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dim d, ”infinite” L2 noise,

Θ
(
n

d−1
d+1

)



Related result [Rényi & Sulanke]
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Collector placing rule

if the witness is non empty

considering a direction ”of the witness”
the collector must contain the extremal point in that direction
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Upper bound on hull vertices
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Upper bound on hull vertices

empty witness

−→ n

Wrapping up

with proba 1/n
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] of hull vertices

∼ m = 1√
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∼ n1/4δ−3/8

log factors were ignored
δ ∈ [n−2, 1]
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Open problems

Noise shape (Gaussian noise)

δ ∈ [1,∞)

Cubic noise in higher dimension

Other problems

e.g. worst case for 3D Delaunay with noise δ ?


