Discrete Conformal Maps

a survey

Christian MERCAT

Institut de Mathématiques et de Modélisation de Montpellier (I3M, UM2)

Journées Informatique et Géométrie, INRIA Sophia Antipolis http://entrelacs.net/home/ mercat@math.univ-montp2.fr

Peter Schröder, CalTech

Global parametrization sending little circles to circles. Texture mapping. Surface matching.

X. Gu & S.-T. Yau, Harvard Uni.

Surface interpolation (especially staying isometric). Remeshing, coarsening, refining.

Monica K. Hurdal, Florida State University

Commonly parametrize different surfaces to compare functions on it.

Tony Chan, UCLA

Whether preserving little circles or preserving little squares.

Linear and quadratic conformality

$$f$$
 is conformal $\Rightarrow f(z) = \begin{cases} az + b + o(z), \\ \frac{az + b}{cz + d} + o(z^2). \end{cases}$

Two notions on a "quad-graph":

- Preserve the diagonal ratio (linear),
- or preserve the cross-ratio (Möbius invariant).

Diagonals ratio: $\frac{y' - y}{x' - x} = i \rho$

Crossratio:

$$\frac{y' - x'}{x' - y} \frac{y - x}{x - y'} = q$$

Linear and quadratic conformality

$$f$$
 is conformal $\Rightarrow f(z) = \begin{cases} az + b + o(z), \\ rac{az + b}{cz + d} + o(z^2). \end{cases}$

Two notions on a "quad-graph":

- Preserve the diagonal ratio (linear),
- or preserve the cross-ratio (Möbius invariant).

Diagonals ratio: $\frac{y'-y}{x'-x} = i \rho = \frac{f(y') - f(y)}{f(x') - f(x)}$

Crossratio: $\frac{y' - x'}{x' - y} \frac{y - x}{x - y'} = q$

Linear and quadratic conformality

$$f ext{ is conformal } \Rightarrow f(z) = \left\{egin{array}{c} az+b+o(z), \ rac{az+b}{cz+d}+o(z^2). \end{array}
ight.$$

Two notions on a "quad-graph":

- Preserve the diagonal ratio (linear),
- or preserve the cross-ratio (Möbius invariant).

Diagonals ratio: $\frac{y' - y}{x' - x} = i \rho$

Crossratio:

$$\frac{y'-x'}{x'-y}\frac{y-x}{x-y'} = q$$

$$= \frac{f(y') - f(x')}{f(x') - f(y)}\frac{f(y) - f(x)}{f(x) - f(y')}$$

Circle patterns

Circle patterns are a particular case

c

A function F preserving the **cross-ratio** can be written in terms of a function f such that

$$F(y) - F(x) = f(x) f(y) (y - x) = "F'(z) dz".$$

fulfilling on the face (x, y, x', y'),

$$\oint F'(z) dz = f(x) f(y) (y - x) + f(y) f(x') (x' - y) + f(x') f(y') (y' - x') + f(y') f(x) (x - y') = 0$$

Circle patterns case: $F(y) - F(x) = r(x) e^{i \theta(y)} (y - x)$.

Understood as Morera equations where function integration is

the geometric mean for cross-ratio preserving maps

$$\int_{(x,y)} g \, dZ := \sqrt{g(x)g(y)} \, (y-x).$$

the arithmetic mean for diagonal ratio preserving maps

$$\int_{(x,y)} g \, dZ := \frac{g(x) + g(y)}{2} \, (y - x)$$

```
Discrete Riemann Surfaces

L Introduction

Morera equation \oint F'(z) dz = 0
```

When the quadratic case is linearized:

└─de Rham Cohomology

0. Vertex dual to a face.

Dual edges.

