where one waits for

the occurrence of several events, or for the absence of an event.

�And� of several events

The simultaneous occurrences of several events is expressed with the and construct. For

example, message OK! is written as soon as E and F both occur in the same reaction, by:

await E and F;{puts OK!}

Note the di�erence with

(await E || await F);

{puts OK!}

which prints OK! when E and F have both occurred, but not necessarily in the same reaction.

�Or� of several events

The occurrence of one amongst several events is expressed with the or construct. For

example, message OK! is written as soon as E or F occur, by:

await E or F;{puts OK!}

�Not� of an event

The con�guration where an event E does not occur is written �not E�. For example, message

OK! is written in absence of E, by:

await not E;{puts OK!}

An important point however, is that OK! is not printed during the reaction where E is absent,

but during the next one. Indeed, when does one know that an event does not occur during a

reaction? The answer is: not before the end of the reaction, as before this, the event could

be generated later. The end of the reaction is the precise moment one is sure the event is

de�nitely absent. Note that not to delay reactions to event absences would cause trouble

(often called �causality problems�), as in:

await not E;generate E

where E would be generated during the same reaction it is absent. This would violate the

basic broadcast hypothesis of reactive scripts, and this is why only delayed reactions to event

absences are allowed.

This is the moment to state the basic principle of reactive scripts, called �absence decision

principle�:

RR n�2868
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Absence of an event
cannot be decided before

the end of the current reaction

Combinations of and, not, and or are possible. For example, in:

await E or F and G;{puts OK!}

message OK! is printed as soon as E and G or F and G occur simultaneously. Note that and

and or are left associative. Parenthesis can be freely used to group sub-expressions.

As another example, consider:

await not E or F;{puts OK!}

Message OK! is immediately printed whenever F occurs, and it is printed at the next reaction

when neither F nor E occur. Thus termination of the await command is sometime immediate

and sometime delayed, depending on not operators, but always obeying the absence decision

principle.

4 Loops

Cyclic behaviors are de�ned using the loop operator. The loop body is run as soon as the

command is entered, and when it terminates it is automatically restarted. For example, the

two messages First! and Second! are printed in turn by the command:

loop

{puts First!};

stop;

{puts Second!};

stop;

end

Instantaneous Loops

A problem would appear if a loop body would terminate in the same reaction it is started

(one speaks of an �instantaneous loop�), as in:

loop {puts OK!} end

Execution would cycle producing in�nitely many OK!, and would prevent the interpretor to

terminates the current reaction.

Thus, instantaneous loops should be avoided. As we are in an interpretative approach,

we choose to detect instantaneous loops at run time, as soon as execution reaches the end of

a loop body in the same reaction it has executed its beginning. When an instantaneous loop

is detected, the interpretor prints a warning message and behaves as if a stop was executed.

Thus,

INRIA
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loop {puts OK!} end

becomes equivalent to

loop {puts OK!};stop end

except that a warning message is printed at each reaction.

Finite Loops

A �nite loop executes its body a �xed number of times. For example, to wait for �ve

occurrences of an event E to print a message, one could write:

loop {5} times

await E;

stop

end;

{puts OK!}

The number of times the body is executed is given by an expression which is, as for external

statements, enclosed by braces. As opposite to general loops, the body of a �nite loop is

allowed to instantaneously terminate without generating any warning. For example:

loop {3} times {puts OK!} end

prints OK! three times during the same reaction.

Exiting Loops

Loops can be exited using break commands. A break acts as a stop, but in addition,

it forces the loop to terminate. For example, the following command prints OK! at each

reaction while event Term does not occur:

loop

await Term;break

||

loop {puts OK!};stop end

end

Several points are to be noticed.

Break and Parallel

As stop does, a break does not prevent commands that are in parallel with it to execute.

For example, in the previous example, message OK! is printed even at the moment Term

occurs.

RR n�2868
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Delayed or Immediate Exiting

Exiting of a loop occurs as soon as possible, while obeying the absence decision property.

Exiting is immediate if execution of the loop body is not blocked waiting for an absent event

(this was the case in the previous example). Thus:

loop break end;{puts Exit!}

is completely equivalent to:

{puts Exit!}

On the other hand, exiting is delayed when execution of the loop body lasts during all the

current reaction. For example, consider:

loop

await E || break

end;

{puts Exit!}

Now, Exit! is immediately printed if E is generated during the current reaction, but other�

wise, the printing action is delayed to the next reaction.

5 Test Commands

In this section one considers two test commands: if which tests for boolean conditions, and

when which tests for events.

Testing Conditions

The need of an if command to test a condition does not require deep justi�cations. As

previously, we do not give exact syntax of conditions, which are put between braces. For

example:

if {$cond} then

{puts True!}

else

{puts False!}

end

prints True! or False! accordingly to the value of cond. Note that in an if statement,

the condition is evaluated once, to choose the branch to be executed, and that this branch

remains the same afterwards. For example, in:

if {$cond} then

loop {puts True!};stop end

else

loop {puts False!};stop end

end

INRIA
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whichever loop is executed is determined by cond value at the �rst reaction, and later, the

printed message remains always the same, independently of the actual value of cond.

