Don't worry, be noisy

The Effect of Noise on the Number of Extreme Points

Dominique Attali

Olivier Devillers

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

Xavier Goaoc

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE centre de recherche

NANCY GRAND EST

Motivation

Worst case analysis

vs practical behavior

Motivation

Worst case analysis Delaunay $\Omega\left(n^{\left\lceil \frac{d}{2} \right\rceil}\right)$

vs practical behavior almost linear ? Motivation

Worst case analysisDelaunayConvex hull $\Omega\left(n^{\left\lceil \frac{d}{2} \right\rceil}\right)$ $\Omega\left(n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$

vs practical behavior almost linear ? small ?

Problem in this talk Worst case analysis t of convex hull vertices $\Omega\left(n\right)$ vs noisy behavior

Problem in this talk Worst case analysis t of convex hull vertices $\Omega\left(n
ight)$ vs noisy behavior

Results initial position = (ϵ, κ) -sample dim 2, L_2 noise, $\delta \in [\tilde{\Omega}(n^{-2}), 1]$ $\left(n^{rac{1}{4}}\left(rac{1}{\delta} ight)^{rac{3}{8}} ight)$ $\tilde{\Theta}$ dim d, L_2 noise, $\delta \in \left[\tilde{\Omega}\left(n^{\frac{2}{1-d}} \right), 1 \right]$ 0 $\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-1}\right)$ 0 0

Results

initial position= (ϵ, κ) -sample

dim 2, L_2 noise, $\delta \in [\tilde{\Omega}(n^{-2}), 1]$ $ilde{\Theta}\left(n^{rac{1}{4}} \left(rac{1}{\delta} \right)^{rac{2}{8}}
ight)$ dim d, L_2 noise, $\delta \in \left[\tilde{\Omega}\left(n^{\frac{2}{1-d}} \right), 1 \right]$ • $\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)$ dim 2, L_{∞} noise, $\delta \in \left[\tilde{\Omega} \left(n^{-2} \right), 1 \right]$ $\tilde{\Theta}\left(n^{\frac{1}{5}}\left(\frac{1}{\delta}\right)^{\frac{2}{5}}\right)$

Results

initial position= (ϵ, κ) -sample

dim 2,
$$L_2$$
 noise, $\delta \in [\tilde{\Omega}(n^{-2}), 1]$
 $\tilde{\Theta}\left(n^{\frac{1}{4}}\left(\frac{1}{\delta}\right)^{\frac{3}{8}}\right)$
dim d , L_2 noise, $\delta \in \left[\tilde{\Omega}\left(n^{\frac{2}{1-d}}\right), 1\right]$
 $\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}}\left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)$

dim 2, L_{∞} noise, $\delta \in \left[\tilde{\Omega} \left(n^{-2} \right), 1 \right]$ $\tilde{\Theta} \left(n^{\frac{1}{5}} \left(\frac{1}{\delta} \right)^{\frac{2}{5}} \right)$

experiments for noise and snap

Related result

 $O\left(\left(\frac{n\log n}{\delta}\right)^{\frac{a}{d+1}}\right)$

[Damerow & Sohler]

dim d, L_{∞} noise,

Upper bound # hull vertices by # of maximal points

No inital position hypotheses

Extends to other kinds of noise

independance between coordinates

Proof

initial position

swap until expected \$ points = log n call this a *witness*

Proof

 \mathcal{U}

swap until expected \$\$ points = log n call this a *witness* place m witnesses around

Proof

 \mathcal{U}

swap until expected \sharp points = $\log n$ call this a *witness* place *m* witnesses around place *m* collectors

Proof

 \mathcal{U}

swap until expected \sharp points = $\log n$ call this a *witness* place *m* witnesses around place *m* collectors

Proof

 \mathcal{U}

 $m = 1/\sqrt{w}$

Collector placing rule

Collector placing rule

if the witness is non empty

Collector placing rule

if the witness is non empty considering a direction "of the witness"

Collector placing rule

if the witness is non empty considering a direction "of the witness" the collector must contain the extremal point in that direction

Collector placing rule

Collector placing rule

Collector placing rule $c \simeq 9w$ W \mathcal{C}

Computing w

Wrapping up

Lower bound on hull vertices \ddagger of non empty witnesses $Prob(given witness empty) = e^{-\log n} = 1/n$

Wrapping up / Upper bound on hull vertices non empty witness \rightarrow \ddagger points in collector $= \log n$

Higher dimensions

same ideas initial position= (ϵ, κ) -sample

$$\tilde{\Theta}\left((\sqrt{n})^{1-\frac{1}{d}} \left(\frac{1}{\sqrt[4]{\delta}}\right)^{d-\frac{1}{d}}\right)$$

Experimental results

Experimental results

 $N \sim n^{1/4} \delta^{-3/8}$

 $\log \frac{N}{n^{1/4}\delta^{-3/8}} \simeq cte$

Experimental results

Open problems

Open problems

 $\delta \in [1,\infty)$

Cubic noise in higher dimension Noise shape (Gaussian noise)
Open problems

 $\delta \in [1,\infty)$

Cubic noise in higher dimension

Noise shape (Gaussian noise)

Other problems

e.g. worst case for 3D Delaunay with noise δ ?