Don't worry, be noisy

The Effect of Noise on the Number of Extreme Points

Dominique Attali

Olivier Devillers

Xavier Goaoc

INSTITUT NATIONAL

Motivation

Motivation
Worst case analysis
vs practical behavior

Motivation
Worst case analysis
Delaunay
$\Omega\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$
vs practical behavior almost linear ?

Worst case analysis

$$
\begin{array}{ll}
\text { Delaunay } & \text { Convex hull } \\
\Omega\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right) & \Omega\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
\end{array}
$$

vs practical behavior almost linear ? small ?

Problem in this talk

Worst case analysis

\sharp of convex hull vertices pregular potygon
$\Omega(n)$

Problem in this talk Worst case analysis
$\#$ of convex hull vertices
$\Omega(n)$
vs noisy behavior

Problem in this talk Worst case analysis
$\#$ of convex hull vertices
$\Omega(n)$
vs noisy behavior

Problem in this talk

Worst case analysis
$\#$ of convex hull vertices
$\Omega(n)$
vs noisy behavior

Problem in this talk

Worst case analysis
$\#$ of convex hull vertices
$\Omega(n)$
vs noisy behavior

Problem in this talk

 Worst case anatysis$\#$ of convex hull vertices
$\Omega(n)$
vs noisy behavior

Problem in this talk

 Worst case analysis $\#$ of convex hull vertices$\Omega(n)$
Notations

Problem in this talk

 Worst case analysis \# of convex hull vertices$\Omega(n)$
Notations Result
$\tilde{\Theta}\left(n^{\frac{1}{4}} \delta^{-\frac{3}{8}}\right)$
$\tilde{\Theta}=$ up to polylog factor

Results initial position $=(\epsilon, \kappa)$-sample $\operatorname{dim} 2, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$$
\tilde{\Theta}\left(n^{\frac{1}{4}}\left(\frac{1}{\delta}\right)^{\frac{3}{8}}\right)
$$

Results initial position $=(\epsilon, \kappa)$-sample $\operatorname{dim} 2, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$$
\tilde{\Theta}\left(n^{\frac{1}{4}}\left(\frac{1}{8}\right)^{\frac{3}{8}}\right)
$$

$\operatorname{dim} d, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{\frac{2}{2-d}}\right), 1\right]$

$$
\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)
$$

Results
initial position $=(\epsilon, \kappa)$-sample
$\operatorname{dim} 2, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$\operatorname{dim} d, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{\frac{2}{1-d}}\right), 1\right]$

$$
\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)
$$

$\operatorname{dim} 2, L_{\infty}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$$
\tilde{\Theta}\left(n^{\frac{1}{5}}\left(\frac{1}{\delta}\right)^{\frac{2}{5}}\right)
$$

Results initial position $=(\epsilon, \kappa)$-sample $\operatorname{dim} 2, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$$
\tilde{\Theta}\left(n^{\frac{1}{4}}\left(\frac{1}{8}\right)^{\frac{3}{8}}\right)
$$

$\operatorname{dim} d, L_{2}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{\frac{2}{1-d}}\right), 1\right]$

$$
\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)
$$

$\operatorname{dim} 2, L_{\infty}$ noise, $\delta \in\left[\tilde{\Omega}\left(n^{-2}\right), 1\right]$

$$
\tilde{\Theta}\left(n^{\frac{1}{5}}\left(\frac{1}{\delta}\right)^{\frac{2}{5}}\right)
$$

experiments for noise and snap

Related result
[Damerow \& Sohler] $\operatorname{dim} d, L_{\infty}$ noise,

$$
O\left(\left(\frac{n \log n}{\delta}\right)^{\frac{d}{d+1}}\right)
$$

Related result

 $\operatorname{dim} d, L_{\infty}$ noise,$O\left(\left(\frac{n \log n}{\delta}\right)^{\frac{d}{d+1}}\right)$
Upper bound \sharp hull vertices by \sharp of maximal points

No inital position hypotheses
Extends to other kinds of noise independance between coordinates

Related result

[Damerow \& Sohler] $\operatorname{dim} d, L_{\infty}$ noise,
$O\left(\left(\frac{n \log n}{\delta}\right)^{\frac{d}{d+1}}\right)$
$\operatorname{dim} 2, L_{\infty}$ noise,
$\tilde{O}\left(n^{\frac{2}{3}}\left(\frac{1}{8}\right)^{\frac{2}{3}}\right)$
our result
$\tilde{\Theta}\left(n^{\frac{1}{5}}\left(\frac{1}{\delta}\right)^{\frac{2}{5}}\right)$