Testing Events

The when command allows to test an event con�guration in the current reaction. Of course

when commands obey in all cases the absence decision principle. For example, consider:

when E then generate F else generate G end

Event F is generated if E occurs in the current reaction; otherwise, G is generated at the next

reaction, as a consequence of the absence decision principle.

Passing control to branches is governed by the absence decision principle. In case of

a single event test, this means that else branch execution is always delayed to the next

reaction. Note however that then branches can also be delayed because of not in the tested

con�guration, as in:

when not E then

{puts Absent!}

else

{puts Present!}

end

Message Present! is immediately printed as soon as E occurs, as in this case evaluation of

not E returns false before the end of the current reaction. On the contrary, if E is absent,

message Absent! is only printed during the next reaction, as E absence cannot be decided

before the end of the current reaction.

6 Preemption and Control Commands

The need to force termination of a command (to preempt it) when an event occurs, or to

control its execution by an event, appears rather naturally in many contexts.

Until Command

We already saw how break commands force loop bodies to terminate. In fact, the following

is a general shape to preempt a given command P by the occurrence of an event E:

loop

await E;break

||

P;break

end

However this shape is unsatisfactory for two reasons: �rst, it uses a loop only to be able to

force exiting of its body; second, if E is absent, accordingly to the absence decision property,

RR n�2868



12 Frédéric Boussinot, Laurent Hazard

execution cannot be instantly continued when P terminates as E is yet awaited. This is

why the until command is introduced: a until statement executes its body and it can

terminate for two reasons: either because the body terminates, and in this case termination

of the until is immediate; or because the event occurs, and in this case termination of the

until depends on the body, accordingly to the delayed absence principle.

For example consider the command:

do

await E;{puts E!}

||

await F;{puts F!}

until G;

{puts Terminated!}

If G does not occurs before both E and F does, then all works as if the until command

was not there: E! is printed as soon as E occurs, F! is printed as soon as F occurs, and

Terminated! is printed simultaneously with the last event, as then the body of the until

terminates.

On the contrary, if G occurs while E or F have not yet occurred, then the until command

is exited at the next reaction and Terminated! is printed at that time.

Use of Con�gurations

As for when, arbitrary con�gurations can be used as preemptive conditions in until com�

mands. Of course, behaviors always obey the absence decision principle, which means that

termination of a until may be delayed if the body execution or the con�guration evaluation

lasts all the current reaction.

Actual Parts

An �actual� part can be added to a until command to be executed only in case of actual

preemption. For example, in the following command, Preemption! is printed only if E

occurs before F:

do

await F

until E

actual

{puts Preemption!}

end

Note that, according to the absence decision principle, Preemption! printing is always

delayed to the next reaction (as actual preemption implies that the until body is still

awaiting F). Note also that the actual part is not executed when E and F are simultaneous,

and that in this case the until command terminates immediately.

INRIA



Reactive Scripts 13

Control Command

Execution of a command can be controlled by the occurrence of an event, using the control

operator. Actually, the body of a control command is executed only during reactions where

the controlling event occurs. For example, the following command prints a message only

when E occurs:

control

loop {puts OK!};stop end

by E

Note that complex event con�gurations are not allowed: only single events can be used in

control statements.

7 Local Events

Local events give a way to restrict event broadcast, as visibility of a local event is restricted

to the statement de�ning it. For example, consider:

event E in

do

comm1

||

comm2

until E

end

where comm1 and comm2 can both force termination of the other by generating event E. The

point is that termination of the two commands cannot be forced from outside as the local

event statement masks all generations of E from there.

Several local events can be de�ned once, with the shape:

event E1,...,En in ... end

8 Behaviors

A behavior is a declaration which associates a name to a command. For example the following

behavior associates the name B to the command that waits for E to print OK!:

behavior B

await E;{puts OK!}

end

We will see in section 9 how behaviors can be parametrized. To run the command associated

with a behavior, one uses the run command as:

RR n�2868
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run B

Actually, each run command runs a a new fresh copy of the associated behavior, and thus

several runs of the same behavior can coexist without interference. For example, consider

the following behavior:

behavior X

await E;{puts E!};

await F;{puts F!};

end

Suppose that E is generated and that X is run in the same reaction by:

generate E;run X

In response, E! is immediately printed. Now suppose one runs an other time X by:

run X

Then the �rst run is waiting for F while the second is waiting for E. Thus, if for example

both events E and F are simultaneously generated by:

generate E;generate F

then, only one message E! is printed by the second run while two messages F! are printed,

one by each run.

Local Variables

The way to de�ne local variables in behaviors depends on the underlying interpretor of

external commands and expressions. The case of the RS interpretor based on Tcl/Tk is

considered in section 14.

Dynamic Binding

The binding between a run b command and the behavior b is established dynamically, when

the command starts to be executed. Command run b has no e�ect if behavior b does not

exists when it starts execution.