2. Face dual to a vertex.

The double $\Lambda = \Gamma \oplus \Gamma^*$

The chains-complex $C(\Lambda) = C_0(\Lambda) \oplus C_1(\Lambda) \oplus C_2(\Lambda)$ linear combination of vertices (0), edges (1) and faces (2). boundary operator $\partial : C_k(\Lambda) \to C_{k-1}(\Lambda)$ Null on vertices, $\partial^2 = 0$. Its kernel ker $\partial =: Z_{\bullet}(\Lambda)$ are the closed chains or cycles. Its image are the exact chains. The space dual to chains form the *cochains*, $C^{k}(\Lambda) := \operatorname{Hom}(C_{k}(\Lambda), \mathbb{C}).$ Evaluation is denoted $f(x), \int_{(x,x')} \alpha, \iint_{F} \omega.$ The *coboundary* is dual to the boundary. $d : C^{k}(\Lambda) \to C^{k+1}(\Lambda),$ defined by Stokes formula

$$\int_{(x,x')} df := f(\partial(x,x')) = f(x') - f(x), \qquad \iint_F d\alpha := \oint_{\partial F} \alpha.$$

A *cocycle* is a closed cochain $\alpha \in Z^k(\Lambda)$.

Metric, Hodge operator, Laplacian

Scalar product weighted by ρ

└-Metric, Hodge operator, Laplacian

A Hodge operator *

$$*: C^{k}(\Lambda) \rightarrow C^{2-k}(\Lambda)$$

$$C^{0}(\Lambda) \ni f \mapsto *f : \iint_{F} *f := f(F^{*}),$$

$$C^{1}(\Lambda) \ni \alpha \mapsto *\alpha : \int_{e} *\alpha := -\rho(e^{*}) \int_{e^{*}} \alpha,$$

$$C^{2}(\Lambda) \ni \omega \mapsto *\omega : (*\omega)(x) := \iint_{x^{*}} \omega.$$

$$(2)$$

Verifies $*^2 = (-Id_{C^k})^k$. The discrete *laplacian* $\Delta = \Delta_{\Gamma} \oplus \Delta_{\Gamma^*} := -d * d * - * d * d$:

$$(\Delta(f))(x) = \sum_{k=1}^{V} \rho(x, x_k) (f(x) - f(x_k)).$$

Its kernel are the harmonic forms.

Holomorphic forms

$$\alpha \in C^{1}(\Lambda) \text{ is conformal iff } d\alpha = 0 \text{ and } *\alpha = -i\alpha, \quad (3)$$
$$\pi_{(1,0)} = \frac{1}{2}(\operatorname{Id} + i *) \qquad \pi_{(0,1)} = \frac{1}{2}(\operatorname{Id} - i *)$$
$$d' := \pi_{(1,0)} \circ d : C^{0}(\Lambda) \to C^{1}(\Lambda), \qquad d' := d \circ \pi_{(1,0)} : C^{1}(\Lambda) \to C^{2}(\Lambda)$$
$$f \in \Omega^{0}(\Lambda) \text{ iff } d'(f) = 0.$$

 $-* d* = d^*$ the adjoint of the coboundary

$$C^k(\Lambda) = \operatorname{Im} d \oplus^{\perp} \operatorname{Im} d^* \oplus^{\perp} \operatorname{Ker} \Delta,$$

 $\mathsf{Ker}\ \Delta = \mathsf{Ker}\ d \cap \mathsf{Ker}\ d^* = \mathsf{Ker}\ d' \oplus^{\perp} \mathsf{Ker}\ d''.$

LExternal Product

$$A: C^{k}(\diamondsuit) \times C^{l}(\diamondsuit) \to C^{k+l}(\diamondsuit) \quad \text{s.t.} \quad (\alpha, \beta) = \iint \alpha \wedge *\bar{\beta}$$
For $f, g \in C^{0}(\diamondsuit), \alpha, \beta \in C^{1}(\diamondsuit)$ et $\omega \in C^{2}(\diamondsuit)$:

$$(f \cdot g)(x) := f(x) \cdot g(x) \quad \text{for } x \in \diamondsuit_{0},$$

$$\int f \cdot \alpha := \frac{f(x) + f(y)}{2} \int \alpha \quad \text{for } (x, y) \in \diamondsuit_{1},$$

$$(x_{1}, x_{2}, x_{3}, x_{4}) \quad (x_{k-1}, x_{k}) (x_{k}, x_{k+1}) \quad (x_{k+1}, x_{k}) (x_{k}, x_{k-1})$$

$$\int f \cdot \omega := \frac{f(x_{1}) + f(x_{2}) + f(x_{3}) + f(x_{4})}{4} \int \omega$$

$$for (x_{1}, x_{2}, x_{3}, x_{4}) \quad for (x_{1}, x_{2}, x_{3}, x_{4}) \in \diamondsuit_{2}.$$

