
IS
S

N
 0

24
9-

63
99

appor t
de r ech er ch e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Reactive Programming of Cellular Automata

Fréd́eric Boussinot

N◦ 5183

Mai 2004

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Reactive Programming of Cellular Automata

Frédéric Boussinot

Thème COM — Systèmes communicants
Projet Mimosa

Rapport de recherche n◦ 5183 — Mai 2004 — 24 pages

Abstract: Implementation of cellular automata using reactive programming gives a way to
code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible.
The paper describes the implementation of cellular automata with the reactive programming
language LOFT, a thread-based extension of C. Self replicating loops considered in artificial
life are coded to show the interest of the approach.

Key-words: Reactive programming, Thread, Cellular automata, Artificial life

Programmation réactive des automates cellulaires

Résumé : La programmation réactive permet d’implémenter les automates cellulaires
de manière abstraite et modulaire. Elle rend aussi possible l’utilisation de machines multi-
processeurs. Le papier décrit l’implémentation d’automates cellulaires à l’aide du langage
LOFT qui est une extension réactive de C, fondée sur la notion de thread. Des exemples des
boucles auto-répliquante, dans le domaine de la vie artificielle, sont traités dans ce cadre.

Mots-clés : Programmation réactive, Automate cellulaire, Thread, Vie artificielle

Reactive Programming of Cellular Automata 3

1 Introduction

Cellular automata (CA) are used in various simulation contexts, for example, physical simu-
lations, fire propagation, or artificial life. These simulations basically consider large numbers
of small-sized identical components, called cells, with local interactions and a global syn-
chronized evolution. Conceptually, evolution of CA is decomposed into couples of steps:
during the first step, cells get the states of their neighbors and during the second step they
change their own state according to information obtained from previous step. Usually, CA
are coded as sequential programs basically made of a single main loop which considers all
cells in turn.

Concurrent programming is generally considered to increase modularity as one can often
naturally decompose a complex application in several cooperating programs which can be run
concurrently. The reactive programming (RP) technique[RP] basically considers software
systems made of concurrent components sharing the same global instants. Actually, all
components are running at the same pace as they necessarily synchronize at the end of
each instant. The existence of instants allows one to define events which are broadcast to
all concurrent components and which can be used for communication or synchronization
purposes. A key characteristic of RP is that new concurrent components and new events
can be introduced dynamically during system execution. RP has been used for simulations
in physics[Sam].

This paper considers the use of RP for implementing CA. The following points are more
particularly considered:

• Modularity of programming. The behaviors of cells is rather opaque in usual CA
implementations. This is generally not felt as a big issue because cells behaviors are
often very simple. However, in some contexts, for example artificial life, one may ask
for more complex cell behaviors. In these cases, modularity is required.

• Multiprocessing. Sequential programming of CA makes difficult the use of several
processors because cells must be protected from concurrent accesses of their neighbors
and because the global synchronization of cells has to be preserved.

The structure of the paper is the following: the language LOFT, based on RP, is described
in section 2. CA implementation in LOFT is considered in section 3. Conway’s Game of
Life and standard self-replicating loops of Langton and Sayama are considered in section 4.
A new approach to self-replicating loops is finally proposed in section 5.

2 LOFT

LOFT is a new thread-based concurrent language for reactive programming[RP].The under-
lying computing model is first described, then the syntax of LOFT is overviewed. Actually,
only the constructs that are needed for the implementation of CA are considered.

RR n◦ 5183

4 F. Boussinot

2.1 Model

Basically, LOFT considers fair threads, schedulers, and events. Fair threads (often simply
called threads) are the basic units of concurrency. They are created as instances of modules
and are under the control of the scheduler to which they are linked. More precisely, all the
threads linked to a same scheduler run in cooperation and share a logical clock with which
they cyclically synchronize. Time intervals between two ticks of the logical clock are called
instants.