To re-declare a behavior does not erase existing old bindings. All runs that were using the

old behavior, continue their execution without change. For example, suppose the interpretor

knows the two following behaviors:

behavior B await I;{puts I!} end

behavior C run B end

and suppose that C is run:

run C

INRIA
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Of course, I! is printed whenever I is generated. Now suppose, before that, B is changed

by:

behavior B await J;{puts J!} end

Then, message I! continue to be printed whenever I is generated.

Multiple Declarations

Multiple declarations of the same behavior during a single reaction are rejected as they

could generate non-deterministic situations. To detect and reject multiple declarations, one

chooses to delay the e�ect of declarations to the next reaction. At the end of a reaction, one

can decide that a behavior has been multiply de�ned and thus reject the declarations (they

have no e�ect).

Here is the second basic principle of reactive scripts, called �declaration delay principle�:

The e�ect of a declaration
only takes place

at the next reaction

For example, consider:

behavior b comm0 end;

(

await E;behavior b comm1 end

||

await E;run b

)

In response to E, run b runs comm0 as the e�ect of the second declaration does not take

place during the current reaction. To run the new de�nition comm1, one has to delay the

execution to the next reaction:

behavior b comm0 end;

(

await E;behavior b comm1 end

||

await E;stop;run b

)

In response to E, two declarations of b take place in a single reaction in:

behavior b comm0 end;

(

await E;behavior b comm1 end

RR n�2868
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||

await E;behavior b comm2 end

||

await E;stop;run b

)

Thus, as these two re-declarations are rejected, run b runs the old de�nition comm0.

9 Behavior Parameters

Behaviors can have parameters which are events or values.

Event Parameters

Event parameters are of three kinds:

� Generations of in parameters by the environment are known by the behavior, but the

converse is false: generations by the behavior are not transmitted to the environment.

� Generations of out parameters by the environment are masked to the behavior, but

generations by the behavior are transmitted to the environment.

� inout parameters are seen as identical by both the behavior and the environment.

For example, in the following behavior, event action is generated each time pressed occurs:

behavior Button

in pressed;

out action;

loop

await pressed;

generate action;

stop;

end

end

Runs are created from a parametrized behavior by associating a list of arguments to the

parameters. For example:

run Button(Push,Move)

Note the positional association of arguments to parameters.

Value Parameters

Value parameters are introduced by the val keyword. For example, the following behavior

prints its parameter value at each reaction (for the moment, do not consider in detail what

is put between braces, and just consider this is a way to use variables and values):

INRIA
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behavior Z

val param;

loop {puts $param};stop end

end

A run of this behavior is:

run Z({$arg})

Then, at each reaction, value of arg is printed. Note that parameters are evaluated at each

reaction, not just at the �rst one.

10 Objects and Methods

Traditionally, object encapsulate data which are processed by their methods. In reactive

scripts, the task of de�ning and using variables and data is transferred to an underlying inter�

pretor of external statements and expressions (how to de�ne object data parts is described

for the rsi-tk interpretor considered in section 14).

Objects

In the context of reactive scripts, an object simply gives a name to several commands and

methods which are said to be attached to the object. Commands attached to an object

are executed at each reaction. On the opposite, methods attached to an object must be

explicitly called to be executed. Actually, a method is a behavior run, whose execution is

controlled by the object to which it is attached: the only way to execute it is to send the

behavior name to the object. Moreover, an object can be removed from the interpretor or

frozen, which means that its state is saved before removal, allowing the object to be used in

other contexts.

Suppose behaviors m1 and m2 de�ned by:

behavior m1

loop {puts m1!};stop end

end

behavior m2

loop {puts m2!};stop end

end

and an object x de�ned by:

object x

loop {puts x!};stop end

methods

m1 m2

end

RR n�2868
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This command attaches

loop {puts x};stop end

and the methods m1 and m2 to object x. At each reaction, the command attached to x is

executed and thus message x! is printed. On the opposite, m1 is run, and thus m1! is

printed, only when the command

send m1 to x

is executed. The situation is similar for the other method m2.

Multiple Attachments

Previously attached commands and methods are not removed by an object statement; ins�

tead, the new command and methods introduced by the statement are added to the set of

components attached to the object. For example, consider:

object x loop {puts 1!};stop end end

Message 1! is printed at each reaction. Now, suppose that the statement

object x loop {puts 2!};stop end end

is also executed. Then, both messages 1! and 2! become printed at each reaction.

Methods

Here are the basic characteristics of send commands and of methods.

Asynchrony of Methods

The send command terminates immediately, and does not wait for the called method to start

to execute. The semantics is a �send and forget� order in which the caller can immediately

continue to execute (thus, it is an asynchronous call). Note that non-determinism can occur,

as to send two orders in sequence does not prevent the second one to be processed before

the �rst.