LExternal Product

$$\wedge : C^{k}(\diamondsuit) \times C^{l}(\diamondsuit) \to C^{k+l}(\diamondsuit) \quad \text{s.t.} \quad (\alpha, \beta) = \iint \alpha \wedge *\bar{\beta}$$
For $f, g \in C^{0}(\diamondsuit), \alpha, \beta \in C^{1}(\diamondsuit)$ et $\omega \in C^{2}(\diamondsuit)$:
$$(f \cdot g)(x) := f(x) \cdot g(x) \quad \text{for } x \in \diamondsuit_{0},$$

$$\int f \cdot \alpha := \frac{f(x) + f(y)}{2} \int \alpha \quad \text{for } (x, y) \in \diamondsuit_{1},$$

$$(x, y) \quad \iint (x_{k-1}, x_{k}) (x_{k}, x_{k+1}) \quad (x_{k+1}, x_{k}) (x_{k}, x_{k-1})$$

$$\iint f \cdot \omega := \frac{f(x_{k-1}, x_{k}) (x_{k}, x_{k+1})}{4} \iint \omega$$

$$(x_{1}, x_{2}, x_{3}, x_{4}) \quad \text{for } (x_{1}, x_{2}, x_{3}, x_{4})$$

$$\text{for } (x_{1}, x_{2}, x_{3}, x_{4}) \in \diamondsuit_{2}.$$

A form on \diamondsuit can be *averaged* into a form on Λ :

$$\int_{(x,x')} A(\alpha_{\Diamond}) := \frac{1}{2} \left(\int_{(x,y)} + \int_{(y,x')} + \int_{(x,y')} + \int_{(y',x')} \right) \alpha_{\Diamond}, \quad (4)$$
$$\iint_{x^*} A(\omega_{\Diamond}) := \frac{1}{2} \sum_{k=1}^d \iint_{(x_k,y_k,x,y_{k-1})} \omega_{\Diamond}, \quad (5)$$

 $\operatorname{Ker}(A) = \operatorname{Span}(d_{\Diamond}\varepsilon)$

Discrete Harmonicity

- ► Hodge Star: $*: C^k \to C^{2-k}$, $\int_{(y,y')} *\alpha := \rho_{(x,x')} \int_{(x,x')} \alpha$.
- Discrete Laplacian:

$$d^* := -*d*, \quad \Delta := d d^* + d^*d, \\ \Delta f(x) = \sum \rho_{(x,x_k)}(f(x) - f(x_k)).$$

- ► Hodge Decomposition: $C^k = \operatorname{Im} d \oplus^{\perp} \operatorname{Im} d^* \oplus^{\perp} \operatorname{Ker} \Delta$, Ker $\Delta_1 = C^{(1,0)} \oplus^{\perp} C^{(0,1)}$.
- ► Weyl Lemma:

 $\Delta f = 0 \Longleftrightarrow \iint f * \Delta g = 0, \quad \forall g \text{ compact.}$

• Green Identity: $\int \int_D (f * \Delta g - g * \Delta f) = \oint_{\partial D} (f * dg - g * df).$ Meromorphic Forms

$$lpha \in \mathcal{C}^1$$
 is conformal $\iff egin{cases} lpha = -ilpha & ext{of type (1,0)} \\ dlpha = 0 & ext{closed.} \end{cases}$

- α of type (1,0) (*i.e.* $\int_{(y,y')} \alpha = i\rho_{(x,x')} \int_{(x,x')} \alpha$) has a pole of order 1 in v with a residue $\operatorname{Res}_{v} \alpha := \frac{1}{2i\pi} \oint_{\partial v^*} \alpha \neq 0.$
- If a is not of type (1,0) on (x, y, x', y'), it has a pole of order > 1.
- Discrete Riemann-Roch theorem: Existence of forms with prescribed poles and holonomies.
- ► Green Function and Potential, Cauchy Integral Formula: $\oint_{\partial D} f \cdot \nu_{x,y} = 2i\pi \frac{f(x)+f(y)}{2}.$
- Period Matrix, Jacobian, Abel's map, Riemann bilinear relations.
- Continuous limit theorem.

