Embeddings of the square flat torus and smooth fractals

Boris Thibert

LJK / Université de Grenoble

Workshop on geometric structures with symmetry and periodicity 8 June, 2014

HEVEA TEAM

VINCENT BORRELLI ICJ, Lyon

Saïd Jabrane ICJ, Lyon

FRANCIS LAZARUS Gipsa-Lab, Grenoble

Isometric embeddings

John F. Nash

Nicolaas Kuiper

Nash-Kuiper Theorem (1954-55-86)

Let (M^n, g) be compact Riemannian manifold and $f_0: (M^n, g) \to \mathbb{E}^{n+1}$ be a strictly short embedding $(f_0^* \langle \cdot, \cdot \rangle_{\mathbb{E}^{n+1}} < g)$. Then for every $\varepsilon > 0$, there exists a C^1 isometric embedding $f: (M^n, g) \to \mathbb{E}^{n+1}$ such that $||f - f_0||_{C^0} \le \varepsilon$.

Nash-Kuiper sphere

Nash Kuiper theorem

The unit sphere \mathbb{S}^2 can be C^1 isometrically embedded in a ball of radius r < 1.

Nash-Kuiper sphere

Nash Kuiper theorem

The unit sphere \mathbb{S}^2 can be C^1 isometrically embedded in a ball of radius r < 1.

Definition

Definition

Definition

Definition

Definition

Definition

Definition

A quotient \mathbb{E}^2/Λ of the two dimensional Euclidean space by a lattice $\Lambda \subset \mathbb{E}^2$ is called a *flat torus*.

(C) Patrick Massot

Definition

A quotient \mathbb{E}^2/Λ of the two dimensional Euclidean space by a lattice $\Lambda\subset\mathbb{E}^2$ is called a *flat torus*.

(C) Patrick Massot

Nash Kuiper theorem

The square flat torus admits a C^1 isometric embedding in \mathbb{E}^3 .

- Janet-Cartan (1926-27) Local analytic isometric embedding of (M^n, g) into $\mathbb{E}^{\frac{n(n+1)}{2}}$
- Nash (1954) Global C¹-isometric embedding of (Mⁿ, g) into E^{k≥n+2} (if a C[∞] embedding into E^k exists)
- Kuiper (1955) Global C¹-isometric embedding of (Mⁿ, g) into E^{k≥n+1} (if a C[∞] embedding into E^k exists)
- Nash (1956) Global C[∞]-isometric embedding of (Mⁿ, g) into E^k, k = ⁿ/₂(3n + 11).
- Gromov (1973) h-principle and convex integration theory.
- . . .

Differential system

• Let $f : (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{R}^3})$ be an embedding.

• $f: (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{R}^3})$ is isometric if $f^* \langle \cdot, \cdot \rangle_{\mathbb{R}^3} = g$.

 $\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x} \rangle = g_{1,1} \quad \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle = g_{1,2} \quad \langle \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y} \rangle = g_{2,2}$

• $f:(\mathbb{T}^2,g)
ightarrow(\mathbb{R}^3,\langle\cdot,\cdot
angle_{\mathbb{R}^3})$ is strictly short if

 $f_0^*\langle\cdot,\cdot\rangle_{\mathbb{E}^3} < g.$

Differential system

• Let $f : (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{R}^3})$ be an embedding.

• $f: (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{E}^3})$ is isometric if $f^* \langle \cdot, \cdot \rangle_{\mathbb{E}^3} = g$.

$$<rac{\partial f}{\partial x},rac{\partial f}{\partial x}>=g_{1,1}$$
 $<rac{\partial f}{\partial x},rac{\partial f}{\partial y}>=g_{1,2}$ $<rac{\partial f}{\partial y},rac{\partial f}{\partial y}>=g_{2,2}$

• $f:(\mathbb{T}^2,g) o(\mathbb{R}^3,\langle\cdot,\cdot
angle_{\mathbb{E}^3})$ is strictly short if

 $f_0^*\langle \cdot, \cdot \rangle_{\mathbb{E}^3} < g.$

Differential system

• Let $f: (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{R}^3})$ be an embedding.

• $f: (\mathbb{T}^2, g) \to (\mathbb{R}^3, \langle \cdot, \cdot \rangle_{\mathbb{E}^3})$ is isometric if $f^* \langle \cdot, \cdot \rangle_{\mathbb{E}^3} = g$.

$$\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x} \rangle = g_{1,1} \quad \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle = g_{1,2} \quad \langle \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y} \rangle = g_{2,2}$$

• $f:(\mathbb{T}^2,g) o(\mathbb{R}^3,\langle\cdot,\cdot
angle_{\mathbb{R}^3})$ is strictly short if

 $f_0^*\langle \cdot, \cdot
angle_{\mathbb{E}^3} < g.$

Idea of convex integration (isometric relation)

• Initial stricly short embedding f_0 : $f_0^* \langle \cdot, \cdot \rangle_{\mathbb{R}^3} < g$

Idea of convex integration (isometric relation)

- Initial stricly short embedding f_0 : $\mathit{f}_0^*\langle\cdot,\cdot
 angle_{\mathbb{E}^3} < g$
- We add corrugations (oscillations)

- 1. One dimensional convex integration.
- 2. Convex integration on the torus.
- 3. Smooth fractals.

