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Isometric embeddings

John F. Nash Nicolaas Kuiper

Nash-Kuiper Theorem (1954-55-86)

Let (Mn,g) be compact Riemannian manifold and
f0 : (Mn,g)→ En+1

be a strictly short embedding (f ∗0 〈·, ·〉En+1 < g).
Then for every ε > 0, there exists a C1 isometric embedding

f : (Mn,g)→ En+1

such that ‖f − f0‖C0 ≤ ε.
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The unit sphere S2 can be C1 isometrically embedded in a ball
of radius r < 1.
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Flat torus

Definition

A quotient E2/Λ of the two dimensional Euclidean space by a
lattice Λ ⊂ E2 is called a flat torus.

(C) Patrick Massot

Nash Kuiper theorem

The square flat torus admits a C1 isometric embedding in E3.
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The square flat torus



Brief history

Janet-Cartan (1926-27) Local analytic isometric
embedding of (Mn,g) into E

n(n+1)
2

Nash (1954) Global C1-isometric embedding of (Mn,g)
into Ek≥n+2 (if a C∞ embedding into Ek exists)
Kuiper (1955) Global C1-isometric embedding of (Mn,g)
into Ek≥n+1 (if a C∞ embedding into Ek exists)
Nash (1956) Global C∞-isometric embedding of (Mn,g)
into Ek , k = n

2 (3n + 11).
Gromov (1973) h-principle and convex integration theory.
. . .



Differential system

Let f : (T2,g)→ (R3, 〈·, ·〉E3) be an embedding.
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Idea of convex integration (isometric relation)

• Initial stricly short embedding f0 : f ∗0 〈·, ·〉E3 < g
•We add corrugations (oscillations)



Outline

1. One dimensional convex integration.

2. Convex integration on the torus.

3. Smooth fractals.
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One dimensional convex integration

Input :
f0 : R/Z→ R2 such that ‖f ′0(u)‖ < r

Our goal is to to build

f : R/Z→ R2 such that
{
‖f ′(u)‖ = r (f ′(u) ∈ R)
‖f − f0‖C0 small



General principle of the construction

The differential relation R is the set of constraint :

- We have f ′0(u) 6∈ R.
- We want f ′(u) ∈ R.

 f ’ 
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R

0
 f ’ 

 f ’ 



Finally

f (u) := f0(0) +

∫ u

0
hs(Ns)ds,

with

hu(s) = r
(

cos(α cos(2πs))e1(u) + sin(α cos(2πs))n(u)
)

Lemma

- ‖f − f0‖C0 = O( 1
N )

- f ′(u) ∈ R
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General problem
Input : A strictly short embedding f0 : (T2,g) −→ E3

Goal : We look for an isometric embedding :

f : (T2,g) −→ E3.

Approach : one parameter version of convex integration
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General problem
Input : A strictly short embedding f0 : (T2,g) −→ E3

Goal : We look for an isometric embedding :

f : (T2,g) −→ E3.

Approach : one parameter version of convex integration

⇒ The isometric default is reduced in one direction.
⇒We need to corrugate in a second direction...
⇒ Then in a third direction...



A stage

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

‖g − FN1,N2,N3
∗〈·, ·〉E3‖C0 = O(

1
N1

+
1

N2
+

1
N3

)

Problems

• limNi→∞ FN1,N2,N3 = f0 (only C0 convergence)
• The differential relation of the isometries is closed.
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A stage

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

‖g − FN1,N2,N3
∗〈·, ·〉E3‖C0 = O(

1
N1

+
1

N2
+

1
N3

)

Problems

• limNi→∞ FN1,N2,N3 = f0 (only C0 convergence)
• The differential relation of the isometries is closed.

R3

R∞ = Riso

f ′3

⇒ Build iteratively (Fk ) where Fk depends on Nk ,1, Nk ,2, Nk ,3 and Fk−1.



Implementation : choice of the Nk ’s

A sufficient condition

‖µk ,j − f ∗k ,j〈·, ·〉R3‖C0 = 0
(

1
Nk,j

)
< τ(δk+1 − δk )ρmin(Dk )

This imposes high frequences of corrugation :

611
69,311

20,914,595
6,572,411,478

With 10 points per oscillation, we need a mesh of
(10× 6572411478)2 ≈ 4.3 1019 vertices !



Choice of the Nk

We reduce these numbers to :

12
80

500
9000

We already need 100,000 ∗ 20,000 = 2 milliards of vertices !
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Outline

1. One dimensional convex integration.

2. Convex integration on the torus.

3. Smooth fractals.
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Structure of the Gauss map

The Gauss map is given byv⊥∞
v∞
n∞

 =
∞∏

k=0

 3∏
j=1

Ck ,j

v⊥0
v0
n0


Corrugation theorem [Borrelli, Jabrane, Lazarus, ~, PNAS ’12]
We have Ck ,j+1 = Lk ,j+1 · Rk ,j , where

Lk,j+1 =

 cos θk,j+1 0 sin θk,j+1
0 1 0

− sin θk,j+1 0 cos θk,j+1

 + O(
1

Nk,j+1
)

Rk,j =

 cos βj sin βj 0
− sin βj cos βj 0

0 0 1

 + O(εk,j )

where θk,j (s, u) = αk,j (s, u) cos(2πNk,j u), εk,j := ‖〈·, ·〉E2 − f∗k,j 〈·, ·〉E3‖ and βj := ∠(ker `j , ker `j ).
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Thank you

More details :
The HEVEA project : http://hevea.imag.fr
A movie :
http://www.youtube.com/watch?v=RYH_KXhF1SY

Image des mathématiques : http://images.math.
cnrs.fr/Gnash-un-tore-plat.html

http://hevea.imag.fr
http://www.youtube.com/watch?v=RYH_KXhF1SY
http://images.math.cnrs.fr/Gnash-un-tore-plat.html
http://images.math.cnrs.fr/Gnash-un-tore-plat.html
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