Execution of Methods

Method are �one shot� and are immediately executed: once a method called during a reac�

tion, it is executed during this reaction. Moreover, only the �rst call to a method is e�ective,

the others having no e�ect. Thus, during a given interpretor reaction, each method is either

executed once, if called during the reaction, or otherwise not executed at all. This �one

shot� property is important to prevent objects to enter into interblocking situations where

for example, two objects call each other for ever. As instance, consider two graphical objects

shown on �gure 1, which must move together, when receiving a move order. A symmetric

solution consists in transmitting each received move order to the other object. Note that it
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would of course generate an interblocking situation if method move were not �one shot� (for

example, on reception of a move order, O1 would transmit it to O2, which in turn, would

send the move order to O1, and so on forever).

move

move

object O1 object O2

move

move

Figure 1: Two graphical objects with a move method

Semantics of Objects

Semantics of objects can be given using events in a rather direct way. In fact, the semantics

of:

object O

comm

method

m1 ... mn

end

is:

do

comm

|| control run B1 by O-m1

|| ...

|| control run Bn by O-mn

until O-destroy

Event O-destroy is used to destroy the object (see next section). The semantics of send m

to O is simply generate O-m.

The present discussion shows that objects and methods enter in a rather natural way into

the broadcast event driven approach, although di�erent in spirit from it, as method calls are

not broadcast but sent to precise targets. Reactive scripts give both way of programming

in an uni�ed framework.

11 Removing Objects

Objects are removed from the interpretor either by destroying or by freezing them. Use of

freezing for migration is shown in section 15. In both cases, the removal of an object does

not prevent it to execute for the current reaction: the removal becomes e�ective only at the

next reaction.
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Destroying Objects

An object can be destroyed using the destroy command. Note that to de�ne an object

with no method at all can be useful just to be able to destroy commands attached to it. For

example, after entering the command:

loop {puts OK!};stop end

there is no way to prevent the printing of OK! at each reaction. But after creation of the

object:

object x

loop {puts OK!};stop end

end

it becomes possible to stop the printing actions by executing:

destroy x

which destroys object x (by generating event x-destroy).

Freezing Objects

To freeze an object means to remove it from the interpretor after having saved its state, to

be able to recover the object later. The e�ect of a freezing command of the form:

freeze x

is to assign to a variable (whose name is implementation dependent) the script of �what

remains to be done� by x. For example, consider:

object x

await E;{puts E!}

||

loop {4} times

await F;{puts F!};stop

end

end

Messages E! and F! are printed ins response to:

generate E;generate F

Now, freezing x removes the object from the interpretor and produces the script:

object x

await F;{puts F!};stop;

loop {2} times

await F;{puts F!};stop

end

end
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Note that waiting of event E has vanished and that three waitings of F still remain (the loop

counter is 2 because of the loop expansion).

12 The Next Command

The next command forces the interpretor to go on automatically with the next reaction as

soon as the current one is over. The next command gives a way to de�ne an active mode for

the interpretor, in which a new reaction takes place as soon as the previous one terminates,

without any delay between them. This active mode can be useful for example to count the

time before an event occurs, as in:

do

loop

next;{incr TIME};stop;

end

until b1

The incr TIME external command adds one to variable TIME. As a result of the next com�

mand, the interpretor runs without any interruption, while event b1 does not occur. This

code fragment comes from the re�ex-game example described in section 13.

An other important use of the next command is related to the basic absence decision

principle of reactive scripts. Indeed, message Absent! is printed in absence of event E by:

await not E;{puts Absent!}

However as a result of the absence decision principle, the printing action takes place during

the reaction that follows the absence of E. Actually, the printing action is delayed as long as

the interpretor is run for a second time. Using the next command one can force this second

reaction to take place immediately after the �rst one, and thus perform the printing action

without any delay. The code is:

loop

next;

when not E then

{puts Absent!}; break

end;

stop

end

Interpretors of Reactive Scripts

Reactive scripts are �parametrized� by a language of external commands and expression.

We are going to describe an implementation of reactive script with Tcl/Tk[10] as under�

lying interpretor. Actually, in all the examples previously given, expressions and external

commands were in Tcl/Tk syntax.
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13 RSI on Top of Tcl/Tk

The reactive script interpretor on top of Tcl/Tk is named rsi-tk. Here is a session using it:

rsi-tk (version 1)

1-: await I;{puts OK!}.

2-: .

3-: generate I.

OK!

The �.� symbol is used to enter a command into the interpretor. Note that commands can

be entered on several lines without any trouble. The interpretor reacts when a command

is entered, or when a single �.� is typed. The �prompt� shows the current reaction number

(starting to one); it is printed after each reaction, when the interpretor is waiting for a new

command.

Implementation

The rsi-tk interpretor is implemented as a list of parallel components, all executed at each

reaction. A parallel component get stuck on an event while it is not generated. Execution

of a stuck component continues as soon as the awaited event becomes generated by an other

component. Thus, interpretor reactions progress like a wave which �res stuck components

as and when events become generated; the �ring of a component generates new event,

which in turn release new components, and so on. The current reaction is over when all

components either have �nished to react (they terminate or reach stop statements), or are

stuck on non-generated events; then, all these events can safely be considered as absent. The

next reaction is immediately started if a next statement has been executed; otherwise, the

interpretor waits for a new command to be entered, add it to the list of parallel components,

and then starts the new reaction.