Because they share instants, threads linked to the same scheduler can synchronize and
communicate using broadcast events. Events are data which are either present or absent
during an instant. Events are non persistent: they are automatically reset at the beginning
of each instant. The key point is that, at each instant, all the threads linked to the same
scheduler see events presence or absence exactly in the same way: it is not possible for one
thread to see an event as present while another one sees it absent during the same instant.

There are two basic instructions related to events: the generation of an event, which make
it present for the current instant, and the waiting for an event which blocks execution of a
thread until the event is generated. Data can be associated to event generations. As several
generations of the same event can occur during the same instant, there is an instruction to
get the various data that are generated.

Some threads can be autonomous and not linked to any scheduler. In this case, these
threads are only under the control of the OS and are run in a preemptive way. Unlinked
threads do not share any logical clock and, unlike linked threads, are thus not able to
communicate through broadcast events.

Several schedulers can coexist in the same application defining several synchronized areas
running at their own pace. LOFT defines primitives for threads to dynamically unlink from
a scheduler and to link to another one.

At the implementation level, all threads and schedulers running in the same application
are executed in the same process. Schedulers and threads that have the ability to be unlinked
are mapped to native kernel threads (actually POSIX Pthreads[NBJ96]), while threads that
are always linked are executed by the kernel thread of the scheduler to which they are linked.

2.2 Syntax

Modules and Threads

Modules are the basic units of the language. The syntax is based on C and modules are
defined in files that can also contain standard C code. For example, here is the definition of
a module named trace which at each instant prints its parameter s:

module trace (char *s)

while (1) do

printf ("%s\n",local(s));

cooperate;

end

INRIA

Reactive Programming of Cellular Automata 5

end module

Parameters are a special case of local variables, which preserve their values between
instants. In LOFT, every access to a local variable v has the form local(v). Note the
syntax of the while loop specific to LOFT which differs from the one of the while loop of
C. The cooperate instruction is considered bellow.

Threads are instances of modules. Instances of a module m are created using the function
m create which returns a new thread running the code of m. Threads are of the (pointer)
type thread t. The executing thread is returned by the C function self and its local data
by the function local data.

Instructions

The body of a module is basically a sequence of instructions executed by threads which are
created as instances of the module. There are two types of instructions: atomic instructions
which are run in one single step, and non-atomic ones, the execution of which can take
several instants to complete.

Atomic instructions are C function calls (like the call of the printf function, in the pre-
vious module), or C blocks of the form {...}. The generate C function is used to generate
an event (which is of type event t). Thus, calls to generate are atomic instructions. For
valued generations, the generate value C function is used instead of generate.

The cooperate instruction is basically non-atomic as it takes two instants to complete:
the execution of the executing thread blocks at the first instant and the control is returned to
the scheduler; the cooperate instruction terminates at the next instant, when the executing
thread receives the control again from the scheduler.

The instruction await is a non-atomic instruction which completes when the awaited
event is generated; completion can occur in several instants in the future (or may be never,
in which case the thread blocks forever).

The instruction get value is the third non-atomic instruction. It is the mean to get
the values associated to an event by calls of generate value. The values are indexed and
accessed one by one. The instruction get value (e,n,r) is an attempt to get the value
of index n generated for the event e during the current instant. If available, the value is
assigned to r during the current instant, otherwise, r will be set to NULL at the next instant.
In the first case, the function return code () returns the value OK while ENEXT is returned
when a value was not available. For example, the following module awaits an event and
prints all the (integer) values generated with it:

module print_all_values (event_t evt)

local int i,int res;

await (local(evt));

{local(i) = 0;}

while (1) do

get_value (local(evt),local(i),(void**)&local(res));

if (return_code () == OK) then

RR n◦ 5183

6 F. Boussinot

{

printf ("value #%d: %d\n", local(i), local(res));

local(i)++;

}

else

return;

end

end

end module

The second line, starting by the local keyword, declares two local integer variables i and
res, whose values are preserved between instants; i stores the index of the next value to
read and res stores the value read.