Related result

[Rényi \& Sulanke] $\operatorname{dim} d$, "infinite" L_{2} noise,
$\Theta\left(n^{\frac{d-1}{d+1}}\right)$

Related result

[Rényi \& Sulanke] $\operatorname{dim} d$, "infinite" L_{2} noise,
$d=2$
$\Theta\left(n^{\frac{1}{3}}\right)$

Related result

[Rényi \& Sulanke] $\operatorname{dim} d$, "infinite" L_{2} noise,

$$
\begin{aligned}
& \Theta\left(n^{\frac{d-1}{d+1}}\right) \\
& d=2 \\
& \Theta\left(n^{\frac{1}{3}}\right) \\
& \text { our result } \\
& d=2, \delta=n^{-2} \\
& \tilde{\Theta}(n) \\
& d=2 \\
& d \stackrel{\circ}{=} 2, \delta=1 \\
& \tilde{\Theta}\left(n^{\frac{1}{4}}\left(\frac{1}{8}\right)^{\frac{3}{8}}\right) \quad \Theta\left(n^{\frac{1}{4}}\right)
\end{aligned}
$$

Proof

Collector placing rule

Collector placing rule

if the witness is non empty

Collector placing rule

if the witness is non empty
considering a direction " of the witness"

Collector placing rule

if the witness is non empty
considering a direction " of the witness"
the collector must contain the extremal point in that direction

Collector placing rule

Collector placing rule

Collector placing rule

$$
c \simeq 9 w
$$

Computing w

Computing w

$E(\nexists$ points $) \sim$

$$
\delta^{1 / 2} h^{3 / 2}
$$

$$
\pi \delta^{2}
$$

Computing w

$E(\sharp$ points $) \sim \sum_{j=0} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}$

Computing w

$E(\nexists$ points $) \sim \sum_{j=0} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}$

Computing w

$E(\nexists$ points $) \sim$

$$
\sum_{j=0} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}
$$

Computing w

$$
h_{j} \geq 0
$$

$$
j=0 \quad \pi \delta^{2}
$$

Computing w

$E(\sharp$ points $) \sim \sum_{j=0}^{n h^{1 / 2}} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}$

Computing w

$E(\sharp$ points $) \sim \sum_{j=0}^{n h h^{1 / 2}} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}=n h^{2} \delta^{-3 / 2}$

Computing w

$E(\sharp$ points $) \sim \sum_{j=0}^{n h h^{1 / 2}} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}=n h^{2} \delta^{-3 / 2}$

Computing w

$E(\sharp$ points $) \sim \sum_{j=0}^{n h h^{1 / 2}} \frac{\delta^{1 / 2} h_{j}^{3 / 2}}{\pi \delta^{2}}=n h^{2} \delta^{-3 / 2}$

Wrapping up

Lower bound on hull vertices
\sharp of non empty witnesses

$$
m\left(1-\frac{1}{n}\right) \sim m
$$

Wrapping up

Upper bound on hull vertices

non empty witness
$\longrightarrow \sharp$ points in collector
$=\log n$

Wrapping up

Upper bound on hull vertices
empty witness
$\longrightarrow n$
with proba $1 / n$

Higher dimensions

same ideas

initial position $=(\epsilon, \kappa)$-sample

$$
\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)
$$

Noise with squared support

 more tricky
Experimental results

Experimental results

$$
\begin{gathered}
N \sim n^{1 / 4} \delta^{-3 / 8} \\
\log \frac{N}{n^{1 / 4} \delta^{-3 / 8}} \simeq c t e
\end{gathered}
$$

Experimental results

$$
\begin{aligned}
& n=1000 \\
& n=10^{4} \\
& n=10^{5} \\
& n=10^{6} \\
& n=10^{7}
\end{aligned}
$$

Experimental results

$$
\begin{aligned}
& n=1000 \\
& n=10^{4} \\
& n=10^{5} \\
& n=10^{6} \\
& n=10^{7}
\end{aligned}
$$

Experimental results

Snap-rounded extreme points

Experimental results

Snap-rounded extreme points

Experimental results

Snap-rounded extreme points

Experimental results

$$
\begin{aligned}
& n=1000 \\
& n=10^{4} \\
& n=10^{5} \\
& n=10^{6} \\
& n=10^{7}
\end{aligned}
$$

Open problems

Open problems

$\delta \in[1, \infty)$
Cubic noise in higher dimension
Noise shape (Gaussian noise)

Open problems
$\delta \in[1, \infty)$
Cubic noise in higher dimension
Noise shape (Gaussian noise)
Other problems
e.g. worst case for 3D Delaunay with noise δ ?