Interface with Tk

To put a reactive script interpretor on top of Tk allows one to use Tk graphical primitives

as external commands. Moreover, it also gives a way to drive the RS interpretor with

commands output by the Tk graphical objects. Here is an example of behavior using Tk:

behavior tkbutton

val n;

{button .$n -text $n -relief flat};

{.$n configure -command rsi "generate $n"};

{.$n configure -bd 10};

{pack .$n -expand 1 -fill x};

{update};

loop
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await {$n};

{puts "$n pressed!"};

stop

end

end

The �rst external command creates a button whose text is the value of the variable n.

The others external commands, except the second one, are used to con�gure the button

graphical aspect. The second command deserves special attention as it gives the way to

drive the rsi-tk interpretor by clicking in the button. Actually, the prede�ned rsi Tcl

command takes a string as parameter and gives it as input to the rsi-tk interpretor. Thus,

the command generates the event whose name is the value of n, each time the button is

clicked in. Finally, the loop de�nes a behavior in which a message is printed each time the

event n is generated; note that this is indeed the case when the button is clicked in.

The rsi-tk structure is described on �gure 2.

RSI

Keyboard

Tk

Tcl

  entering
commands

puts

{...}

Display

 rsi

Figure 2: The reactive script interpretor on top of Tcl-Tk

The e�ect of the Tcl command �{rsi comm}� is to force the next interpretor reaction

and to give the script comm as input for it.

The tkbutton example shows a use of the rsi command, associated to a Tk object by

-command, to drive the interpretor from the graphical level. Note that clicks into graphical

objects are bu�erized by Tk and are not instantaneously delivered as input to the interpretor:

there is an �asynchronous� link beetwen rsi-tk and Tk.

To summarize, there are three ways to force the next reaction to take place immediately

after the current one:

� to internally execute the RSI next command, de�ned in section 12;

� to receive an external rsi command comming from Tk;

� to internally execute a Tcl statement of the form �{rsi ...}�.

We now code the example of a small re�ex-game program.

The Re�ex Game

The re�ex game we consider is made of two buttons: �rst, the player must click in the

button whose text is READY; then after a while, text will be changed by GO! to indicate that
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the re�ex measure starts. In the same reaction the text of the other button is changed in

STOP, and the user must click in it as soon as possible. After GO! appears the interpretor

enters a cyclic loop, and the number of reactions until STOP is clicked in is �nally printed.

There is one additional feature to prevent the user from cheating: the game is over if STOP

is clicked in before GO! appears. Here is the reactive script which is rather self-explanatory2

(�le tk-button.rs contains the behavior tkbutton de�ned previously):

load {tk-button.rs}.

run tkbutton({b1}).

run tkbutton({b2}).

{.b1 configure -text " "};

loop

{set TIME 0;};

{.b2 configure -text READY};

await b2;

do

loop {YFRNG} times next;stop end

until b1

actual

{.b2 configure -text CHEAT!};

break

end;

{.b2 configure -text GO!};

{.b1 configure -text STOP};

do

loop

next;{incr TIME};stop;

end

until b1;

{.b1 configure -text $TIME}

end.

14 Data and Variables

In this section we describe how local variables in behaviors and data in objects are imple�

mented in the rsi-tk interpretor.

Local Variables

Variables used in external Tcl statements or expressions are de�ned at the upper level and

are thus global variables. For example, in:

behavior b

2YFRNG: Your Favorite Random Number Generator.
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{set v 0};

loop

{puts $v}; stop; {incr v}

end

end

all runs of b share the same global variable v.

The rsi-tk implementation gives a way to de�ne variables which are local to behaviors.

Actually, only one such variable is su�cient when de�ned as a Tcl array. This variable is

called local and the implementation assigns it a new name for each run. Thus, in:

behavior b

{set ${local}(v) 0};

loop

{puts [set ${local}(v)]};

stop;

{incr ${local}(v)}

end

end

all runs of b own a distinct array whose name is the value of local, and local variables can

simply be de�ned as components of this array.

Object Data

Encapsulated data in objects cannot be implemented as global Tcl variables because they

would not be protected and would be accessible from everywhere.

The rsi-tk implementation gives a way to de�ne data for an object, which are only

accessible by commands and methods attached to the object. Actually, as for local, only

one variable is su�cient. This variable is called self. In the following object, the state

data is automatically set to 0 when the object is created, and it is shared by the two methods

attached to the object:

behavior on_off

loop

{set ${self}(state) 1};

stop;

{set ${self}(state) 0};

stop;

end

end.

behavior state

loop

if {[expr [set ${self}(state)] == 1]}

then {puts "On"}

RR n�2868



26 Frédéric Boussinot, Laurent Hazard

else {puts "Off"}

end;

stop;

end

end.

object toaster

{set ${self}(state) 0};

methods

on_off state

end

15 Remote RSI

Remote reactive scripts interpretors can receive scripts through the network. A remote

version of rsi-tk, called rem-rsi-tk, has been implemented on Unix platforms. rem-rsi-tk

is implemented as a Unix process and identi�ed by a name and the machine on which it

runs. The following Unix command:

rem-rsi-tk R

runs a remote RSI called R.