The L^2 -norm of the 1-form *df* is the **Dirichlet** energy

$$\begin{split} E_D(f) &:= \|df\|^2 = (df, \, df) = \frac{1}{2} \sum_{(x, x') \in \Lambda_1} \rho(x, x') \left| f(x') - f(x) \right|^2 \\ &= \frac{E_D(f|_{\Gamma}) + E_D(f|_{\Gamma^*})}{2}. \end{split}$$

The **conformal energy** of the map measures its conformality defect

$$E_C(f) := \frac{1}{2} \| df - i * df \|^2.$$

Discrete Riemann Surfaces

Energies

Dirichlet and Conformal enregies are related through

$$E_C(f) = \frac{1}{2} (df - i * df, df - i * df)$$

= $\frac{1}{2} ||df||^2 + \frac{1}{2} ||-i * df||^2 + \operatorname{Re}(df, -i * df)$
= $||df||^2 + \operatorname{Im} \iint_{\Diamond_2} df \wedge \overline{df}$
= $E_D(f) - 2\mathcal{A}(f)$

with the algebraic area of the image

$$\mathcal{A}(f) := \frac{i}{2} \iint_{\Diamond_2} df \wedge \overline{df}$$

On a face the algebraic algebra of the image reads

$$\iint_{(x,y,x',y')} df \wedge \overline{df} = i \operatorname{Im} \left((f(x') - f(x)) \overline{(f(y') - f(y))} \right)$$
$$= -2i \mathcal{A} \Big(f(x), f(x'), f(y), f(y') \Big)$$

Discrete Riemann Surfaces
Main Results
Energies

- ► Basis of holomorphic forms(a discrete Riemann surface S)
- ▶ find a normalized homotopy basis \aleph of $\diamond(S)$
- foreach \aleph_k
- compute \aleph_k^{Γ} and $\aleph_k^{\Gamma^*}$
 - compute the real discrete harmonic form ω_k on Γ s.t. $\oint_{\gamma} \omega_k = \gamma \cdot \aleph_k^{\Gamma}$
 - compute the form $*\omega_k$ on Γ^*
 - check it is harmonic on on Γ*
 - ► compute its holonomies $(\oint_{\aleph_{\ell}^{f^*}} * \omega_k)_{k,\ell}$ on the dual graph
- do some linear algebra (R is a rectangular complex matrix) to get the basis of holomorphic forms (ζ_k)_k = R(Id + i *)(ω_k)_k s.t. (∮_{N^Γ_ℓ} ζ_k) = δ_{k,ℓ}

• define the period matrix $\Pi_{k,\ell} := (\oint_{\mathbb{N}_{\ell}^{\Gamma^*}} \zeta_k)$

Discrete	Riemann	Surfaces
└- Main	Results	
L En	ergies	

- *tree* \leftarrow *sd* \leftarrow {*root*}; *sdp*1 \leftarrow *∅*; *points* \leftarrow all the vertices;
- while points $\neq \emptyset$
- $\bullet \quad points \leftarrow points \setminus sd$
- foreach $v \in sd$
- For each $v' \sim v$
 - • if $v' \in points$
 - $\bullet \quad sdp1 \leftarrow sdp1 \cup \{v'\}$
 - $\bullet \quad tree \leftarrow tree \cup \{(v, v')\}$
- $\blacktriangleright \qquad sd \leftarrow sdp1; sdp1 \leftarrow \emptyset$