One dimensional convex integration

Input :

 $f_0 : \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$ such that $\text{length}(f_0) < r$

Our goal is to to build

 $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$ such that $\left\{ \|f - f_0\|_{C^0} \text{ small} \right\}$

One dimensional convex integration

Input :

$$f_0 : \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$$
 such that $\text{length}(f_0) < r$

Our goal is to to build

$$f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$$
 such that $\begin{cases} \operatorname{length}(f) = r \\ \|f - f_0\|_{C^0} \end{cases}$ small

One dimensional convex integration

Input :

$$f_0: \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$$
 such that $\|f_0'(u)\| < r$

Our goal is to to build

 $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2$ such that $\begin{cases} \|f'(u)\| = r & (f'(u) \in \mathcal{R}) \\ \|f - f_0\|_{C^0} \text{ small} \end{cases}$

General principle of the construction

The differential relation \mathcal{R} is the set of constraint :

- We have $f'_0(u) \notin \mathcal{R}$.
- We want $f'(u) \in \mathcal{R}$.

General principle of the construction

The differential relation \mathcal{R} is the set of constraint :

- We have $f'_0(u) \notin \mathcal{R}$.
- We want $f'(u) \in \mathcal{R}$.

$$f(u):=f_0(0)+\int_0^u h_s(Ns)ds,$$

with

$$h_u(s) = r\Big(\cos(lpha\cos(2\pi s))\mathbf{e_1}(u) + \sin(lpha\cos(2\pi s))\mathbf{n}(u)\Big)$$

Lemma - $\|f - f_0\|_{C^0} = O(\frac{1}{N})$ - $f'(u) \in \mathcal{R}$

- 1. One dimensional convex integration.
- 2. Convex integration on the torus.
- 3. Smooth fractals.

Input : A strictly short embedding $f_0:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3$

Goal : We look for an isometric embedding :

 $f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$

Approach : one parameter version of convex integration

Input : A strictly short embedding $f_0 : (\mathbb{T}^2, g) \longrightarrow \mathbb{E}^3$

Goal : We look for an isometric embedding :

$$f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$$

Approach : one parameter version of convex integration

Input : A strictly short embedding
$$f_0 : (\mathbb{T}^2, g) \longrightarrow \mathbb{E}^3$$

Goal : We look for an isometric embedding :

$$f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$$

Approach : one parameter version of convex integration

Input : A strictly short embedding $f_0:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3$

Goal : We look for an isometric embedding :

$$f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$$

Approach : one parameter version of convex integration

 \Rightarrow The isometric default is reduced in one direction.

Input : A strictly short embedding $f_0 : (\mathbb{T}^2, g) \longrightarrow \mathbb{E}^3$

Goal : We look for an isometric embedding :

$$f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$$

Approach : one parameter version of convex integration

⇒ The isometric default is reduced in one direction. ⇒ We need to corrugate in a second direction...
General problem

Input : A strictly short embedding $f_0:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3$

Goal : We look for an isometric embedding :

$$f:(\mathbb{T}^2,g)\longrightarrow \mathbb{E}^3.$$

Approach : one parameter version of convex integration

- \Rightarrow The isometric default is reduced in one direction.
- \Rightarrow We need to corrugate in a second direction...
- \Rightarrow Then in a third direction...

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3})$$

Problems

lim_{N_i→∞} F<sub>N₁,N₂,N₃ = f₀ (only C⁰ convergence)
 The differential relation of the isometries is close
</sub>

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(rac{1}{N_1} + rac{1}{N_2} + rac{1}{N_3})$$

Problems

lim_{Ni→∞} F_{N1,N2,N3} = f₀ (only C⁰ convergence)
 The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3})$$

Problems

- $\lim_{N_i \to \infty} F_{N_1, N_2, N_3} = f_0$ (only C^0 convergence)
- The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3})$$

Problems

- $\lim_{N_i \to \infty} F_{N_1, N_2, N_3} = f_0$ (only C^0 convergence)
- The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3})$$

Problems

lim_{Ni→∞} F_{N1,N2,N3} = f₀ (only C⁰ convergence)
 The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(rac{1}{N_1} + rac{1}{N_2} + rac{1}{N_3})$$

Problems

- $\lim_{N_i \to \infty} F_{N_1, N_2, N_3} = f_0$ (only C^0 convergence)
- The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(rac{1}{N_1} + rac{1}{N_2} + rac{1}{N_3})$$

Problems

- $\lim_{N_i \to \infty} F_{N_1, N_2, N_3} = f_0$ (only C^0 convergence) The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(rac{1}{N_1} + rac{1}{N_2} + rac{1}{N_3})$$

Problems

lim_{Ni→∞} F_{N1,N2,N3} = f₀ (only C⁰ convergence)
 The differential relation of the isometries is closed.