The send-rsi Unix command transmits a string to an interpretor designed by a name

and the machine on which it runs. For example:

send-rsi cma R "generate I"

sends the script �generate I� to the RS interpretor named R running on machine cma (in

absence of machine name, the local host name is taken as default). Note that the link

beetwen the sender and the target interpretor is asynchronous (the script is transmitted

through the network).

To internally send a script to a remote interpretor, one uses a Tcl command of the form:

{exec send-rsi M R "..."}

The rem-rsi-tk structure is described on �gure 3.

Note the three input sources for rem-rsi-tk: the keyboard, the network with the

send-rsi command, and the Tk graphical level with the rsi command.

Object Migration

Object migration is basically achieved by the two commands freeze and send-rsi. The

following behavior implements migration:

behavior migrate
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RSI

Keyboard

Tk

Tcl

  entering
commands

puts

{...}

Display

 rsi

 send−rsi

 send−rsi

Network

Figure 3: The remote reactive script interpretor on top of Tcl/Tk

val obj, machine, interp;

freeze {$obj};

next;stop;

next;stop;

{exec send-rsi\

$machine $interp \

[set rest\_$obj]}

end

First the object is frozen. Then one waits for the next reaction as freezing actions are

not immediate. Assignment of the remainder of the object to the Tcl variable rest_obj is

performed during this reaction. Finally, the remainder of the object is sent to the remote

interpretor using send-rsi.

For example, the following command makes object x migrate to the interpretor named

RSI running on machine duick by:

run migrate({x},{duick},{RSI})

Transportable Objects

A transportable object has the facility to migrate when it decides to do so. The natural

way to implement transportable objects is to attach a transport method to the object.

This method cannot directly be the migrate behavior because the �rst action performed

by migrate is a freezing action. Thus, migrate would freeze the object without letting it

the possibility to perform the transfer on the remote interpretor. One de�nes the transfer

method by:

behavior transfer

val machine, interp;

{\

rsi "run migrate \

({[set ${self}(name)]},\
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{$machine},{$interp})"\

};

next

end

Several points are to be noticed:

� The rsi command inputs the run migrate command into the interpretor, and thus

it becomes executed in parallel with the other commands.

� Component name of self contains the object name.

� next insures that the rsi command is performed.

Now, an object with the transfer method can decide to migrate at will. For example,

the following object reacts 5 times and then migrates spontaneously:

object x

loop {5} times

next;{puts x!};stop

end;

send transfer to x;

stop;

loop {puts x!};stop end

methods

transfer({duick},{RSI})

end

Related Works and Conclusion

16 Basis of Reactive Scripts

The basis of reactive scripts are on one side, the SL synchronous language, and on the other

side, the Reactive Object Model (ROM). Reactive script interpretors are (as SL and ROM)

implemented in Reactive-C. We are now going to brie�y describes these three formalisms

(one can �nd more informations on Internet at URL http://cma.cma.fr/RC/rc-project.html).

The SL Language

The SL[6] language is one of the family of synchronous formalisms which contains several

programming languages such as Esterel, Lustre and Signal, and also graphical speci��

cation formalisms such as Statecharts (see [1] for a general overview of these formalisms).

The basic paradigm shown on �gure 4 considers reactive systems which when activated by an

input event, react instantaneously by producing an output event. In synchronous formalisms

activations are called instants and are global to all parallel components.

INRIA



Reactive Scripts 29

activation

 input
 event

output
event

reactive system

Figure 4: The Reactive System Paradigm

In SL, which is strongly linked to the Esterel synchronous language[3], communication

is based on broadcast signals. At each instant, a signal is present if it is a member of the

input event or it it is emitted by some component during this instant; otherwise it is absent.

Moreover, all components get the same information about the signal presence or absence

(this is the broadcast characteristic). In SL as in other synchronous languages, there is no

dynamic creation of any kind, and programs are guaranteed to be deterministic.

The relation of SL with reactive scripts is as follows:

� SL instants correspond naturally to interpretor reactions (actually, reactive script

interpretors are examples of reactive systems), and SL signals correspond to events.

� SL syntax is very close to reactive scripts. Some operators are identical: sequence,

parallel, stop, loop, run, and when. In SL, external commands must always have the

C syntax. Translation of others SL operators is as follows:

SL Language Reactive Scripts

wait await

emit generate

kill until

signal event

module behavior

� Semantics are the same with only one exception: in SL, when preemption is actual

then termination of the kill statement is in all cases delayed to the next instant.

In this respect, the two main di�erences between reactive scripts and SL are:

� Event con�gurations have no counterpart in SL. Moreover, termination of the until

operator is less constraining than in SL (note that this does not introduce causality

problem).

� Dynamic creation is the rule in reactive scripts, where one can dynamically add new

commands at any time, although this is forbidden in SL.