Discrete Riemann Surfaces	
Main Results	
Energies	

- *tree* \leftarrow *sd* \leftarrow {*root*}; *sdp*1 \leftarrow *∅*; *points* \leftarrow all the vertices;
- while points $\neq \emptyset$
- $\bullet \quad points \leftarrow points \setminus sd$
- foreach $v \in sd$
- For each $v' \sim v$
 - • if $v' \in points$
 - $\bullet \quad sdp1 \leftarrow sdp1 \cup \{v'\}$
 - $\bullet \quad tree \leftarrow tree \cup \{(v, v')\}$
- $\blacktriangleright \qquad sd \leftarrow sdp1; sdp1 \leftarrow \emptyset$

Discrete Riemann Surfaces	
Main Results	
Energies	

- *tree* \leftarrow *sd* \leftarrow {*root*}; *sdp*1 \leftarrow *∅*; *points* \leftarrow all the vertices;
- while $points \neq \emptyset$
- $\bullet \quad points \leftarrow points \setminus sd$
- foreach $v \in sd$
- For each $v' \sim v$
 - • if $v' \in points$
 - $\bullet \quad sdp1 \leftarrow sdp1 \cup \{v'\}$
 - $\bullet \quad tree \leftarrow tree \cup \{(v, v')\}$
- $\blacktriangleright \qquad sd \leftarrow sdp1; sdp1 \leftarrow \emptyset$

Discrete	Riemann	Surfaces
└- Main	Results	
L En	ergies	

- *tree* \leftarrow *sd* \leftarrow {*root*}; *sdp*1 \leftarrow *∅*; *points* \leftarrow all the vertices;
- while points $\neq \emptyset$
- $\qquad \qquad \textsf{points} \leftarrow \textsf{points} \setminus \textsf{sd} \\$
- foreach $v \in sd$
- For each $v' \sim v$
 - • if $v' \in points$
 - $\bullet \quad sdp1 \leftarrow sdp1 \cup \{v'\}$
 - $\bullet \quad tree \leftarrow tree \cup \{(v, v')\}$
- $\blacktriangleright \qquad sd \leftarrow sdp1; sdp1 \leftarrow \emptyset$

Discrete	Riemann Surfaces
└- Main	Results
∟ En	ergies

- fundamental polygon(a spanning tree)
- faces ← all the faces; edges ← tree ∪ tree; toClose : faces → P(all the edges);
- ▶ foreach (face \in faces) facesToClose(face) $\leftarrow \partial$ (face) \setminus edges
- ► do
 - ► finished ← true
 - ▶ foreach (face ∈ faces such that |facesToClose(face)| == 1)
 - *finished* ← *false*; *e* = *facesToClose*(*face*);
 - ► edges \leftarrow edges \ {e, \bar{e} }; faces \leftarrow faces \ {face}; Iface \leftarrow leftFace(\bar{e});
 - ▶ if (lface)
 - $\bullet \quad facesToClose(lface) \leftarrow facesToClose(lface \setminus \{\bar{e}\})$
 - $\text{if} \ (|\textit{facesToClose(lface})| == 0) \ \textit{faces} \leftarrow \textit{faces} \setminus \{\textit{lface}\};$
- while (not(finished));
- return facesToClose

Discrete	Riemann Surfaces
└- Main	Results
∟ En	ergies

- fundamental polygon(a spanning tree)
- faces ← all the faces; edges ← tree ∪ tree; toClose : faces → P(all the edges);
- ▶ foreach (face \in faces) facesToClose(face) $\leftarrow \partial$ (face) \setminus edges
- ► do
 - ► finished ← true
 - ▶ foreach (face ∈ faces such that |facesToClose(face)| == 1)
 - Finished ← false; e = facesToClose(face);
 - ► edges \leftarrow edges \ {e, \bar{e} }; faces \leftarrow faces \ {face}; Iface \leftarrow leftFace(\bar{e});
 - ▶ if (lface)
 - $\bullet \qquad \textit{facesToClose(lface)} \leftarrow \textit{facesToClose(lface \setminus \{\bar{e}\})}$
 - $\label{eq:linear} \textit{if} \hspace{0.1 in} (|\textit{facesToClose}(\textit{lface})| == 0) \hspace{0.1 in}\textit{faces} \leftarrow \textit{faces} \setminus \{\textit{lface}\};$
- while (not(finished));
- return facesToClose