Stage theorem [Borrelli, Jabrane, Lazarus, ~]

$$\|g - F_{N_1,N_2,N_3}^* \langle \cdot, \cdot
angle_{\mathbb{R}^3}\|_{C^0} = O(rac{1}{N_1} + rac{1}{N_2} + rac{1}{N_3})$$

Problems

- $\lim_{N_i \to \infty} F_{N_1, N_2, N_3} = f_0$ (only C^0 convergence)
- The differential relation of the isometries is closed.

 \Rightarrow Build iteratively (*F_k*) where *F_k* depends on *N_{k,1}*, *N_{k,2}*, *N_{k,3}* and *F_{k-1}*.

A sufficient condition

$$\|\mu_{k,j} - f_{k,j}^* \langle \cdot, \cdot \rangle_{\mathbb{R}^3} \|_{C^0} = 0 \left(\frac{1}{N_{k,j}} \right) < \tau(\delta_{k+1} - \delta_k) \rho_{\min}(D_k)$$

This imposes high frequences of corrugation :

With 10 points per oscillation, we need a mesh of $(10 \times 6572411478)^2 \approx 4.3 \, 10^{19}$ vertices !

We reduce these numbers to :

We already need 100,000 * 20,000 = 2 milliards of vertices !

Images

- 1. One dimensional convex integration.
- 2. Convex integration on the torus.
- 3. Smooth fractals.

Curves

Structure of the Gauss map

The Gauss map is given by

$$egin{pmatrix} \mathbf{v}_{\infty}^{\perp} \ \mathbf{v}_{\infty} \ \mathbf{n}_{\infty} \end{pmatrix} = \prod_{k=0}^{\infty} \left(\prod_{j=1}^{3} \mathcal{C}_{k,j}
ight) egin{pmatrix} \mathbf{v}_{0}^{\perp} \ \mathbf{v}_{0} \ \mathbf{n}_{0} \end{pmatrix}$$

Corrugation theorem [Borrelli, Jabrane, Lazarus, ~, PNAS '12] We have $C_{k,j+1} = \mathcal{L}_{k,j+1} \cdot \mathcal{R}_{k,j}$, where

$$\mathcal{L}_{k,j+1} = \begin{pmatrix} \cos \theta_{k,j+1} & 0 & \sin \theta_{k,j+1} \\ 0 & 1 & 0 \\ -\sin \theta_{k,j+1} & 0 & \cos \theta_{k,j+1} \end{pmatrix} + O(\frac{1}{N_{k,j+1}})$$

Structure of the Gauss map

Corrugation theorem [Borrelli, Jabrane, Lazarus, ~, PNAS '12]

We have $C_{k,j+1} = \mathcal{L}_{k,j+1} \cdot \mathcal{R}_{k,j}$, where

$$\mathcal{L}_{k,j+1} = \begin{pmatrix} \cos \theta_{k,j+1} & 0 & \sin \theta_{k,j+1} \\ 0 & 1 & 0 \\ -\sin \theta_{k,j+1} & 0 & \cos \theta_{k,j+1} \end{pmatrix} + O(\frac{1}{N_{k,j+1}})$$

$$\mathcal{R}_{k,j} = \begin{pmatrix} \cos \beta_j & \sin \beta_j & 0 \\ -\sin \beta_j & \cos \beta_j & 0 \\ 0 & 0 & 1 \end{pmatrix} + O(\varepsilon_{k,j})$$

 $\text{ where } \theta_{k,j}(\boldsymbol{s},\boldsymbol{u}) = \alpha_{k,j}(\boldsymbol{s},\boldsymbol{u}) \cos(2\pi N_{k,j}\boldsymbol{u}), \\ \boldsymbol{\varepsilon}_{k,j} := \|\langle\cdot,\cdot\rangle_{\mathbb{E}^2} - f_{k,j}^*\langle\cdot,\cdot\rangle_{\mathbb{E}^3} \| \text{ and } \beta_j := \angle(\ker \ell_j,\ker \ell_j).$

Images

Images

Images

Thank you

More details :

- The HEVEA project : http://hevea.imag.fr
- A movie :

http://www.youtube.com/watch?v=RYH_KXhF1SY

• Image des mathématiques: http://images.math. cnrs.fr/Gnash-un-tore-plat.html