Reactive Objects

The �Reactive Object Model� (ROM)[5], is an attempt to mix an object based approach with

the reactive approach in which there are instants global to all parallel components. Objects
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encapsulate data shared by their methods which, as in the Actor model[2], are called by

sending asynchronous non-blocking orders. In the ROM model, transmission of an order

is required to be processed during the same instant the order is sent (orders are said to be

instantaneous). Moreover, at each instant, only one order can be processed, the other ones

being simply rejected. This property is called, �one call per instant� property. Actually,

the fact that order are instantaneous and the �one call per instant� property are exactly the

same for reactive scripts, where methods are �one shot� and executed in the same reaction

they are called.

The ROM model is currently studied and developed under contract with the France

Télécom company3. Its formal semantics is described in [8].

There are two main di�erences between reactive scripts and the ROM model. First,

objects and methods cannot be sent as method parameters in reactive scripts, as it is the

case in ROM. Second, there is presently no analog in RS of the �cloning� mechanism of

ROM .

Reactive-C

Reactive-C (RC)[4] was designed to allow a reactive programming style in C. The basic

notion is that of code execution up to stop statements which end the current reaction. At

the next activation, execution will resume from beyond these stop statements. Reactive

statements are used to code reactions to activations, and stop is of course the simplest

reactive statement. The merge reactive statement can be considered as a primitive parallel

operator, which at each instant makes its two branches both react in a �xed order (the �rst

branch, then the second).

RC gives provision to break one instant into several micro-instants: suspend freezes the

control �ow, but unlike for stop, execution can be reactivated in the same instant. While a

branch of a merge statement is suspended the other may still react, the �rst one be awaken

later.

Finally, RC encapsulates a �remote procedure call� mechanism which allows to de�ne

remote reactive processes reacting and communicating via a network.

RC has been used as a �reactive assembly language� to implement several reactive mo�

dels, specially SL and the ROM model. It is also the implementation language of reactive

script interpretors. All these implementations are similar in spirit: the basic idea is to delay

decisions concerning absence (event absence for reactive scripts, signal absence for SL, and

method call absence for ROM), accordingly to the absence decision principle. The structural

translation goes on as follows: parallel commands (we use the reactive script terminology)

are mapped into merge constructs. The suspend primitive opens the way to delay absence

decisions: an execution �ow which has to test an unvalued event gets suspended, while the

event keeps a chance to be generated by other commands. With this strategy, parallel com�

mands are executed as far as possible; control switch from one command to the next either

when the command stops, or terminates forever, or hangs suspended after an event. The

current reaction is over when all parallel execution �ows lay either suspended, terminated

3Contract France Télécom-CNET 93 1B 141, #506
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or stopped, and then all pending events which were not generated are recognized as absent,

so that suspended commands can be cleaned in preparation of the next reaction.

Finally, inter-process communications used for remote reactive script interpretors are

implemented with RC reactive processes.

Implementations of rsi-tk and rem-rsi-tk in RC are about two thousands lines of code

each.

Figure 5 summarizes the situation.

Synchro−
nous
Languages

     SL 
Language

Reactive
Objects

Actor
Model

Reactive
Scripts

Reactive C

      C
Language

Figure 5: Implementations in Reactive-C

17 Related Works

In this section, one compares reactive scripts with two formalisms Java, and Agent-Tcl.

The Java Language

The Java language[7] allows object oriented programming of scripts suited to Internet and

WWW. Java looks like C++ but is far more simple and manageable. The Java compiler

generates bytecodes, a technique which is claimed to be architecture neutral and favoring

portability. Java supports parallel programming based on a multithreading capability. Fi�

nally, emphasis is put in Java on robustness and security aspects.

Object Orientation

The Java language is object oriented. It uses the notion of a class and supports data

encapsulation, polymorphism, and simple inheritance. Actually, as it is also the case for

C++, emphasis is put on data aspects: object states are the values of the object data and

methods are basically functions. On the opposite, reactive scripts put the emphasis on

behavioral aspects: methods have states (the stop statements reached by execution) and

object states are basically their method states. In reactive scripts, behavioral aspect are

not necessarily coded by data, as it is the case for Java, and objects o�er mainly a way to

structure behaviors. To sum up, one could say that in Java objects are mainly data while

in RS they are mainly behaviors: Java is data oriented although RS is behavior oriented.
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Parallelism

Parallelism is in Java achieved at the language level by the Thread class and the notion of

a synchronized method. The paradigm is the one of multiple threads which synchronize

using monitors, an old construct introduced by C.A.R. Hoare in 1974. Two main criticisms

can be made to this approach: �rst, the programmer must deal with low-level primitives

such as condition variables for synchronizations and communications. Such tools are not

well suited to the high-level abstractions in object design. Second, this approach is also

incompatible with a modular approach. Adding a new parallel component often leads to the

rede�nition of the other components e.g. to avoid deadlocks.