Schedulers

Schedulers are of type scheduler t and are created by the scheduler create C function.
An implicit scheduler is automatically declared and started in every LOFT program. It is
the default scheduler for all creations of threads and events. To create a thread instance of
a module m in a specific scheduler s, one uses the function m create in instead of m create.
The current scheduler is returned by the current scheduler C function.

2.3 Summary

The main characteristics of LOFT are:

• It is a concurrent language, based on C and compatible with it.

• Programs can benefit from multiprocessor machines. Indeed, schedulers and unlinked
threads can be run in real parallelism, on distinct processors.

• There exist instants shared by all the threads linked to the same scheduler. Thus,
all threads linked to the same scheduler execute at the same pace, and there is an
automatic synchronization at the end of each instant.

• Events can be defined by users. They are instantaneously broadcast to all the threads
linked to a scheduler; events are a modular and powerful means for threads to syn-
chronize and communicate.

LOFT is strongly linked to an API of threads called FairThreads[Bou01]: actually, LOFT
stands for Language Over Fair Threads. This API mixes threads with the reactive ap-
proach, by introducing instants and broadcast events in the context of threads. LOFT is
implemented in a very direct way by a translation into FairThreads.

INRIA

Reactive Programming of Cellular Automata 7

3 CA Implementation

One considers an implementation of CA in which cells are threads. Cells are not systemat-
ically created at system initialization, but only when needed. Moreover, the cell space can
be divided into several areas, corresponding to distinct schedulers, for being able to benefit
from multiprocessor architectures. These areas synchronize at each instant to maintain the
notion of a global instant.

3.1 Cells

The implementation of cells is based on the following points:

• Each cell is a fair thread, with an associated activation event.

• To activate a neighbor, a cell generates the activation event of the neighbor with an
associated information describing its own state.

• At each instant, a cell activates its neighbors, then it collects the information from the
neighborhood, and finally, it updates its state according to the received information.

In many CA, there is the distinction between active and quiescent cells. Quiescent cells
actually always remain quiescent while their neighborhood is only composed of quiescent
cells (empty neighborhood). Implementations should consider this and avoid any processing
of quiescent cells. A cell cyclically performs the following sequence of actions:

1. if the cell is quiescent, await an activation from the neighborhood then proceed to
action 2;

2. activate all the cells in the neighborhood and communicate them the cell state;

3. collect the states of all the cells in the neighborhood;

4. change the cell state according to the information previously got.

Of course, for a quiescent cell the first action must avoid “busy-waiting” while the neigh-
borhood remains empty. Note that only active cells and cells belonging to the neighborhood
of an active cell are activated. The following module implements cells:

module cell (int x,int y,event_t activation,int status,int state)

local neighborhood_t neighborhood, info_t info,int count,int more;

initialize_cell (self ());

while (1) do

if (local(status) == QUIESCENT) then

await (local(activation));

else

activate_neighborhood (self ());

RR n◦ 5183

8 F. Boussinot

end

{

local(more) = 1;

local(count) = 0;

clear_neighborhood (local(neighborhood));

}

while (local(more)) do

get_value (local(activation),local(count),(void**)&local(info));

{

if (return_code () == OK) {

set_neighbor (local(neighborhood),local(info));

local(count)++;

} else local(more) = 0;

}

end

cell_behavior (self ());

end

end module

The local variable status defines the cell status (quiescent or not) and the local variable
state defines the cell state. The two types neighborhood t and info t are auxiliary types
used to store cell information. The function cell behavior implements the specific behavior
of the cell, which defines how the state and the status of the cell change according to the
neighbors.

Note that no explicit cooperation (cooperate instruction) is needed because an implicit
cooperation is actually embedded with the get value instruction: the internal while loop is
exited only at the next instant, as the loop body always waits for a new information during
the whole current instant. Thus, return code returns the value ENEXT at the next instant,
which makes the loop exit only at that time.

