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Isometric embeddings
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John F. Nash Nicolaas Kuiper

Nash-Kuiper Theorem (1954-55-86)
Let (M", g) be compact Riemannian manifold and
fo: (M",g) — EM1
be a strictly short embedding (f; (-, -)gnr1 < 9).
Then for every ¢ > 0, there exists a C' isometric embedding
f:(M" g)— EM!
such that ||f — fy||co < e.




Nash-Kuiper sphere

Nash Kuiper theorem

The unit sphere S? can be C' isometrically embedded in a ball
of radius r < 1.
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Flat torus

Definition

A quotient E2/A of the two dimensional Euclidean space by a
lattice A C E? is called a flat torus.
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Flat torus

Definition

A quotient E2/A of the two dimensional Euclidean space by a
lattice A C E? is called a flat torus.
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(C) Patrick Massot

Nash Kuiper theorem

The square flat torus admits a C' isometric embedding in ES.
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Brief history

Janet-Cartan (1926-27) Local analytic isometric
n(n+1
embedding of (M", g) into E*%
@ Nash (1954) Global C'-isometric embedding of (M", g)
into EA=t2 (if a C>° embedding into EX exists)

@ Kuiper (1955) Global C'-isometric embedding of (M", g)
into EX=27+1 (if a C>° embedding into EX exists)

@ Nash (1956) Global C>-isometric embedding of (M", g)
into EX, k = 3(3n+ 11).

Gromov (1973) h-principle and convex integration theory.
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@ Letf: (T2 g) — (R3,(,)gs) be an embedding.




Differential system

@ Letf: (T2 g) — (R3,(,)gs) be an embedding.

o f:(T2,g) — (RS, (-, )s) is isometric if (-, = g.

8f of af of af of

ax 8X> 911 8X 8y> 912 6y 6y> 922



Differential system

@ Letf: (T2 g) — (R3,(,)gs) be an embedding.
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@ f: (T2, g) — (R3, (-, )gs) is strictly short if

f(;k(? '>IE3 <g.



|ldea of convex integration (isometric relation)

e Initial stricly short embedding fy : (-, -)gs < 9
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|ldea of convex integration (isometric relation)

e Initial stricly short embedding fo : £ (-, -)gs < g
e We add corrugations (oscillations)
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1. One dimensional convex integration.
2. Convex integration on the torus.

3. Smooth fractals.



One dimensional convex integration

Input :
fy : R/Z — R? such that
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One dimensional convex integration
Input :

fy : R/Z — R? such that
Our goal is to to build

f: R/Z — R? such that { length() = r
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One dimensional convex integration
Input :

fo : R/Z — R? such that
Our goal is to to build

/ _
f: R/Z — R? such that { il =r

(f'(u) € R)
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General principle of the construction

The differential relation = is the set of constraint :

- We have 7)(u) ¢ R.
- We want f'(u) € .




General principle of the construction

The differential relation = is the set of constraint :

- We have 7)(u) ¢ R.
- We want f'(u) € .




Finally

f(u) := £(0) + /Ou hs(Ns)ds,
with

hu(s) = r< cos(acos(2ws))eq(u) + sin(« cos(27rs))n(u)>




1. One dimensional convex integration.
2. Convex integration on the torus.

3. Smooth fractals.
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General problem

Input : A strictly short embedding f, : (T2, g) — E3
Goal : We look for an isometric embedding :
f: (T2 g) — E3.

Approach : one parameter version of convex integration

"

= The isometric default is reduced in one direction.
= We need to corrugate in a second direction...
= Then in a third direction...






A stage
Stage theorem [Borrelli, Jabrane, Lazarus, ~]
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A stage

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

* 1 1 1
19 — Fny,no v VEsll oo = O(M + ﬁz + E)

Problems

| \

o limy, 00 F, nun, = fo (0nly C° convergence)
e The differential relation of the isometries is closed.

Roo = Riso
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= Build iteratively (Fx) where Fy depends on N 1, N2, Nk 3 and Fy_1.



Implementation : choice of the Ni’s

A sufficient condition

llpkej — fc {5 dmsllo = 0 (ﬁ,) < 7(0k+1 — Ok)pmin(Dk)

This imposes high frequences of corrugation :

611
69,311
20,914,595
6,572,411,478

With 10 points per oscillation, we need a mesh of
(10 x 6572411478)% ~ 4.310"° vertices !



Choice of the N

We reduce these numbers to :

12
80
500
9000

We already need 100,000 *x 20,000 = 2 milliards of vertices !









"Thh

a@

\\\\

/

/

[
\\\\\\\\\

AAAANY

ALLLAE \HHHH

Images




Images




(1 Vf 4//
) ’4,// 2// ”l)///
i f "& ” 7 //l, 7

w/ il /f/[‘m" W/% //%;/ :
& 145‘ %;, "l////’ﬂ

X %{ 7 W, ”r/// o/////

A L%
Q) /’///’/ /M/ﬂ
%%W%%@%¢4“
////4///// //%

/

\ @
N \\§ ‘
\\\m\:\

NN

"

/ %

ms

\\\\\

\\\\\\\\\\ \ S
\\\\\\\\\\\\‘\;\? \

\\\Q

% i

\\\

///

‘\\\\%\}\\\

NN
\\
\\
N \\%\\\%\}k

/_/ /4




/,);,) %

/
//o
U

’///,,
m //;, Ul
”//




1. One dimensional convex integration.
2. Convex integration on the torus.

3. Smooth fractals.



Curves
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Structure of the Gauss map

The Gauss map is given by

) i) )



Structure of the Gauss map

We have Ck,j+1 = ['k,j-H c Rkyj, where

€08 O j41 0 sinfjiq
Ly ji1 = 0 1 0 + O(

—sinbyj1 0 cosb i

cos ; sin Bj 0
Rk,j = —singB; cosB; 0 + O(ek,j)
0 0 1

where 0y (s, u) = ak (s, u) cos@mNy ju), ek,j = [[{-; )g2 — f,z/(q g3 lland Bj = Z(ker ¢, ker £;).
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Thank you

More details :
@ The HEVEA project : http://hevea.imag.fr

@ A movie:
http://www.youtube.com/watch?v=RYH_KXhF1SY

@ Image des mathématiques : http://images.math.
cnrs.fr/Gnash-un-tore-plat.html
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