Reactive scripts de�ne a full parallel operator with a very powerful and high-level broad�

cast communication mechanism. Semantics of programs do not depend on the underlying

operating system and can be made formal (at least for those which are translatable into

SL). Actually, parallel branches are some kind of �logical� threads, with no need of any mul�

tithreading support from the operating system. Broadcast of events gives a very powerful

mechanism for modularity:

� to add an observer in a system is totally transparent for the other components;

� all components have the same vision of event simultaneity.

Thus, in reactive scripts modularity comes from objects, as in Java, but moreover it is also

fully compatible with parallelism.

Security

The Java compiler and the Java bytecode interpretors implement several levels of security.

First, the language forbids error-prone notions such as pointers, or delete operators, which

exist in C++. Second, interpretors perform a bytecode veri�cation phase before running any

program. This veri�cation phase assures that execution will not produce run-time errors.

Finally, various network protocols can be used to increase security.

Reactive scripts presently do not consider security questions. However, reactive scripts in

themselves (that is, not considering external commands and expressions) are robust, meaning

that reactions never diverge and that run-time errors are always trapped. More work has to

be done to add security features to RS.

Agent-Tcl

Agent-Tcl[11] is an extension of Tcl in which transportable agent can be de�ned. A trans�

portable agent is a Tcl script which can migrate from machine to machine and communicate

with each other. A transportable agent chooses when and where to migrate, and the systems

handles the transmission details. Agents can use Tk to create graphical user interfaces on

their current machine. Agent-Tcl uses Internet through the TCP/IP protocol and is imple�

mented as two components: the �rst one is a modi�ed Tcl interpretor, and the second one

is a server whose task is to accept incoming agents. Security in Agent-Tcl means that all
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agents run with the permissions of the server, and that the server refuses requests that do

not come from an �approved� machine.

On the opposite to RS and Java, Agent-Tcl does not provide any object oriented fea�

tures. Parallelism in Agent-Tcl is handled only at a very low level; it uses a fork primitive

analogous to the one of Unix, to clone agents. However, not all of the state of an agent is

captured by the fork primitive.

The strong point of Agent-Tcl is the capability of script migration over the network. As

in RS, one can de�ne in Agent-Tcl transportable scripts which migrate when they choose

to do so. Agent-Tcl gives some powerful primitives to get control of migrations over the

network (for example, timing and retry mechanisms are available). More work has certainly

to be done to add such network control capabilities to RS.

18 Ongoing Work

The rsi-tk interpretor presented in this paper is the �rst step in the implementation of the

RS model; ongoing work pursues now two di�erent objectives: �rst, provide the programmer

with a better data management and second, o�er a wider range of possible interactions

between the di�erent modules in a distributed system.

Better data management

Back to the discussion on Java, we de�nitely think that a proper (i.e. wrt object-oriented

programming) data management is required and that the rsi-tk prototype is not well adap�

ted to various and complex data abstractions. To this respect, the means o�ered to the

programmer by the Java language, and even more by JavaScript (which is fully interpreted,

and not pre-compiled) are quite promising and we are currently investigating, in order to

build a new Reactive-Java-Script interpretor, which will associate a fully object-oriented data

management with the high-level and portable means for concurrent programming featured

by the RS model.

Cooperation in a distributed system

In rem-rsi-tk, communications means are restricted to interpretor commands sent to in�

terpretors. We have found it interesting to use the concept of an �Object Request Broker�

(ORB) to provide a fully generic communication mechanism between objects. A new proto�

type, integrating the services of a home-made (but still conform to the CORBA standard

[9]) object platform, has been tested. Each interpretor now exports (to platform's trader)

an interface (the �interpretor control� interface), which may then be invoked by any other

object in the system, including other interpretors. This mechanism is equivalent to the

send-rsi command presented in section 15; note that the invoking (client) object does not

need to know the localization of the invoked interpretor anymore, but only the name of its

interface. Furthermore, each object or behavior running in an interpretor may, at any time,

export one or several interfaces. These interfaces, created and destroyed dynamically, are

registered by the trader, and may then be invoked by any other modules in the system:
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all system components are able to use the trader services, including objects or behaviors in

any RS interpretor. Each invocation generates a corresponding event in the context of the

interpretor supporting the behavior which has exported that precise interface. Only event

occurrences can be generated this way; data communications have not been implemented

yet. For example, this mechanism already enables dynamic binding between an external

physical clock and a reactive object. As a bene�t of the distributed platform, reactive server

objects may migrate, transparently, still o�ering the same services to their clients.

19 Conclusion

We have presented the notion of a reactive script and the basic principle of it, which forbid

immediate reaction to event absences. As a consequence of this principle, which is also the

basis of several other reactive formalisms, causality problems do not appear anymore.

Reactive scripts are specially adapted when an event driven programming style is wanted.

Broadcast of events provides a very powerful mechanism for modularity. Moreover, script

approaches are extremely �exible and useful in distributed contexts, where program should

be transmitted from sites to sites.

Reactive scripts interpretors have been implemented in Reactive-C as very small pro�

grams.
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Unité de recherche INRIA Rhoˆne-Alpes, 46 avenue Fe´lix Viallet, 38031 GRENOBLE Cedex 1
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