3.2 Neighborhood

The geometry of cells can vary in CA. An important class, which is the one considered
here, is the one of 2-dimensional CA where cells are structured as arrays. In this context,
NEIGHBOURS defines the number of neighbours for each cell, and context is the mean to get
the cell coordinates of neighbors. For example, the 4 elements neighborhood (called, the
von-Neumann neighborhood) is defined by:

#define NEIGHBOURS 4

#define TOP 0

#define RIGHT 1

#define BOTTOM 2

#define LEFT 3

int context[NEIGHBOURS][2] = {{0,-1},{1,0},{0,1},{-1,0}};

INRIA

Reactive Programming of Cellular Automata 9

For managing neighborhoods, one defines cell array which is an array, with the di-
mensions MAXX et MAXY of the visualising applet, where all cells are placed. Note that
this is an array of pointers. The array is initialized by null pointers by the function
cellular automaton init.

thread_t cell_array[MAXX][MAXY];

void cellular_automaton_init ()

{

int x,y;

for (x = 0; x < MAXX; x++)

for (y = 0; y < MAXY; y++)

cell_array[x][y] = NULL;

}

Cells are created in the current scheduler by the new cell function. It takes as param-
eters the initial status and state of the created cell. The activation event is also created at
that time in the current scheduler.

thread_t new_cell (int x,int y,int status,int state)

{

scheduler_t sched = current_scheduler ();

return cell_create_in (sched,x,y,event_create_in (sched),status,state);

}

Neighbors are accessed, and created when needed, by the get cell function:

thread_t get_cell (int x,int y,int change[2])

{

int newx = x+change[0];

int newy = y+change[1];

if (!inside_applet (newx,newy)) return NULL;

if (cell_array[newx][newy] != NULL) return cell_array[newx][newy];

cell_array[newx][newy] = new_cell (newx,newy,0,0);

return cell_array[newx][newy];

}

Note that a cell is not created if it is not inside the applet (function inside applet). Other
choices could have been made as well (a cylinder space, for example).

The function that activates the neighborhood of a cell can now be defined by:

void activate_neighborhood (thread_t me)

{

int dir;

cell_data_t d = local_data (me);

for (dir = 0; dir < NEIGHBORS; dir++) {

RR n◦ 5183

10 F. Boussinot

thread_t cell = get_cell (d->x,d->y,context[dir]);

if (cell == NULL) continue;

info_t info = make_info (OPPOSITE(dir),d->status,d->state);

generate_value (d->activation,info)

}

}

The direction from which activation comes is coded in the transmitted information (us-
ing the macro OPPOSITE which gives the opposite direction of its parameter; for example,
OPPOSITE(RIGHT) is LEFT).

3.3 Firing of cells

In some situations (in section 5, for example) there is the need to fire a cell during execution,
that is to transmit it an order to change its state and status. The actual change of state
and of status is however only of the responsibility of the fired cell, to avoid nondeterminism
and race conditions. Firing a cell is done by the following function fire:

int fire (thread_t source,int target_dir,int new_status,int new_state)

{

info_t info;

cell_data_t d = local_data (source);

thread_t target = get_cell (d->x,d->y,context[target_dir]);

if (target == NULL) return;

info = make_info (OPPOSITE(target_dir),d->status,d->state);

info->fired = 1;

info->new_status = new_status;

info->state = new_state;

generate_value (d->activation,info)

}

3.4 Synchronized areas

CA are basically deterministic and cells are sharing global instants. In order to use multi-
processing, one thus needs to synchronize processors in order to preserve determinism and
to define common instants. A solution is to define several synchronized areas, containing
threads linked to the same scheduler, and to synchronize schedulers. This can be done rather
easily in LOFT. The advantage is that true parallelism becomes possible for schedulers ex-
ecution.

Schedulers are placed in an array area array of size AREA NUM. A draw event is associated
to each scheduler, which is generated locally when cells need to be drawn. A special module
transfer is created in each scheduler for transferring the local draw orders to the graphics
module which is run by a dedicated scheduler. The transfer of drawing orders to the graphical
scheduler is controlled by events of the array transfer array.