Discrete	Riemann Surfaces
└- Main	Results
L En	ergies

- fundamental polygon(a spanning tree)
- faces ← all the faces; edges ← tree ∪ tree; toClose : faces → P(all the edges);
- ▶ foreach (face \in faces) facesToClose(face) $\leftarrow \partial$ (face) \setminus edges
- ► do
 - ► finished ← true
 - ▶ foreach (face ∈ faces such that |facesToClose(face)| == 1)
 - Finished ← false; e = facesToClose(face);
 - ► edges \leftarrow edges \ {e, \bar{e} }; faces \leftarrow faces \ {face}; Iface \leftarrow leftFace(\bar{e});
 - ▶ if (lface)
 - $\bullet \qquad \textit{facesToClose(lface)} \leftarrow \textit{facesToClose(lface \setminus \{\bar{e}\})}$
 - $\text{if} \ (|\textit{facesToClose(lface})| == 0) \ \textit{faces} \leftarrow \textit{faces} \setminus \{\textit{lface}\};$
- while (not(finished));
- return facesToClose

Discrete	Riemann Surfaces
└- Main	Results
L En	ergies

- fundamental polygon(a spanning tree)
- faces ← all the faces; edges ← tree ∪ tree; toClose : faces → P(all the edges);
- ▶ foreach (face \in faces) facesToClose(face) $\leftarrow \partial$ (face) \setminus edges
- ► do
 - ► finished ← true
 - ▶ foreach (face ∈ faces such that |facesToClose(face)| == 1)
 - *finished* ← *false*; *e* = *facesToClose*(*face*);
 - ► edges \leftarrow edges \ {e, \bar{e} }; faces \leftarrow faces \ {face}; Iface \leftarrow leftFace(\bar{e});
 - ▶ if (lface)
 - $\bullet \qquad \textit{facesToClose(lface)} \leftarrow \textit{facesToClose(lface \setminus \{\bar{e}\})}$
 - $\text{if} \ (|\textit{facesToClose(lface})| == 0) \ \textit{faces} \leftarrow \textit{faces} \setminus \{\textit{lface}\};$
- while (not(finished));
- return facesToClose

Discrete	Riemann Surfaces
└- Main	Results
L En	ergies

- fundamental polygon(a spanning tree)
- faces ← all the faces; edges ← tree ∪ tree; toClose : faces → P(all the edges);
- ▶ foreach (face \in faces) facesToClose(face) $\leftarrow \partial$ (face) \setminus edges
- ► do
 - ► finished ← true
 - ▶ foreach (face ∈ faces such that |facesToClose(face)| == 1)
 - finished ← false; e = facesToClose(face);
 - ► edges \leftarrow edges \ {e, \bar{e} }; faces \leftarrow faces \ {face}; Iface \leftarrow leftFace(\bar{e});
 - ▶ if (lface)
 - $\blacktriangleright \qquad \textit{facesToClose(lface)} \leftarrow \textit{facesToClose(lface} \setminus \{\bar{e}\})$
 - if $(|facesToClose(lface)| == 0) faces \leftarrow faces \setminus \{lface\};$
- while (not(finished));
- return facesToClose

Discrete	Riemann Surfaces
└─Main	Results
∟ En	ergies

In the continuous case

for
$$f(z + z_0) = f(z_0) + z \times (\partial f)(z_0) + \overline{z} \times (\overline{\partial} f)(z_0) + o(|z|),$$

 $(\partial f)(z_0) = \lim_{\gamma \to z_0} \frac{i}{2\mathcal{A}(\gamma)} \oint_{\gamma} fd\overline{z}, \qquad (\overline{\partial} f)(z_0) = -\lim_{\gamma \to z_0} \frac{i}{2\mathcal{A}(\gamma)} \oint_{\gamma} fdZ,$