INRIA

Reactive Programming of Cellular Automata 11

scheduler_t area_array [AREA_NUM];

event_t draw_array [AREA_NUM];

event_t transfer_array [AREA_NUM];

The initialization of these arrays is made by the function:

void controller_init ()

{

int i;

for (i = 0; i < AREA_NUM; i++) {

area_array[i] = scheduler_create ();

draw_array[i] = event_create_in (area_array[i]);

transfer_array[i] = event_create_in (area_array[i]);

transfer_create_in (area_array[i],go_array[i],draw_array[i],draw);

}

}

The controller executes phases during which it gives the control in parallel to all the
schedulers in area array, and then waits for their completion. When all have returned the
control, then a new phase is issued if new activation events have been generated. Otherwise,
the schedulers are asked in turn to transfer their draw orders to the graphical scheduler.
When all graphical orders have been transfered, the current instant is closed for all sched-
ulers, and the next instant can take place.

For sake of simplicity, the definition of the module controller is not given here, and
only the module synchro which is basic unit for controlling the reaction of one scheduler
is considered. Module synchro uses the special scheduler react function provided to
control schedulers execution. It is a native module because, during reactions, the controlled
scheduler should be unlinked in order to be executed by a kernel thread. The module first
waits for the triggering event go; then it unlinks and a reaction of the controlled scheduler
is performed; when the reaction is finished, the module re-links and generates the signaling
event done. The code is the following:

module native synchro (scheduler_t controlled, event_t go, event_t done)

local scheduler_t sched,int kind;

{local(sched) = current_scheduler ();}

while (1) do

await (local(go));

get_value (local(go),0,(void**)&local(kind));

unlink;

scheduler_react (local(controlled),local(kind));

link (local(sched));

generate_value (local(done),NULL);

end

end module

RR n◦ 5183

12 F. Boussinot

Note that the value associated to go is transmitted as a parameter to scheduler react.
Note also that a value (actually NULL) is associated to done to be able to count the number
of generation of it, for synchronizing the various schedulers.

An important point is that no explicit lock is needed for protecting data from concurrent
accesses from distinct schedulers (of course, locks are present in the implementation of
LOFT).

4 Examples

One now considers the well-known Game of Life of Conway and self-replicating structures
considered in artificial life.

4.1 GOL

The Game of Life (GOL) of Conway[Gar70] uses a 8 elements neighborhood (the Moore
neighborhood). The living and the death of a cell depends on the number N of living cells
present in its neighborhood. More precisely, a dead cell turns to a living cell if N equals 3,
and a living cell dies if N is different from 2 or 3. Actually, the living cells are just the active
ones. The behavior of GOL cells is defined by the following function:

void cell_behavior (thread_t cell)

{

cell_data_t d = local_data (cell);

int i, neighbours = 0;

for (i = 0 ; i < NEIGHBORS; i++)

if (d->neighborhood[i] && d->neighborhood[i]->status != QUIESCENT)

neighbours++;

if (d->status == QUIESCENT && neighbours == 3) {

d->status = !QUIESCENT; // birth

draw_cell (cell,WHITE);

} else if (d->status != QUIESCENT && neighbours != 2 && neighbours != 3) {

d->status = QUIESCENT; // death

draw_cell (cell,BLACK);

}

}

A well-known shape is the r-pentomino described on figure 1. It is made of 5 cells, and
is placed in the middle position of a GOL CA composed of 200x100 cells.

After 1104 instants, 5318 cells have been created and the CA becomes as shown on figure
2.

4.2 Self Replicating Loops

CA are used in several works on artificial life for studying self-replicating loops (SR-loops).

INRIA

Reactive Programming of Cellular Automata 13

Figure 1: The r-pentomino

Figure 2: The GOL CA obtained from the r-pentomino

Langton Loop

One of the first SR-loop has been proposed by Langton[Lan84]. It has a state made of 8
different values and is shown on figure 3.