 ∂ and $ar\partial$

along a loop γ around z_0 . leading to the discrete definition

$$\begin{array}{rcl} \partial: C^{0}(\diamondsuit) & \to & C^{2}(\diamondsuit) \\ f & \mapsto & \partial f = & \left[(x, y, x', y') & \mapsto & -\frac{i}{2\mathcal{A}(x, y, x', y')} \oint_{\substack{(x, y, x', y') \\ (x, y, x', y')}} fd\bar{Z} \right] \\ & = & \frac{(f(x') - f(x))(\bar{y}' - \bar{y}) - (\bar{x}' - \bar{x})(f(y') - f(y))}{(x' - x)(\bar{y}' - \bar{y}) - (\bar{x}' - \bar{x})(y' - y)}, \\ \bar{\partial}: & C^{0}(\bigtriangleup) & \to & C^{2}(\bigtriangleup) \end{array}$$

$$\partial: C^{0}(\Diamond) \rightarrow C^{2}(\Diamond)$$

 $f \mapsto \bar{\partial}f = [(x, y, x', y') \mapsto -\frac{i}{2\mathcal{A}(x, y, x', y')} \oint_{(x, y, x', y')} fdZ]$

A conformal map f fulfills $\bar{\partial} f \equiv 0$ and (with Z(u) denoted u)

$$\partial f(x, y, x', y') = \frac{f(y') - f(y)}{y' - y} = \frac{f(x') - f(x)}{x' - x}$$

The jacobian $J = |\partial f|^2 - |\bar{\partial} f|^2$ compares the areas:

$$\iint_{(x,y,x',y')} df \wedge \overline{df} = J \iint_{(x,y,x',y')} dZ \wedge \overline{dZ}.$$

For a discrete function, one defines the *dilatation* coefficient

$$D_f := \frac{|f_z| + |f_{\overline{z}}|}{|f_z| - |f_{\overline{z}}|}$$

 $D_f \ge 1$ for $|f_{\overline{z}}| \le |f_z|$ (quasi-conformal). Written in terms of the *complex dilatation*:

For a discrete function, one defines the dilatation coefficient

$$D_f := \frac{|f_z| + |f_{\overline{z}}|}{|f_z| - |f_{\overline{z}}|}$$

 $D_f \ge 1$ for $|f_{\overline{z}}| \le |f_z|$ (quasi-conformal). Written in terms of the *complex dilatation*:

-Main Results

Quasi-Conformal Maps

Apply Ahlfors-Bers

Before

After

(Arnaud Chéritat and Xavier Buff, L. Émile Picard, Toulouse)

For a given combinatorics, cross-ratio distributions foliates the space of maps. Ω stays on the same complex structure, $\bar{\Omega}$ changes it.

Discrete Riemann Surfaces

Main Results

Lozenges (Duffin) and Exponential

Generalization of the well known formula

$$\exp(\lambda z) = \left(1 + \frac{\lambda z}{n}\right)^n + O(\frac{z^2}{n}) = \left(\frac{1 + \frac{\lambda z}{2n}}{1 - \frac{\lambda z}{2n}}\right)^n + O(\frac{z^3}{n^2}).$$

The Green function on a lozenges graph is (Richard Kenyon)

$$G(O, x) = -\frac{1}{8 \pi^2 i} \oint_C \exp(:\lambda:x) \frac{\log \frac{\delta}{2} \lambda}{\lambda} d\lambda$$

$$\Delta G(O, x) = \delta_{O, x}, \quad G(O, x) \sim_{x \to \infty} \begin{cases} \log |x| & \text{on black vertices,} \\ i \arg(x) & \text{on white vertices.} \end{cases}$$

.