Figure 3: SR-loop

The von Neumann neighborhood is used. The states 7 and 4 are interpreted as “genes”
that makes the loop grow and turn when reaching the end of the loop. The cells with state

RR n◦ 5183

14 F. Boussinot

2 define a sheath shape. The genes travel along the loop counterclockwise and are copied at
the T part of the loop. After 3 rotations, when the end of the loop collides with the sheath,
the end and the sheath bond together to form two identical loops. Several Java-based applets
exist on the Web that show the loop behavior1.

The behavior of cells is defined by a set of rules stored in a look-up table. Entries in
the table are of the form CTRBLN where C is the current state of the cell, T,R,B,L are the
states of the top, right, bottom, and left neighbors, and N is the new state of the cell. For
example, the rule 122277 codes for the progression of a grow gene at the end of the loop.
The cell behavior simply consists in changing the state and the status of the cell according
to the look-up table.

Sayama Loops

Sayama[Say98a, Say98b] has defined a variant of the SR-loop, called SDSR-loop, in which
a loop destroys itself when colliding with an other loop. Figure 4 is obtained from the
SDSR-loop.

Figure 4: Sayama’s SDSR-Loop

The Evo-loop from Sayama[Say99] is a variant of the SDSR-loop which in some colliding
situations can change its “genotype” and produce smaller loops. These smaller loops are
“more active” and some kind of evolutionary process emerges from the system. The Evo-
loop is defined by a specific look-up table with 95 elements. In [Say98a], Sayama advocates

1See for example http://cell-auto.com/links/ which lists cellular automata related resources.

INRIA

http://cell-auto.com/links/

Reactive Programming of Cellular Automata 15

for a way to express cell behaviors in a higher-level way than with look-up tables. This is
what is proposed in the next section.

5 Programmed SR Loops

One considers self-replicating loops in which behaviors are not described by a look-up table,
but are programs. Actually, one considers a very simple loop shown on figure 5, called
PSR-loop (Programmed SR-Loop).

Figure 5: PSR-Loop

The PSR-loop does not have any sheath. It is made of one unique sequence of genes,
starting with a (red) turn-gene followed by two (green) grow-genes. At the end of the arm
is a (blue) creator, for creating new cells.

The status of a cell is extended to code, when the cell is not quiescent, a direction from
which genes should propagate (TOP, RIGHT, BOTTOM, or LEFT). The state of a cell is
one of the following:

• BASIC: standard state

• COLLIDE: arm collides

• BARRIER: barrier raised, after collision

• GROW GENE: gene for growing the arm

• TURN GENE: gene for turning

• CREATOR: creator of the arm

• SPROUT: gene to create a new arm

• WAITER: wait for a sprout gene, to start arm creation

• STOP: to destroy the arm, after barrier is encountered

• NONE: state of quiescent cells

The cell behavior function is defined, with the help of three auxiliary functions waiter,
creator and step defined below, by:

RR n◦ 5183

16 F. Boussinot

void cell_behavior (thread_t cell)

{

cell_data_t d = local_data (cell);

if (d->status == QUIESCENT) return;

if (d->state == WAITER) waiter (cell);

else if (d->state == CREATOR) creator (cell);

else step (cell);

d->image->color = color_of (d->state);

draw_image (d->image);

}

5.1 Step function

The function step defines the behavior of standard cells:

• If the cell state is STOP, then the cell returns quiescent.

• The STOP state propagates back along the arm until the loop body is reached.

• The cell changes its state to STOP when a barrier is encountered.

• A pre-waiter is fired when a sprout reaches a corner of the loop.

• The cell state changes to SPROUT in front of a barrier.

• The cell state becomes a barrier when a collision is detected.

• The cell state become a sprout when the reverse propagation of STOP reaches the loop
body.

If none of these actions is applicable, then the state of the previous cell is transmitted
to the current cell.