Discrete Riemann Surfaces

-Main Results

Lozenges (Duffin) and Exponential

Differentiation of the exponential with respect to λ yields

$$\frac{\partial^k}{\partial \lambda^k} \exp(:\lambda:z) =: Z^{:k:} \exp(:\lambda:z)$$

and $\lambda = 0$ defines the discrete polynomials $Z^{:k:}$ fulfilling $\exp(:\lambda:z) = \sum \frac{Z^{:k:}}{k!}$, absolutely convergent for $\lambda \cdot \delta < 1$. The primitive of a conformal map is itself conformal:

$$\int_{(x,y)} f \, dZ := \frac{f(x) + f(y)}{2} (y - x).$$

One can solve "differential equations", and polynomials fulfill

$$Z^{:k+1:}=(k+1)\int Z^{:k:}\,dZ,$$

while the exponential fulfills

$$\exp(:\lambda:z) = \frac{1}{\lambda} \int \exp(:\lambda:z) dZ.$$

-Main Results

Lozenges (Duffin) and Exponential

There exists a discrete duality, with $\varepsilon = \pm 1$ on black and white vertices, $f^{\dagger} = \varepsilon \bar{f}$ is conformal. The derivative f' of a conformal map f is

$$f'(z) := rac{4}{\delta^2} \left(\int_O^z f^\dagger dZ
ight)^\dagger + \lambda \, arepsilon,$$

and verifies $f = \int f' dZ$.

└─The exponential

Discrete Riemann Surfaces

└─ The exponential

Discrete Riemann Surfaces

└─The exponential

Discrete Riemann Surfaces

└─The exponential

With the change of variables $g = \ln f$, the continuous limit $(y = x + \epsilon)$ is:

$$\sqrt{g_\lambda' imes g'} = rac{2}{\lambda} \sinh rac{g_\lambda - g}{2}.$$

LIsomonodromic solutions, moving frame

The Bäcklund transformation allows to define a notion of discrete holomorphy in \mathbb{Z}^d , for d > 1 finite, equipped with rapidities $(\alpha_i)_{1 \le i \le d}$.

$$\begin{array}{ccc} x + e_{j} & \alpha_{i} & x + e_{i} + e_{j} & \rho = \frac{\alpha_{i} + \alpha_{j}}{\alpha_{i} - \alpha_{j}} \\ \alpha_{j} & \alpha_{j} & q = \frac{\alpha_{i}^{2}}{\alpha_{j}^{2}} \\ x \bullet \alpha_{i} & x + e_{i} & f(x + e_{i} + e_{j}) = L_{i}(x + e_{j})f(x + e_{j}), \end{array}$$

$$L_i(x;\lambda) = \begin{pmatrix} \lambda + \alpha_i & -2\alpha_i(f(x+e_i) + f(x)) \\ 0 & \lambda - \alpha_i \end{pmatrix}$$

The moving frame $\Psi(\cdot, \lambda) : \mathbb{Z}^d \to GL_2(\mathbb{C})[\lambda]$ for a prescribed $\Psi(0; \lambda)$:

$$\Psi(x+e_i;\lambda)=L_i(x;\lambda)\Psi(x;\lambda).$$

Isomonodromic solutions, moving frame

Define
$$A(\cdot; \lambda) : \mathbb{Z}^d \to GL_2(\mathbb{C})[\lambda]$$
 by $A(x; \lambda) = \frac{d\Psi(x; \lambda)}{d\lambda} \Psi^{-1}(x; \lambda).$

They satisfy the recurrent relation

$$A(x+e_k;\lambda)=\frac{dL_k(x;\lambda)}{d\lambda}L_k^{-1}(x;\lambda)+L_k(x;\lambda)A(x;\lambda)L_k^{-1}(x;\lambda).$$

A discrete holomorphic function $f : \mathbb{Z}^d \to \mathbb{C}$ is called **isomonodromic**, if, for some choice of $A(0; \lambda)$, the matrices $A(x; \lambda)$ are meromorphic in λ , with poles whose positions and orders do not depend on $x \in \mathbb{Z}^d$. Isomonodromic solutions can be constructed with prescribed boundary conditions. Example: the **Green function**.

Isomonodromic solutions, moving frame

Inter2Geo

Interoperable Interactive Geometry

A common file format and a common API for all interactive geometry software

- Cabri
- Cinderella
- Geoplan/Geospace
- Geogebra
- Geonext
- TracEnPoche (Sésamath/MathEnPoche)
- Z.u.L C.a.R
- Kig, DrGeo, GeoProof (Coq geometric prover)

••••