The function step is the following:

static void step (thread_t cell)

{

cell_data_t d = local_data (cell);

int from = FROM(d->status);

int to = TO(d->status);

int turn = TURN(from);

int invturn = INVTURN(from);

// stop cell disappears

if (d->state == STOP) {

d->status = QUIESCENT;

d->state = NONE;

return;

}

INRIA

Reactive Programming of Cellular Automata 17

// reverse progression of stop along the arm

if (TEST_STATE (to,STOP) && DEAD (turn)) {

d->state = STOP;

return;

}

// stop if barrier forward

if (TEST_STATE (to,BARRIER) && d->neighborhood[to]->status != d->status) {

d->state = STOP;

return;

}

// new waiter created when sprout reaches a corner

if (TEST_STATE (from,SPROUT) && DEAD (to)) {

fire (cell,to,from,PRE_WAITER);

return;

}

// barrier produces sprout

if (TEST_STATE (from,BARRIER)) {

d->state = SPROUT;

return;

}

// change to barrier state and turn

if (TEST_STATE (turn,COLLIDE)) {

d->status = turn;

d->state = BARRIER;

return;

}

// sprout produced when reverse progression ends

if (TEST_STATE (to,STOP) && !DEAD (turn)) {

d->state = SPROUT;

return;

}

// standard state: transmit

if (d->neighborhood[from]) d->state = d->neighborhood[from]->state;

}

The macros TEST STATE and DEAD are defined by:

#define TEST_STATE(dir,v) (d->neighborhood[dir] && d->neighborhood[dir]->state == v)

#define DEAD(dir) (!d->neighborhood[dir] || d->neighborhood[dir]->status == QUIESCENT)

5.2 Waiter function

A waiter is a cell which waits for a turn-gene to become a creator. A pre-waiter cell grows
one step and then becomes a waiter. Actually, a pre-waiter is produced when a sprout
reaches a corner. In this case, a new arm will be started when a new turn-gene appears.
The function waiter is defined by:

RR n◦ 5183

18 F. Boussinot

static void waiter (thread_t cell)

{

cell_data_t d = local_data (cell);

int from = FROM(d->type);

int to = TO(d->type);

// grow one step, and then wait for a turn gene to become a creator

if (d->state == PRE_WAITER) {

d->state = BASIC;

fire (cell,to,from,WAITER);

return;

}

if (d->state == WAITER && TEST_STATE (from,TURN_GENE)) {

d->state = BASIC;

fire (cell,to,from,CREATOR);

}

}

5.3 Creator function

A creator is a cell which extends the arm of a loop when reached by a gene. In this case,
the creator changes into a basic cell and fires a new creator in the direction specified by the
gene. Moreover, a creator detects a collision when its encounters a cell which is not dead;
in this case the creator change its state to COLLIDE. The function creator is:

static void creator (thread_t cell)

{

cell_data_t d = local_data (cell);

int from = FROM(d->type);

int to = TO(d->type);

int turn = TURN(from);

int invturn = INVTURN(from);

// collision detected by a creator

if (!DEAD (to)) {

d->state = COLLIDE;

return;

}

// genes

if (TEST_STATE (from,GROW_GENE)) {

d->state = BASIC;

fire (cell,to,from,CREATOR);

} else if (TEST_STATE (from,TURN_GENE)) {

d->state = BASIC;

fire (cell,turn,invturn,CREATOR);

}

}

Figure 6 is obtained with PSR-loop (space size 200x200, 1000 instants).

INRIA

Reactive Programming of Cellular Automata 19

Figure 6: CA from the PSR-Loop

5.4 Self Destruction

One introduces the possibility for a loop to self-destroy when the need for a new cell cannot
be satisfied because the cell already exists. A new state ERASE is defined: a cell changes its
state to ERASE when it cannot apply a firing order.

The function cell behavior is extended to deal with the ERASE state:

void cell_behavior (thread_t cell)

{

...

// firing of an active cell: destruction of the cell

if (d->fired && d->type != QUIESCENT) {

d->state = ERASE;

draw_cell (cell,color_of (ERASE));

return;

}

if (!d->fired && (TEST_STATE (to,ERASE) || TEST_STATE (from,ERASE) ||

TEST_STATE (turn,ERASE) || TEST_STATE (invturn,ERASE))) {

// erase propagates everywhere

RR n◦ 5183

20 F. Boussinot

d->state = ERASE;

draw_cell (cell,color_of (ERASE));

return;

}

if (d->state == ERASE) {

d->type = QUIESCENT;

d->state = NONE;

draw_cell (cell,color_of (NONE));

return;

}

...

}

The destruction of loops in case of collision is shown on figure 7 (the CA is called PSDSR-
Loop; space size is 200x200; 1000 instants are considered).

Figure 7: PSDSR-Loop

INRIA

Reactive Programming of Cellular Automata 21

5.5 Evo Loop

One now consider the case of evolutionary loops (Evo loops). Actually, one considers a loop
with 2 sequences of genes, one with 7 elements, and the other with 8 elements. The loop is
shown on figure 8.

Figure 8: The Evo Loop

The situation at instant 1000 is shown on figure 9 (200x200 cells space). At that time,
loops of various shape are present.

Figure 9: Evo Loop at instant 1000

Figure 10 shows the situation at instant 3000. Small loops have appeared and coexist
with larger ones.

RR n◦ 5183

22 F. Boussinot

Figure 10: Evo Loop at instant 3000

After 6800 instants, only small loops remain. The situation is shown on figure 11.

6 Conclusion

The language LOFT has been used for coding cellular automata. One gets an efficient
implementation in which cells are threads created when needed. Cell behaviors are coded
at a higher level than the one of look-up tables. The example of self-replicating loops has
been considered. Following the work of Sayama, one has introduced destruction in case
of collision. An interesting point is that it is possible to directly manifest an evolutionary
process using this execution mechanism.

LOFT and the code presented here run on Linux and are available on the Web[CAR]
(the SDL library, available at http://www.libsdl.org, is needed for the graphics).

References

[Bou01] F. Boussinot. Java Fair Threads. Inria research report, RR-4139, 2001.

INRIA

http://www.libsdl.org

Reactive Programming of Cellular Automata 23

Figure 11: Evo Loop at instant 6800

[CAR] Reactive programming of cellular automata web site, http://www-
sop.inria.fr/mimosa/rp/CellularAutomata.

[Gar70] M. Gardner. The fantastic combinations of John Conway’s new solitaire game
’Life’. Scientific American, 1970.

[Lan84] C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135–144,
1984.

[NBJ96] B. Nichols, D. Buttlar, and Proulx Farrell J. Pthreads Programming. O’Reilly,
1996.

[RP] Reactive programming web site, http://www-sop.inria.fr/mimosa/rp.

[Sam] Simulations in physics, http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics.

[Say98a] H. Sayama. Constructing evolutionary systems on a simple deterministic cellular
automata space. Phd, University of Tokyo, Department of Information Science,
1998.

RR n◦ 5183

http://www-sop.inria.fr/mimosa/rp/CellularAutomata
http://www-sop.inria.fr/mimosa/rp/CellularAutomata
http://www-sop.inria.fr/mimosa/rp
http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics

24 F. Boussinot

[Say98b] H. Sayama. Introduction of structural dissolution into Langton’s self-reproducing
loop. In C. Adami, R.K. Belew, H. Kitano, C.E. Taylor (Eds), Artificial Life, Proc.
of the Sixth International Conference on Artificial Life, pages 114–122, 1998.

[Say99] H. Sayama. A new structural dissolvable self-reproducing loop evolving in a simple
cellular automata space. Artificial Life, 5(4):343–365, 1999.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	LOFT
	Model
	Syntax
	Summary

	CA Implementation
	Cells
	Neighborhood
	Firing of cells
	Synchronized areas

	Examples
	GOL
	Self Replicating Loops

	Programmed SR Loops
	Step function
	Waiter function
	Creator function
	Self Destruction
	Evo Loop

	Conclusion

